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Abstract: Regenerative therapies to replace cells and tissues damaged due to trauma and dental infec-
tions require temporal and spatial controlled recruitment and the differentiation of progenitor/stem
cells. However, increasing evidence shows microbial antigens can interfere with this process. Toll-like
receptors (TLRs) are crucial in recognizing pathogen-associated molecular patterns. Stem cells of
the apical papilla (SCAP) are required for normal dental development and are intimately involved
in the reparative and regenerative capacity of developing teeth. We hypothesized that TLRs are
expressed in SCAP and that the activation of TLR2/TLR4 or TLR3 by different ligands results in
differential cellular fate, impacting their differentiation into a mineralizing phenotype. We found
that most TLRs are expressed as detected by PCR except TLR7 and TLR8; exposure to heat-killed
E. coli results in upregulating TLR2 and TLR4 and reducing mineralization capacity. In addition,
bacterial exposure resulted in the upregulation of 11 genes, of which 9 were chemokines whose
proteins were also upregulated and released, promoting in vitro macrophage migration. On the other
hand, TLR3 activation resulted in increased proliferation and a dramatic inhibition of osteogenic
and odontoblastic differentiation, which was reversed by inhibition or the knockdown of TLR3
expression. The profound effects of TLR activation resulting in different cell fates that are ligand and
receptor-specific warrants further evaluation and represents an important therapeutic target to make
regenerative approaches more predictable following dental infections.

Keywords: regenerative endodontics; TLR; innate response; stem cell; SCAP; apical papilla; odontoblastic;
mineralization; chemotaxis

1. Introduction

The oral cavity has remarkable regenerative potential due to rich and distinct popu-
lations of mesenchymal stromal cells (MSCs). The dental pulp is designed to respond to
various insults such as caries and trauma through a robust immunological response but
also through the recruitment and activation of various stem cell niches to participate in the
modulation of the immune responses and the reparative process. The apical papilla stem
cells (SCAP) are contained within the dental apical papilla, a dense reservoir of undifferen-
tiated MSCs, and have great proliferative and odontogenic differentiation capacity [1,2].
These cells are responsible for tooth development through their concerted interaction with
epithelial cells from Hertwig’s root sheath [3]. These complex epithelial–mesenchymal
interactions dictate root development and shape. Unfortunately, dental infections can
lead to severe dental pulp injury, overwhelming its inherent regenerative potential, and
ultimately resulting in arrested development and loss of function (i.e., tooth loss).

Microbial infections trigger a robust immunological response in the dental pulp [4,5].
The recognition of pathogen-associated molecular patterns (PAMPs) in dental infections
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by pathogen pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), rep-
resents one of the first steps in the defense response. A total of 10 different TLRs have
been identified in human cells [6] with distinct signaling pathways and the ability to
detect specific microbial “molecular signatures” such as lipopolysaccharides, flagellin,
microbial DNA or RNA, but also few identified endogenous ligands [7,8]. It has become
clear that these receptors are expressed in multiple cell types in addition to immune
cells, including odontoblasts [9], dental fibroblasts [10], and stem cells [11]. Among these,
the TLR4 receptor detects lipopolysaccharides (LPSs) derived from the surface of Gram-
negative bacteria [12,13]. TLR2 recognizes lipoteichoic acid (LTA) from Gram-positive bacte-
ria [14] and TLR3 double-stranded RNA from viruses [15] but is also shown to be activated
by endogenous RNA [16]. These receptors have been reported in oral stem/progenitor
cells, including dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs),
and SCAP.

Regenerative endodontic procedures rely on the surgical transfer of stem cells from the
apical tissues by the laceration of apical tissues and intracanal bleeding [17]. Stem cells of
the apical papilla are believed to be the primary cell type involved in currently employed re-
generative procedures since they have been found to survive advanced apical periodontitis
following infection and pulpal necrosis [18] and demonstrate high proliferative and differ-
entiation potential in hypoxic environments [19]. Furthermore, pulpal infection becomes
increasingly rich with Gram-negative obligate and facultative anaerobes as it progresses
through the canal system. Thus, SCAP are undoubtedly exposed to bacterial antigens and
possibly endogenous RNA released from damaged cells. However, the differential effect
of these microbial ligands on SCAP differentiation fate is poorly understood. Thus, this
study aimed to evaluate the expression of Toll-like receptors in SCAP and the effect of
bacterial antigens or RNA-like ligands on proliferation and differentiation into mineralizing
or immunomodulatory cells.

2. Materials and Methods
2.1. SCAP Culture

A previously characterized SCAP cell line was used in all experiments [20]. Briefly,
cells were cultured at 37 ◦C in 5% CO2 in media comprised of alpha-modified minimum
essential medium (α-MEM; Sigma Aldrich, St. Louis, MO, USA) containing 10% heat-
inactivated fetal bovine serum (FBS; Gibco, Life Technologies, Grand Island, NY, USA) and
1% glutamine/penicillin/streptomycin solution (Gemini Bio-Products, West Sacramento,
CA, USA). Upon reaching 80% confluency, cells were passed onto other cell culture flasks
following trypsinization and used in subsequent experiments, or the media switched to os-
teogenic media composed of the media described above supplemented with differentiation
factors (0.5% ascorbic acid and 1% β-glycerol phosphate) at 37 ◦C and 5% CO2 for 14 days
for differentiation into a mineralizing phenotype.

For all subsequent experiments, cells were cultured in basal media or under osteogenic
differentiation and exposed to Toll-like receptor ligands, LPSs (0.01 µg/mL or 0.1 µg/mL),
heat-killed E. coli (1 × 1017 cells/mL), or poly (I:C) (0.1 µg/mL or 1 µg/mL) in the presence
or absence of 10 µM of CU CPT4a (TLR3 inhibitor; Tocris, Minnesota, MN, USA).

2.2. Immunocytochemistry

Cultured SCAP were processed as described previously [21]. Briefly, all cells were
fixed with 4% paraformaldehyde for 1 h at room temperature and washed 3 times for 10 min
in phosphate-buffered saline (PBS) (Sigma). Next, cells were permeabilized and blocked
for nonspecific protein binding sites with a blocking solution consisting of 4% normal goat
serum (Sigma), 2% bovine gamma-globulin (Sigma), and 0.3% Triton X-100 (Thermo Fisher
Scientific, Rockford, IL, USA) in PBS for 60 min before incubation overnight with mouse
antibodies against human TLR4 (1:250) (Abcam, Waltham, MA, USA) or TLR3 (1:200)
(Abcam), which was followed by staining for the cytoskeleton protein phalloidin (Alexa
Fluor Phalloidin 568; Thermo Fisher Scientific) and the nuclear stain DAPI (Thermo Fisher
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Scientific). Immunoreactivity was visualized with anti-mouse Alexa Fluor 488 secondary
antibodies (1:200; Thermo Fisher Scientific). Immunoreactivity was evaluated with an
EVOFL inverted microscope (Life Technologies; Carlsbad, CA, USA). Controls consisted of
evaluating cells that were stained as described above but lacked primary antibodies.

2.3. Western Blot

Total protein was extracted from SCAP exposed to either vehicle or heat-killed E.
coli in NP-40 buffer in the presence of protease inhibitors (Roche, Indianapolis, IN, USA).
Approximately 20 µg of protein samples per lane was resolved on 12.5% SDS-PAGE and
transferred to PVDF (Millipore, Billerica, MA, USA), and the Western blots were blocked in
5%BSA in TBS-Tween and visualized using antibodies to TLR2 (1:200, Abcam) TLR3 (1:200,
Abcam), TLR4 (1:200, Abcam) or GAPDH (1:1000, Abcam).

Autoradiography and Western blot results were scanned and quantified using the Chemi-
Doc digital documentation cabinet (Bio-Rad, Hercules, CA, USA). All autoradiographic bands
were normalized to values of GAPDH. Results are representative of 3 independent experiments.

2.4. Proliferation Assay

Stem cells of the apical papilla were plated at 1 × 104 cells/well and cultured in 24-well
plates for 1, 4, and 7 days in the presence of vehicle, LPS. Then, the quantity of viable
cells was determined using CellTiter-Glo reagent (Promega, Madison, WI, USA) with an
incubation at room temperature for 10 min. Blank luminescence was used for calibration of
the assay. A luminescence plate reader, the FlexStation 3 Benchtop Multi-Mode microplate
reader (Molecular Devices, San Jose, CA, USA), was used to determine the relative values
for each group.

2.5. Quantitative Mineralization Assay

For the quantification of mineralization potential, SCAP were cultured in osteogenic
differentiation media for 21 days with media changed every 3 days in the presence of either
vehicle, ultra-pure E. coli LPSs (0.01 µg/mL, 0.1 µg/mL) (Invivogen, San Diego, CA), poly
(I:C) 0.1 µg/mL) or heat-killed E. coli (1 × 1017 cells/mL). At the end of the culture period,
calcium deposits within cells and the extracellular matrix were first visualized under 10×
magnification brightfield microscopy using an EVOS FL microscope (Life Technologies).
Next, mineralization was quantified by staining using the osteogenesis quantification kit
(Millipore, Darmstadt, Germany). Briefly, all cells were fixed with 4% paraformaldehyde
for 1 h at room temperature, washed 3 times for 10 min in PBS, and stained with Alizarin
red; then, absorbance was measured at 405 nm using a multimode FlexStation 3 Benchtop
Multimode Microplate Reader.

2.6. RT-PCR

Cultured SCAP were washed in phosphate-buffered saline and lysis buffer from a RNeasy
Plus Mini Kit (Qiagen, Hilden, Germany) added to the cells. Total RNA was isolated according
to the manufacturer’s instructions. cDNA was synthesized using the Applied Biosystems
High-Capacity RNA-to-cDNA Kit (Thermo Fisher Scientific, Waltham, MA, USA). Semi-
quantitative polymerase chain reaction (PCR) was performed using primers specific to TLR1
through TLR10 (Human TLR PCR panel, Invivogen) and a PCR master Mix (Promega) with
reactions run in an Applied Biosystems MiniAmp Thermocycler (Thermo Fisher Scientific),
which was followed by electrophoresis in 1% Agarose (Bio-Rad, Hercules, CA, USA) and
imaging using the ChemiDoc digital documentation cabinet (Bio-Rad). Real-time RT-PCR
reactions for the following targets: dentin sialophosphoprotein (DSSP, assay Hs00171962_m1),
alkaline phosphatase (ALP, assay Hs03046558_s1), TLR3 (assay Hs01551079_g1) and 18S (assay
#Hs99999901_s1) were performed using the TaqMan Fast Advanced Master Mix (Thermo
Fisher Scientific), and amplification was performed on an ABI7500 Fast Real-Time PCR System
(Thermo Fisher Scientific). Expression fold change was determined using the comparative
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delta–delta cycle threshold method (∆∆Ct) after normalization to the endogenous control
expression using the control group as a reference sample.

2.7. RT-PCR Array

Total RNA samples isolated from SCAP exposed to either vehicle or heat-killed E. coli
(n = 3 biological replicates/group) were used to synthesize cDNA templates as described
above and used in PCR reactions using the RT2 Profiler™ PCR Array Human Inflammatory
Response & Autoimmunity (Qiagen, GeneGlobe ID—PAHS-077Z) following the manu-
facturer’s instructions. All reactions were performed on an ABI7500 Fast Real-Time PCR
System (Thermo Fisher Scientific), and exported cycle threshold values were uploaded
onto the GeneGlobe analysis web-based tool (https://geneglobe.qiagen.com/us/analyze,
accessed on 9 August 2023) to yield differentially expressed genes with fold >2 and p < 0.05.

2.8. TLR3 siRNA

SCAP were incubated with either an oligo Silencer® against the human TLR3 gene
(Thermo Fisher Scientific; assay #107054) or a scrambled control Silencer® Control 1
(Thermo Fisher Scientific; assay #AM4611) in the presence of Lipofectamine RNAiMAX
transfection reagent (Thermo Fisher Scientific) in culture media and conditions described
above for 3 days, which was followed by a media change and subsequent experiments.

2.9. Multiplex Analysis of Inflammatory Mediators

Conditioned media was collected once every 2.5 days from SCAP cultured in the
presence of a vehicle or heat-killed E. coli for 5 days (n = 9 biological replicates/group). The
media were immediately frozen at −80 ◦C and stored until assayed. We used Luminex
xMAP technology to quantify 64 cytokines, chemokines, and growth factors in condi-
tion media. The multiplexing analysis was performed using the Luminex™ 100 system
(Luminex, Austin, TX, USA) by Eve Technologies Corp. (Calgary, AB, USA). All 64 inflam-
matory markers were measured in cell culture media samples using MILLIPLEX Human
Cytokine/Chemokine Discovery 23 and 41-plex kits (Millipore, St. Charles, MO, USA)
according to the manufacturer’s protocol. The assay sensitivities of the 64-plex markers
range from 0.1 to 7 pg/mL on average. Targets with detectable levels with fold change > 2
and p < 0.05 were included in the analysis.

2.10. Transwell Migration Assay

Murine RAW264.7 cells (ATCC; Manassas, VA, USA) were preloaded with Vybrant™ Di-I
Cell-Labeling Solution (Thermo Fisher Scientific) according to the manufacturer’s instructions.
Approximately 5 × 104 cells/insert were placed in FluoroBlok™ 24-well cell culture light-
blocking inserts with 8 µm pores (Corning, Corning, NY, USA) and allowed to equilibrate
in normal culture media and conditions described above for 6 h. SCAP were cultured as
described above at the concentration of 1 × 105 cells/well in black-walled 24-well plates
(Corning) in the presence or absence of 1 × 1017 heat-killed bacteria. After 2 days of culture,
inserts containing the labeled macrophage cell line (RAW264.7) were transferred to the SCAP
plates. After 24 h of co-culture, the fluorescence of the lower chamber was measured at 480 nm
using a FlexStation 3 Benchtop Multi-Mode microplate reader (Molecular Devices, San Jose,
CA, USA); then, representative images of fluorescently labeled cells were acquired using an
EVOFL inverted microscope (Life Technologies) at 10× magnification.

https://geneglobe.qiagen.com/us/analyze


Cells 2023, 12, 2502 5 of 12

2.11. Statistical Analysis

Data were subjected to Student’s t-test, one-way or two-way analysis of variance
(ANOVA) followed by the Bonferroni’s post-hoc test. Statistical analysis with significant
values set at p < 0.05 was tested using the GraphPad Prism version 6.1 software (GraphPad,
La Jolla, CA, USA).

3. Results
3.1. Toll-like Receptors Expression in Stem Cells of the Apical Papilla (SCAP)

The gene expression for TLR1, TLR2, TLR3, TLR4, TLR5, TLR6 and TLR9 was confirmed
by RT-PCR (Figure 1A). Exposure to heat-killed (HK) E. coli increased the protein expression
of TLR4 (Figure 1B,C) by approximately 23% (p = 0.004) and TLR2 by approximately 19%
(p = 0.001) (Figure 1B,C).
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Figure 1. Differential representation of Toll-like receptors in SCAP. (A) Stem cells of the apical papilla
express the genes for TLR1, 2, 3, 4, 5, 6 and 9 as detected by RT-PCR. (B) The expression of TLR
2, 3 and 4 was detected by Western blot in SCAP exposed for 5 days to either vehicle (V1, V2 and
V3) or heat-killed E. coli (B1, B2 and B3) in extracts from 3 independent experiments. (C) Exposure
to heat-killed bacteria (Bact) significantly increased the expression of TLR2 and TLR4 compared to
vehicle (Veh) after 5 days of exposure. ns = not statistically significant; ** = p < 0.01, *** p < 0.001;
Student’s t-test.

3.2. Effect of Lipopolysaccharides or Heat-Killed Escherichia Coli (HK E. coli) on SCAP
Proliferation and Mineralization

Exposure of SCAP to LPSs led to an early decrease in cell proliferation detected at
1 and 3 days in culture and an increase in proliferation on day 10 for the highest LPS
concentration tested (Figure 2B). Interestingly, exposure to heat-killed E. coli did not alter
the number of viable cells detected in each time point (Figure 2B).

Exposure to LPSs for 21 days increased the differentiation into a mineralizing phe-
notype with greater mineralization detected (Figure 2C) and quantified (Figure 2D). Con-
versely, exposure to HK E. coli reduced mineralization (Figure 2C,D).
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Figure 2. Expression of TLR4 in SCAP and its effect on proliferation and osteogenic differentiation.
(A) TLR4 immunoreactivity is visualized in green and found in the majority of cultured SCAP, the
cytoskeleton is visualized in red by staining of phalloidin (Phalloid). The staining for TLR4 was
absent in samples lacking the primary antibody (No 1◦). (B) Exposure to different concentrations
of LPSs resulted in reduced proliferative capacity of SCAP, whereas exposure to heat-killed E. coli
did not affect the number of viable cells over 10 days of culture. (C) Representative pictures of
Alizarin red staining in SCAP cultured in osteogenic media in the absence of antigens (Veh), LPSs
(0.01 µg/mL, 0.1 µg/mL), or heat-killed E. coli. (D) Exposure to LPSs at both tested concentrations
for 21 days resulted in increased mineralization, whereas whole bacterial extracts resulted in reduced
mineralization. ns = not statistically significant; * = p < 0.05; ** = p < 0.01; *** p < 0.001; two-way
ANOVA (panel (B)) one-way ANOVA (panel (D)) with Bonferroni’s post hoc test. Scale bar = 200 µm.

3.3. Exposure of SCAP to HK E. coli Results in Differentiation into an Immunocompetent Phenotype

Exposure to heat-killed E. coli (1 × 1017 cells/mL) for 5 days resulted in the significant
upregulation of 11 genes, of which 9 were chemokines (CXCL8, CXCL6, CXCL1, CXCL2,
CCL5, CXCL3, CXCL10, CXCL5 and CCL2), followed by interleukin 6 (IL-6) and complement
component 3 (C3) (Figure 3A).
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Figure 3. Bacterial antigens evoke the upregulation of pro-inflammatory markers in SCAP. (A) Volcano
plot showing results from PCR array with the upregulation of 11 genes with greater than 2-fold change
and p-value < 0.05 (n = 4/group). (B) Chemokine protein quantification by Luminex of targets upregu-
lated in conditioned media by SCAP exposed to heat-killed E. coli for 5 days (n = 4/group). (C) Cytokine
protein quantification by Luminex of targets upregulated in conditioned media by SCAP exposed to
heat-killed E. coli for 5 days. (D) SCAP exposed to bacterial antigens for 5 days significantly increased
the migration of fluorescently tagged macrophages in a Transwell assay. Representative images of
groups (a) and (b) were acquired. * = p < 0.05; *** p < 0.001; **** = p < 0.0001, Student’s t-test for panels
(A–C) and one-way ANOVA with Bonferroni’s post-hoc test.
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3.4. Inflammatory Markers Protein Expression

Exposure to heat-killed E. coli (1 × 1017 cells/mL) for 5 days resulted in the upregulation
of the following chemokines present in the media (Figure 3B): CXCL10 (11.6-fold, p < 0.0001);
CXCL1 (4.9-fold, p < 0.0001); CXCL5 (3.15-fold, p < 0.0001); CCL11 (9.1-fold, p < 0.001);
CXC3CL1 (3.8-fold, p < 0.0001); CCL7 (5.5-fold, p < 0.0001); CCL5 (112.7-fold, p < 0.0001); and
CCL8 (3-fold; p < 0.001). In addition, there was a significant increase in the detection of the
following cytokines and growth factors (Figure 3C): IL-8 (2-fold, p < 0.0001); IL-6 (4.2-fold,
p < 0.0001); GM-CSF (2.2-fold, p < 0.0001); C-CSF (6.4-fold, p < 0.0001); IFN-α2 (2.5-fold,
p < 0.05); IL-1RA (5-fold, p < 0.0001); IL-1β (7.4-fold, p < 0.0001). Conversely, IL-10 was the
only target with a detected significant decrease (10-fold; p < 0.0001).

3.5. Macrophage Migration

To evaluate the functional activity of the detected chemokines, macrophages were
co-cultured with SCAP exposed to either vehicle or heat-killed E. coli for 24 h. Macrophages
migrated toward bacteria in the absence of SCAP (approximately 50% increase in migra-
tion, p < 0.0001 compared to vehicle control) (Figure 3D). However, the migration was
significantly enhanced (p < 0.001) by co-culture with SCAP in the presence of bacteria
(approximately 90% increase, p < 0.0001 compared to vehicle control).

3.6. TLR3 Activation Regulation of SCAP Proliferation and Differentiation

Exposure of SCAP to the TLR3 ligand poly (I:C) resulted in a concentration and
time-dependent increase in SCAP proliferation (Figure 4B). Poly (I:C) evoked a decrease
in alkaline phosphatase activity (Figure 4C) and mineralization in SCAP cultured under
osteogenic induction (Figure 4D). The reduction in mineralization observed in SCAP
cultured for 14 days in the presence of poly (I:C) was significantly reversed by the potent
TLR3 inhibitor, CU CPT4a (Figure 4D).
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Figure 4. Expression of TLR3 and its effect on SCAP proliferation and osteogenic differentiation.
(A) TLR3 immunoreactivity is visualized in green and found highly expressed in cultured SCAP,
the cytoskeleton is visualized in red by the staining of phalloidin (Phalloid). The staining for TLR3
was absent in samples lacking the primary antibody (No 1◦). (B) Poly (I:C) evoked a concentration
and time-dependent increase in SCAP proliferation (n = 6–9/group/time). (C) Activation of TLR3
by poly (I:C) reduced alkaline phosphatase activity in a concentration-dependent manner (n = 6).
(D) Activation of TLR3 by poly (I:C) resulted in reduced mineralization, which was reversed and
increased by a TLR3 inhibitor detected by a quantitative Alizarin red assay. ns = not statistically
significant; * = p < 0.05; ** = p < 0.01 and **** = p < 0.0001 by two-way ANOVA (panel B) and one-way
ANOVA (panels C,D) with Bonferroni’s post-hoc test. Scale bar = 200 µm.
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Treatment of SCAP with siRNA for 3 days resulted in the knockdown in TLR3 gene
expression, while the scrambled siRNA sequence had no effect (Figure 5A). This knock-
down of TLR3 reversed the inhibition of alkaline phosphatase (ALP) (Figure 5B) and dentin
sialophosphoprotein (DSPP) gene expression evoked by poly (I:C) when SCAP were cul-
tured in osteogenic media for an additional 7 days following TLR3 knockdown (Figure 5C).
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Figure 5. Knockdown of TLR3 with SiRNA for 3 days reverses the inhibitory effects of poly (I:C) on
differentiation into a mineralizing phenotype of SCAP culture in presence of differentiation media for
an additional 7 days. (A) A designed siRNA against TLR3 resulted in approximately 80% reduction
in mRNA expression while a control siRNA (SC, scrambled sequence) had no effect (n = 3–4/group).
(B) Knockdown of TLR3 reversed the inhibition of ALP mRNA expression evoked by poly (I:C)
(n = 4/group). (C) Knockdown of TLR3 expression by siRNA reversed poly (I:C) inhibition and
increased the expression of the odontoblast marker DSPP (n = 6/group). ns = not statistically
significant; * = p < 0.05; ** = p < 0.01; *** = p < 0.001 and **** = p < 0.0001. one-way ANOVA with
Bonferroni’s post-hoc test.

4. Discussion

Predictive pulpal repair and regeneration remain elusive despite significant advances
in pulp biology and regeneration knowledge. An increasing body of evidence demon-
strates the feasibility of pulpal regeneration, including the differentiation of stem cells
into odontoblast-like cells expressing dentin sialophosphoprotein (DSPP). However, most
studies focused on outcomes in sterile conditions while the damaged pulp is invariably
exposed to a barrage of microbial antigens. The stem cells of the apical papilla (SCAP)
are among the stem cells responsible for dental development. They are considered crucial
in the repair and regeneration of the damaged pulp in immature teeth. In this study, we
demonstrated that SCAP express most Toll-like receptors and that the activation of TLR2/4
leads to different cellular responses from the activation of TLR3.

We demonstrated that SCAP express TLR1, 2, 3, 4, 5, 6 and 9. The expression of Toll-
like receptors has been directly investigated in other oral-derived mesenchymal stromal
cell populations such as human periodontal ligament stem cells (hPDLSCs) [22], dental
pulp stem cells (DPSCs) [23], human gingival mesenchymal stem cells (hGMSCs) [24],
bone marrow mesenchymal stem cells (BM-MSCs) [25] and SCAP [26]. Notably, the TLRs’
expression profile varies within these different cell populations [27]. For example, the
previously characterized SCAP cell line used in this study did not have any detectable levels
of TLR7 or TLR8, while these receptors have been detected in SCAP in another study [26]
but also in hPDLSCs [22]. Other studies have focused on the cellular response upon
exposure to different ligands as evidence that a specific TLR is expressed and functional in
these cells. We did not verify whether SCAP expressed TLR10, which is a less understood
TLR, but it has been shown to trigger anti-inflammatory responses due to the production
of IL-1Ra [28] but also pro-inflammatory if participating in the recognition of H. pylori LPSs
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in conjunction with TLR2 [29]. Despite the robust expression profile of most TLRs in SCAP,
we focused on the differential function of TLR2/TLR4 versus TLR3 activation, since these
receptor systems are the most likely activated upon microbial infections in the dental pulp
that are predominant with Gram-positive and -negative bacteria [30], possibly viruses [31]
and endogenous mRNA released upon cell death.

The robust expression of TLR2 and TLR4 in SCAP agrees with the expression of these
essential bacterial recognition receptors in other oral-derived MSCs such as DPSCs [23] and
the functional effects of their ligands upon cellular fate [32–34]. We found that exposure
to heat-killed E. coli upregulated the protein expression of TLR4 with no effect on the
expression levels of TLR2 or TLR3. In this study, we used heat-killed E. coli as potent
TLR2/TLR4 ligands [35], mimicking a bacterial infection known to have an entourage
of bacterial ligands and not just LPSs or LTA [36]. Nonetheless, we demonstrated that
exposure of SCAP to LPSs resulted in a concentration- and time-dependent decrease in
cell proliferation while increasing differentiation into a mineralizing phenotype seen as
a greater detection of calcium deposits by Alizarin red. The reduction in proliferation is
consistent with the cells entering a differentiation stage resulting in increased mineralization.
Although heat-killed E. coli also resulted in a reduction in cellular proliferation, it did not
increase mineralization; instead, it resulted in a robust decrease in mineralization. This
finding supports that complex microbial antigens can result in a differential effect on stem
cell fate that is not necessarily seen with the exposure of highly purified single ligands
such as LPS. Also, SCAP in the presence of HK bacteria appeared to have differentiated
into an immunomodulatory fate instead of a mineralizing phenotype seen in the robust
upregulation of chemokine and cytokine expression. We have previously demonstrated
that exposure to a single-species bacterial biofilm significantly reduced the dentinogenic
differentiation potential of SCAP [37]. Moreover, secreted by-products of oral bacteria
in biofilms can differentially regulate the mineralization of SCAP in a bacterial species-
specific manner [38]. Thus, the findings of this study and others suggest that the differential
activation of TLRs by a myriad of bacterial antigens profoundly affects the differentiation
potential of MSCs. This has profound implications for the regeneration of damaged
mineralized tissues, which relies on appropriate differentiation, with spatial and temporal
control, into an odontoblast-like or cementoblast-like cell phenotype that may be impeded
by residual microbial antigens after disinfection.

The ability of MSCs to modulate the microenvironment has been long appreciated.
In general, it is believed that MSCs have a robust anti-inflammatory effect. This is partly
due to the study paradigm in which these progenitor cells are exposed to a wide range
of inflammatory mediators or placed within an inflammatory site in vivo [39,40]. In this
study, SCAP exposed to heat-killed bacteria responded with a robust upregulation of pro-
inflammatory cytokines such as complement C3 and IL-6 at the gene expression levels but
a robust upregulation of gene expression of several chemokines, including the members of
the CXC chemokine family (CXCL3, CXCL5, CXCL6, CXCL8 (IL-8), and CXCL10) and other
chemokines such as CCL5 and CCL2. Furthermore, SCAP demonstrated a robust produc-
tion and release of chemokines into the media detected by multiplex luminescence assays.
The release of the anti-inflammatory cytokine IL-10 was reduced upon bacterial exposure,
further demonstrating that the cells acquired a pro-inflammatory profile. The inflamma-
tory mediator that increased the most at both the gene and protein levels was CXCL8,
also known as IL-8, which is crucial in neutrophil and M1 macrophage recruitment [41].
Also, CXCL10, CCL5, and CCL7 are all known to evoke the robust chemotaxis of pro-
inflammatory macrophages and were robustly upregulated upon bacterial exposure [42].
We further demonstrated that these SCAP-released chemokines were functional by an
in vitro macrophage migration assay. RAW264.7 were exposed to heat-killed bacteria and
demonstrated innate migration toward the antigens within 24 h, significantly increasing in
the presence of SCAP, demonstrating that release soluble factors were robustly recruiting
macrophages. Thus, exposure of SCAP to bacteria evoked a shift to a pro-inflammatory
phenotype which favored the expression and release of chemokines responsible for attract-
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ing cells of the innate immune response. These data demonstrate that SCAP are not simply
downregulating an inflammatory response. Instead, they are active participants in the
recruitment of immune cells through chemokines and the expression of key inflammatory
mediators known to be significant participants in response to dental infections such as IL-6
and IL-1α [43]. Lastly, this robust employment of cellular machinery for producing and
releasing inflammatory mediators likely prevents the cells from acquiring the reparative or
regenerative phenotype of mineralizing cells.

We demonstrated that TLR3 is broadly expressed within the cytoplasm of SCAP.
The role of TLR3 in oral MSCs is largely unknown, as these receptors are best known
for recognizing double-stranded viral RNA [15], and these viruses (e.g., rotaviruses) are
not known pathogens in the infected dental pulp [44]. However, an increasing body of
evidence suggests that dsRNA is not restricted to certain viruses and can be generated en-
dogenously by eukaryotic cells due to cellular dysregulation in various pathophysiological
conditions such as the accumulation of transposable elements, changes in RNA synthesis
and processing, and mitochondrial damage [16]. Exposure of SCAP to poly (I:C), a potent
RNA mimetic TLR3 ligand, resulted in a concentration and time-dependent increase in
proliferation, resulting in a marked decrease in mineralization activity reversed by a TLR3
inhibitor. This differentiation into a mineralizing phenotype reduction was accompanied
by reduced alkaline phosphatase (ALP) mRNA expression and activity, normally elevated
in mineralizing cells, and the profound downregulation of DSPP expression, which is a
marker of odontoblastic differentiation. Interestingly, the knockdown of TLR3 expression in
SCAP resulted in the reversal of ALP mRNA expression inhibition and the robust increase
in DSPP to levels greater than control untreated cells. Since the odontoblastic differentiation
of SCAP has long been elusive, particularly in the presence of infection, this is the first line
of evidence that suggests that TLR3 is involved in odontoblastic differentiation. Activating
TLR3 appears to be a molecular “trigger” released from damaged cells for progenitor
proliferation from stem cell niches to prepare for repair and regeneration.

5. Conclusions

Collectively, this study demonstrates the expression of Toll-like receptors in SCAP,
which is an important stem cell type for dental regeneration, and that TLR2/TLR4 acti-
vation with bacterial antigens shifts cells into a pro-inflammatory phenotype primarily
dedicated to the recruitment of immune cells through the robust release of a wide range
of chemokines. Moreover, activation of the highly expressed TLR3 signals cells to prolif-
erate and profoundly inhibits differentiation into a mineralizing phenotype, particularly
inhibiting the marker for odontoblast-like cells (DSPP). The regulation of stem/progenitor
cells by TLR ligands, either through highly conserved microbial antigens or endogenous
sources, warrants further investigation and may represent a significant therapeutic target
for regenerative therapies following dental infections.
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