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Abstract: Lung-resident mesenchymal stem cells (LR-MSC) are thought to participate in idiopathic
pulmonary fibrosis (IPF) by differentiating into myofibroblasts. On the other hand, LR-MSC in
IPF patients present senescence-related features. It is unclear how they respond to a profibrotic
environment. Here, we investigated the profibrotic response of LR-MSC isolated from IPF and control
(CON) patients. LR-MSC were inoculated in mice 48 h after bleomycin (BLM) instillation to analyze
their contribution to lung damage. In vitro, LR-MSC were exposed to TGFβ. Mice inoculated with
IPF LR-MSC exhibited worse maintenance of their body weight. The instillation of either IPF or
CON LR-MSC sustained BLM-induced histological lung damage, bronchoalveolar lavage fluid cell
count, and the expression of the myofibroblast marker, extracellular matrix (ECM) proteins, and
proinflammatory cytokines in the lungs. In vitro, IPF LR-MSC displayed higher basal protein levels
of aSMA and fibronectin than CON LR-MSC. However, the TGFβ response in the expression of
TGFβ, aSMA, and ECM genes was attenuated in IPF LR-MSC. In conclusion, IPF LR-MSC have
acquired myofibroblastic features, but their capacity to further respond to profibrotic stimuli seems
to be attenuated. In an advanced stage of the disease, LR-MSC may participate in disease progression
owing to their limited ability to repair epithelial damage.

Keywords: idiopathic pulmonary fibrosis; lung-resident mesenchymal stem cell; transforming growth
factor β; bleomycin; inflammation; extracellular matrix proteins; myofibroblast

1. Introduction

Idiopathic pulmonary fibrosis (IPF) is a progressive disease with no curative treatment.
It is an aging-related and heterogeneous disease [1,2] caused by an abnormal response
to damage in which transforming growth factor β (TGFβ) and other signaling pathways
involved in tissue repair are dysregulated [3]. Such dysregulation involves the loss of
alveolar epithelial cell identity, the proliferation of fibroblasts, myofibroblast differentiation,
and the excessive production of extracellular matrix (ECM) proteins [4]. This lung tissue
remodeling is irreversible and implies a progressive loss of respiratory function.

Lung-resident mesenchymal stem cells (LR-MSC) execute a pivotal function in tissue
repair and regeneration in healthy conditions [5]. However, in IPF, the involvement of
LR-MSC in this aberrant and dysregulated repair is not fully understood due to the limited
number of studies [6]. The first evidence of the role of LR-MSC in pulmonary fibrosis came
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from the bleomycin (BLM)-induced fibrosis animal model, in which it was demonstrated
that LR-MSC were depleted after BLM administration [7] since their proliferation and
differentiation into myofibroblasts [8]. Specifically, murine LR-MSC can differentiate into
myofibroblasts through the activation of hedgehog and Wnt/B-catenin signaling and sumo-
specific protein 1 (SENP1)-mediated deSUMOylation [9–11]. Thus, the transformation of
LR-MSC into myofibroblasts suggests that they actively contribute to pulmonary fibrosis
activity [12–15]. Moreover, other studies also conducted in the BLM model identified
progenitor cell populations as a significant source of ECM-producing cells that express the
myofibroblast marker α smooth muscle actin (aSMA) and expand after BLM injury [16,17].
The BLM animal model of pulmonary fibrosis presents, however, several limitations for
the study of IPF [18]. In contrast to IPF, mice treated with a single BLM dose resolve lung
damage, and, therefore, this is a key issue to consider in the study of the role of LR-MSC in
IPF. Importantly, LR-MSC from IPF patients are expected to be continuously exposed to
profibrotic stimuli, whereas in BLM-treated mice, profibrotic stimuli decrease, and such a
change may affect LR-MSC behavior. Therefore, studies using human LR-MSC are required
to understand the role of these cells in the evolution of IPF.

In humans, the number of lung perivascular ABCG2pos MSC isolated from IPF pa-
tients decreased [8], in agreement with several findings shown in experimental models. We
recently demonstrated that IPF LR-MSC showed a lower expression of genes involved in
oxidative phosphorylation and mitochondrial dynamics than control LR-MSC, a limited
respiratory capacity, and dysmorphic mitochondria [19]. Accordingly, the limited repair
potential of IPF LR-MSC seems to be, in part, associated with stem cell exhaustion and mi-
tochondrial dysfunction. Moreover, recent data also suggested that LR-MSC could actively
contribute to fibrosis development in IPF [20,21]. The pathologic role of fibroblasts is ac-
quired at the early stages of lung mesenchymal progenitor cell differentiation [20], and the
expression of ECM-related genes is increased in all mesenchymal subpopulations [21]. The
pathologic role of LR-MSC seems to be influenced by their microenvironment [22,23]. Thus,
IPF LR-MSC displayed a high expression of genes involved in inflammation, oxidative
stress, and hypoxia [23]. Interestingly, Bonifazi M et al. [23] also showed that IPF LR-MSC
induced the expression of some pro-inflammatory cytokines, TGFβ, COLA1A, and αSMA,
in co-culture with control MSC or fibroblasts, indicating that IPF LR-MSC induces, in vitro,
a pathological phenotype in the surrounding cells. Conversely, the lung microenvironment
is critical for MSC capabilities [22]. Most of these findings were described in isolated
LR-MSC and progenitor cells cultured under basal conditions. However, it is unclear how
these cells behave in a profibrotic milieu.

In the present study, to better understand how they behave in a profibrotic environ-
ment, we analyzed the response of LR-MSC from patients with IPF compared with those
isolated from controls to profibrotic stimuli, both in vivo, using an experimental model of
BLM, and in vitro, exposing LR-MSC to TGFβ.

2. Materials and Methods
2.1. LR-MSC Isolation, Validation, and Culture

The animal procedure was approved by the Ethics Committee for Animal Experi-
mentation of the Balearic Islands (2019/09/AEXP). The collection of human LR-MSC was
approved by the Balearic Islands (IB 1991/13 PI; IB 3335/16 PI) and Swedish (2008/413
(2022-01221-02), 657-12 (13 September 2012, 2006/91) Ethical Committees. LR-MSC were
obtained from the reservoirs of 3 independent cohorts: Hospital Universitari Son Espases
(Palma de Mallorca, Spain), Hospital Universitari Bellvitge (Barcelona, Spain), and Lund
University Hospital (Lund, Sweeden), and designated either to IPF or control (CON) groups.
IPF patients were included in this study according to the guidelines followed for IPF diag-
nosis based on ATS and ERS criteria [24]. IPF patients from the Spanish cohort presented a
mild/moderate degree of disease, whereas IPF patients from the Swedish cohort presented
a severe degree.
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LR-MSC were isolated and identified as described in [19]. Briefly, lung tissue of IPF
patients was obtained from biopsies or explanted tissue, whereas for control individu-
als, lung tissue came from postmortem persons or from the surrounding tissue of tumor
resections. Tissue samples were processed to isolate LR-MSC using standardized proto-
cols [19,25]. The obtention of MSC was validated using the BD StemflowTM human MSC
analysis kit (BD Biosciences, 562245, Piscataway, NJ, USA), the human mesenchymal stem
cell functional identification kit (R&D Systems, SC006, Minneapolis, MN, USA), and the
Rohart test [26], or immunophenotyping and tri-lineage differentiation, as it is established
in [27]. Cells were cultured for 4–6 days in αMEM medium (Biowest, L0475-500, Nuaillé,
France) supplemented with 10% FCS (Biowest, S1810-500), and 1% penicillin/streptomycin
(Capricorn Scientific, PS-B, Ebsdorfergrund, Germany) inside a cell incubator at 37 ◦C, 5%
CO2, and 98% humidity. Non-adhered cells were removed by changing the media, and the
adhered cells were kept in culture up to passage 6–7 prior to the administration to mice.

2.2. Pulmonary Fibrosis Induction, LR-MSC Instillation, and Sacrifice

Three-month-old female C57BL/6 mice were used in this study. Mice (n = 35) were
divided into two groups according to their body weight (PBS, 20.3 g, n = 15; BLM, 20.2 g,
n = 20), anesthetized with ketamine/xylazine, and i.t. instilled with a 75 µL sterile solution
of PBS or 2 U/kg of BLM (day 0). To analyze the effect of LR-MSC exposed to a profibrotic
environment on fibrosis evolution, LR-MSC were administered 48 h after BLM instillation.
Thus, mice from PBS and BLM groups were divided into three subgroups of 5–7 mice
each, depending on whether they received vehicle, CON, or IPF LR-MSC. A total of
6 experimental groups were formed, as depicted in Figure 1A. LR-MSC were administered
by a veterinarian with practical expertise in i.t. administrations. Mice were anesthetized
and i.t. instilled with a 100 µL solution containing 100,000 cells from a pool of three different
male IPF or CON patients, or the same volume of sterile PBS. Cell suspensions were mixed
by inversion, and immediately connected to the cannula. To have a representative pool
of IPF LR-MSC, two patient samples from the Spanish cohort (mild/moderate) and one
patient sample from the Swedish cohort (severe degree) were selected. Health status was
checked daily, and body weight was registered on days 0, 2, 4, 8, 10, and 14.
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Figure 1. LR-MSC sustained BLM-induced histological and cellular signs of lung damage. (A) Ex-
perimental design. (B) Lung damage assessed using the modified Ashcroft score. (C) Lung collagen 
quantification assessed with Picrosirius Red staining. Quantification of lymphocytes (D), macro-
phages (E), and granulocytes (F) via flow cytometry in the bronchoalveolar lavage fluid. Data are 
expressed as means ± SEM, n = 5–7. Two-way ANOVA, B: BLM effect, C: cell donor effect; and a p 
value is indicated for each factor if the effect is statistically significant (p < 0.05); n.s., not significant. 
Bonferroni post hoc: * p < 0.05 vs. PBS groups. PBS: phosphate-buffered saline; BLM: bleomycin; LR-
MSC: lung-resident mesenchymal stem cells; VEH: vehicle; CON: control; and IPF: idiopathic pul-
monary fibrosis. 
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examination. Two 4 µm thick lung sections at a 25 µm depth were obtained for Masson’s 
trichrome staining, and one 5 µm thick section was stained with Picrosirius Red. 
Picrosirius Red staining was performed as detailed in [28]. Briefly, deparaffinized and re-
hydrated lung sections were immersed in a 1% phosphomolybdic acid solution for 2 min, 
rinsed in water, incubated in a saturated picric acid solution containing 0.1% Direct red 
80 (Sigma-Aldrich, Burlington, NJ, USA) for 2 h, and finally washed in 0.01 N HCl, dehy-
drated, and fixed. Tissue sections were digitalized by taking and fusing files at 50× mag-
nification using a D1 Cell Observer Zeiss. Lung fibrosis was evaluated from the lung sec-
tions stained with Masson’s trichrome by a pathologist in a blind manner using the mod-
ified Ashcroft scale for small animals [29] in 10 lung consecutive fields per animal. Colla-
gen quantification in picrosirius red-stained samples was assessed by image analysis in 
accordance with [30], scanning the entire lung sections. Images were processed using im-
age J software (version 2.3.0/1.53q, National Institutes of Health, Bethesda, MD, USA). The 
entire lung sections were manually defined, and the total lung area was calculated. A 
green channel image was generated by splitting red, green, and blue channels. Total col-
lagen was quantified after removing background noise, and data were reported relative 
to the total lung area. Representative images of Masson’s trichrome and picrosirius red 

Figure 1. LR-MSC sustained BLM-induced histological and cellular signs of lung damage. (A) Ex-
perimental design. (B) Lung damage assessed using the modified Ashcroft score. (C) Lung collagen
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quantification assessed with Picrosirius Red staining. Quantification of lymphocytes (D),
macrophages (E), and granulocytes (F) via flow cytometry in the bronchoalveolar lavage fluid.
Data are expressed as means ± SEM, n = 5–7. Two-way ANOVA, B: BLM effect, C: cell donor effect;
and a p value is indicated for each factor if the effect is statistically significant (p < 0.05); n.s., not
significant. Bonferroni post hoc: * p < 0.05 vs. PBS groups. PBS: phosphate-buffered saline; BLM:
bleomycin; LR-MSC: lung-resident mesenchymal stem cells; VEH: vehicle; CON: control; and IPF:
idiopathic pulmonary fibrosis.

On day 14, mice were euthanized in a CO2 chamber. A tracheotomy was performed
to collect the bronchoalveolar lavage fluid (BALF) by flushing twice with 500 µL of sterile
PBS with a cannula. Lungs were washed through the heart with sterile PBS, and the right
lung was ligated. All right lung lobes were snap-frozen for molecular analysis, and the left
lung was fixed in paraformaldehyde for histological analysis.

2.3. Histological Analysis

Lung tissues were fixed in 10% formalin and embedded in paraffin for histological
examination. Two 4 µm thick lung sections at a 25 µm depth were obtained for Masson’s
trichrome staining, and one 5 µm thick section was stained with Picrosirius Red. Picrosirius
Red staining was performed as detailed in [28]. Briefly, deparaffinized and rehydrated lung
sections were immersed in a 1% phosphomolybdic acid solution for 2 min, rinsed in water,
incubated in a saturated picric acid solution containing 0.1% Direct red 80 (Sigma-Aldrich,
Burlington, NJ, USA) for 2 h, and finally washed in 0.01 N HCl, dehydrated, and fixed.
Tissue sections were digitalized by taking and fusing files at 50× magnification using a
D1 Cell Observer Zeiss. Lung fibrosis was evaluated from the lung sections stained with
Masson’s trichrome by a pathologist in a blind manner using the modified Ashcroft scale
for small animals [29] in 10 lung consecutive fields per animal. Collagen quantification in
picrosirius red-stained samples was assessed by image analysis in accordance with [30],
scanning the entire lung sections. Images were processed using image J software (version
2.3.0/1.53q, National Institutes of Health, Bethesda, MD, USA). The entire lung sections
were manually defined, and the total lung area was calculated. A green channel image
was generated by splitting red, green, and blue channels. Total collagen was quantified
after removing background noise, and data were reported relative to the total lung area.
Representative images of Masson’s trichrome and picrosirius red staining obtained with
the 3DHistech P1000 digital scanner are shown in Figures S1 and S2, respectively.

2.4. BALF Cell Count

BALF cells were obtained after centrifugation at 800× g. A total of 20 µL of cell pellet
was mixed with 180 µL of 1/10 diluted lysis buffer solution (BD Biosciences, San Diego,
CA, USA) and incubated at room temperature for 10 min. Samples were analyzed using a
BD FACSVerse cytometer.

2.5. mRNA Expression

Total RNA was isolated from lung samples and cultured LR-MSC using TRItidy G™
(PanReac AppliChem, Barcelona, Spain) following the manufacturer’s protocol. 150 ng of
RNA was subjected to cDNA synthesis with the Transcriptme RNA kit (Blirt, RT31, Gdansk,
Poland). Finally, cDNA was used for PCR analysis using the SensiIFAST™ SYBR® No ROX
Kit (Bioline, BIO-98005, Antipolo City, Philippines) and the primer sequences detailed in
Table S1.

2.6. Protein Expression

Lung tissues were homogenized to powder and lysed in RIPA buffer. Protein was
quantified by Bradford assay (Thermofisher, #23227, Waltham, MA, USA), and 30 µg of
protein was boiled in loading buffer 4× for 5 min for Western blotting. Samples were



Cells 2024, 13, 160 5 of 13

loaded in 10% acrylamide gels, and running was performed in a running buffer at 120 W
using a Mini-TransBlot device (Bio-Rad, Hercules, CA, USA). Semi-dry transfer to PVDF
membranes (Millipore, Burlington, NJ, USA) was performed by the Trans-Blot Turbo
system (Biorad). Membranes were incubated in blocking buffer (5% BSA, 2% tween in
tris-buffered saline (T-TBS)) for 1 h at room temperature, followed by incubation with
primary antibodies (diluted 1:1000 in blocking buffer) overnight at 4 ◦C. Membranes were
washed three times in T-TBS and further incubated with HPRT-conjugated secondary
antibodies (diluted 1:2000 in blocking buffer) for 1 h at room temperature. Development
was done by chemiluminescence (Supersignal West Dura substrate, Thermofisher) using
the ImageQuant™ LAS 4000 system (GE Healthcare Bio-Sciences AB, Uppsala, Sweden).
Protein levels were quantified with ImageJ using bActin (A3854, Sigma, Burlington, NJ,
USA) for loading control. Primary antibodies used were to detect cytokeratin 8 (KRT8)
(ab5328, Abcam, Cambridge, UK), aSMA (A5228, Sigma, Burlington, NJ, USA), and KRT18
(04-586, Millipore, Darmstadt, Germany). Anti-rabbit (sc-2547, Santa Cruz Biotechnology,
Dallas, TX, USA) was used as a secondary antibody.

2.7. Statistical Analysis

The data were presented as means ± SEM. A two-way ANOVA was used to assess
the significance of the effects of the BLM treatment and the LR-MSC donor in the in vivo
experiment and the effects of the TGFβ treatment and the LR-MSC donor in the in vitro
experiment. A Bonferroni post hoc test was conducted for multiple comparisons within
groups. Statistical analysis was performed using GraphPad Prism 8.4.0 (GraphPad Software,
Inc., Boston, MA, USA) software. The threshold of significance was set at p < 0.05.

3. Results
3.1. Instillation of Either IPF or CON LR-MSC Sustained BLM-Induced Histological and Cellular
Signs of Lung Damage

Mice survived until the end of the study protocol, except for one mouse belonging
to the BLM + IPF group, who died on d12. As expected, BLM administration induced a
significant body weight reduction from day 2 onwards in the BLM + VEH mice (p < 0.001),
which was the highest on d4 (12.6% reduction compared to d0) and persisted on d14 (10.4%).
To analyze the effect of LR-MSC administration, mouse body weights on days 4, 8, 10, and
14 were compared to the day of cell instillation (d2) (Table 1). Within PBS-treated mice,
those instilled with IPF LR-MSC showed a significantly lower body weight than PBS + VEH
(p < 0.05). Within BLM-treated mice, those instilled with CON LR-MSC had a significantly
higher body weight than BLM-VEH (p < 0.05), whereas there were no significant differences
between BLM + VEH and BLM + IPF mice. These data indicated that mice receiving IPF
LR-MSC exhibited worse maintenance of their body weight.

The quantification of lung damage using the modified Ashcroft scale showed the
BLM-induced development of lung fibrosis (p < 0.001), which was not different between
the experimental groups of mice treated with BLM (Figure 1B). The appearance of lung
fibrosis followed a heterogeneous pattern and, on average, was classified as moderate
fibrosis (Figure S1D–F). In those fields in which fibrosis was noticeable, this was loose
and incipient (tiny interstitial aggregate of spindle-shaped fibroblasts in a pale-staining
myxoid background), and no mature eosinophilic collagen fibrotic depots were observed
(Figure S1D–F). Incipient fibrosis was accompanied by signs of interstitial inflammation,
and both events were observed in 4/7 BLM + VEH, 4/7 BLM + CON, and 2/5 BLM + IPF
mice (Figure S1D–F). In PBS-treated mice, signs of inflammation without fibrosis were
observed in 1/5 PBS + CON and 1/5 PBS + IPF mice, and in any mouse in the PBS + VEH
group (Figure S1A–C). According to the average Ashcroft score of the 10 lung fields,
BLM-induced lung damage was only significant in BLM + VEH and BLM + CON mice
compared with their controls, and there were no significant differences between mice
receiving IPF and CON LR-MSC, neither in BLM- nor in PBS-treated mice (Figure 1B).
The quantitative assessment of collagen accumulation by picrosirius red staining revealed
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that there were no significant differences in response to BLM or LR-MSC administration
(Figures 1C and S2A–F), in accordance with the observation of a lack of mature eosinophilic
collagen fibrotic depots.

Table 1. Worse body weight maintenance in mice instilled with IPF LR-MSC.

Day PBS + VEH PBS + CON PBS + IPF BLM + VEH BLM + CON BLM + IPF
p Value

B C B × C

4 101.2 ± 1.5 98.5 ± 1.4 98.9 ± 1.2 95.1 ± 2.2 * 97.7 ± 0.9 95.8 ± 2.0 0.021 n.s. n.s.

8 105.7 ± 1.9 99.6 ± 1.6 101.7 ± 1.4 95.3 ± 2.7 * 101.4 ± 2.0 92.5 ± 3.8 # 0.007 n.s. 0.04

10 105.1 ± 1.9 101.4 ± 2.1 102.5 ± 2.0 95.3 ± 3.4 98.9 ± 1.9 93.4 ± 4.0 0.005 n.s. n.s.

14 108.2 ± 1.5 103.1 ± 2.1 100.7 ± 1.6 * 97.4 ± 2.6 * 104.2 ± 0.9 ◦ 99.0 ± 0.7 0.015 n.s. 0.01

Body weight percentages relative to day 2. Mice were treated with bleomycin or PBS on day 0 and received
LR-MSC on day 2. Data were expressed as means ± SEM, n = 5–7. Two-way ANOVA, B: BLM effect, C: cell donor
effect, B × C: interaction effect, and n.s., not significant. Bonferroni post hoc: * p < 0.05 vs. PBS + VEH; # p < 0.05
vs. BLM-CON; and ◦ p < 0.05 vs. BLM + VEH.

The BALF immune cell populations estimation showed an increase in the number
of lymphocytes (p < 0.01), macrophages (p < 0.005), and granulocytes (p < 0.001) in-
duced by BLM instillation (Figure 1D–F). The number of BLM-induced lymphocytes and
macrophages was not different between the BLM groups, while in granulocytes, the effect
of BLM was only significant in the BLM + CON mice (p < 0.05). In contrast to the BLM
effect, LR-MSC instillation did not affect the number of immune cell populations.

3.2. IPF or CON LR-MSC Instillation Did Not Affect BLM-Induced Expression of Markers of
Lung Damage

The mRNA expression levels of genes coding for extracellular matrix proteins (Col1a1
and Fn) and proinflammatory cytokines (Il-6, Tnfα, Mcp1, and Il-1β) were analyzed in lung
tissues. As expected, BLM administration significantly induced both Col1a1 (p < 0.05) and
Fn1 (p < 0.01) mRNA expression levels (Figure 2A,B). Within BLM-treated mice, there were
no significant differences in the expression of these genes, although Col1a1 induction was
more evident in the BLM + VEH group (p = 0.06). Likewise, BLM treatment significantly
induced the Il6 mRNA expression levels (p < 0.05) (Figure 2C), whereas the expression of
the other genes involved in inflammation was not changed by BLM (Figure 2D–F). Within
BLM-treated mice, there were no significant differences in the expression of Il6 mRNA,
although the induction was more evident in the BLM + IPF group (p = 0.101).

The protein levels of markers of myofibroblast (aSMA), epithelial cell remodeling
(KRT8), and epithelial apoptosis (KRT18) were analyzed in lung tissues. As expected, BLM
administration induced the aSMA protein levels (p < 0.05) (Figure 2G,H). An increased
number of KRT8-positive cells is a feature of IPF and is increased by repetitive BLM
administration [31–33]. In the present study, BLM administration failed to significantly
induce the KRT8 and KRT18 protein levels (Figure 2G,I,J). However, a significantly different
cell donor effect was observed in the KRT8 protein levels (p < 0.01) (Figure 2I), and the
same tendency was noted in the KRT18 protein levels (p = 0.06) (Figure 2J). To understand
the effect of LR-MSC on these proteins, the KRT8/KRT18 ratio was calculated. Despite a
tendency towards decreasing KRT18 levels in BLM + IPF mice, no significant differences
were obtained regarding the KRT8/KRT18 ratio between BLM-treated groups (Figure 2K).
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chemoattractant protein 1 (E), and interleukin 1 beta (F). Glyceraldehyde-3-phosphate dehydrogenase
and hypoxanthine phosphoribosyltransferase 1 were used as housekeeping genes. Two representative
bands of Western blot for each experimental group were selected to show protein levels (G). Protein
levels of alpha smooth muscle actin (H), cytokeratin 8 (I), and cytokeratin 18 (J). Beta-actin levels
were used as a loading control. Cytokeratin 8 to cytokeratin 18 ratio (K). Data are expressed as
means ± SEM, n = 5–7. Two-way ANOVA, B: BLM effect, C: cell donor effect; a p value is indicated
for each factor if the effect is statistically significant (p < 0.05); n.s., not significant. Bonferroni post
hoc. PBS: phosphate-buffered saline; BLM: bleomycin; LR-MSC: lung-resident mesenchymal stem
cells; VEH: vehicle; CON: control; and IPF: idiopathic pulmonary fibrosis.

3.3. Lower TGFβ Response in the Profibrotic Gene Expression in IPF vs. CON LR-MSC

First, we analyzed aSMA and FN1 protein levels in isolated and cultured LR-MSC
treated with or without 10 ng/mL TGFβ for 48 h. IPF LR-MSC displayed robust basal
aSMA protein expression, and as expected, their levels were significantly higher than those
found in CON cells (p < 0.01) (Figure 3A,C). Likewise, FN1 protein expression levels were
significantly higher in IPF vs. CON LR-MSC (p < 0.005) (Figure 3B,C). TGFβ treatment
failed to significantly increase aSMA protein levels, as they were increased by 3.1-fold in
CON cells but only by 1.3-fold in IPF cells. On the other hand, TGFβ treatment increased
FN1 protein levels in CON (1.7-fold) and IPF (1.3-fold) cells, an effect that was statistically
significant (p < 0.01).
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Figure 3. Attenuated TGFβ response in IPF vs. CON LR-MSC. Protein expression levels of alpha smooth
muscle actin (A) and fibronectin (B). Beta tubulin levels were used as a loading control. Representative
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bands of the Western blot show protein expression levels (C). mRNA expression levels of transforming
growth factor beta (D), actin alpha 2 (E), collagen (F), tenascin C (G), and fibronectin 1 (H). Beta 2
microglobulin was used as a housekeeping gene. Data are expressed as means ± SEM, n = 3 (A,B),
and n = 7 (D–H). Two-way ANOVA, T: TGBβ effect, C: cell donor effect; a p value is indicated for
each factor if the effect is statistically significant (p < 0.05); n.s., not significant. Bonferroni post hoc:
* p < 0.05 vs. LR-MSC treated with vehicle. LR-MSC: lung-resident mesenchymal stem cells; CON:
control; and IPF: idiopathic pulmonary fibrosis.

Then, the TGFβ response was further explored by treating IPF and CON LR-MSC
to different TGFβ concentrations (1, 10, or 20 ng/mL for 24 h). We analyzed the effect
of TGFβ treatment on the mRNA levels of TGFb itself, ACTA2 (myofibroblast marker),
COL1A1, FN1, and TNC (extracellular matrix components). TGFβ treatment significantly
induced TGFb expression (p < 0.005), but this effect was only significant in the CON LR-
MSC exposed to the highest TGFβ concentration (Figure 3A). mRNA levels of ACTA2
in response to TGFβ were significantly greater in CON LR-MSC cells than in IPF cells
(p < 0.01) (Figure 3B). In line with the response on ACTA2, the TGFβ effect on COL1A1,
FN, and TNC gene expression was significantly greater in CON LR-MSC cells than in IPF
cells (p < 0.05 in all cases) (Figure 3C–E).

4. Discussion

Growing evidence supports that LR-MSC are a major source of fibroblasts and my-
ofibroblasts in IPF and, hence, LR-MSC would actively contribute to fibrosis [12–15,20,21].
Also, mitochondrial dysfunction has been described in IPF LR-MSC [19], and other molecu-
lar signs of aging, including stem cell exhaustion, are also expected to be present in these
cells [2,7]. Thus, LR-MSC would “passively” contribute to fibrosis by limiting their poten-
tial to regenerate the damaged epithelium. Both mechanisms are likely involved in IPF
progression, though the responsiveness of LR-MSC from IPF patients to profibrotic stimuli
is still unclear and remains to be elucidated as to how they participate in IPF progression. In
the present study, to better understand the role of LR-MSC in the progression of pulmonary
fibrosis, we analyzed the behavior of both IPF and CON LR-MSC in vivo and in vitro after
being exposed to profibrotic stimuli. In BLM-treated mice, the lung effects triggered by
LR-MSC from both cohorts were not different from BLM + VEH mice. In contrast, the
in vitro response to TGFβ on the expression of fibroblast and myofibroblast markers was
clearly attenuated in IPF LR-MSC, suggesting that these cells may have partly lost their
responsiveness to profibrotic stimuli.

Numerous studies have shown the capacity of MSC to reduce BLM-induced lung
fibrosis and inflammation, which prompted them to prove their therapeutic potential in
clinical trials [34,35]. Later, the potential of MSC to treat IPF was focused on the use of
MSC-derived extracellular vesicles [36]. In the BLM model, such an effect is influenced
by experimental factors, as discussed in [37,38]. In our study, however, CON LR-MSC
did not reduce lung BLM-induced fibrosis, probably because the cells were obtained from
elderly matched individuals, which may negatively affect the MSC capabilities [39]. A
beneficial effect was not triggered by IPF LR-MSC either, as could be expected from previous
results [40], in which bone marrow MSC (BM-MSC) from IPF patients did not prevent the
evolution of lung fibrosis in BLM-treated mice. Interestingly, the administration of BM-
MSC [40] and LR-MSC (present study) from IPF patients to BLM-treated mice affected body
weight regain, suggesting that MSC from IPF patients release some factors that may inhibit
lung repair and, in addition, affect other organs systemically. These LR-MSC-derived
factors might include Il-6 and Il-1b, pro-inflammatory cytokines involved in body weight
maintenance [41,42], that are overexpressed in IPF LR-MSC [23], and sustained or increased
in the lungs of BLM-treated mice irrespective of using BM- [40] or LR-MSC (present study)
from IPF patients. Other LR-MSC-derived factors that could be involved in the defective
lung repair may include exosomes and other types of extracellular vesicles, since it has
been demonstrated that their production from other IPF lung cells contributes to disease
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progression [43–49], and owing to the anti-fibrotic activity of MSC-derived extracellular
vesicles [36,50]

Our hypothesis was that the effect of LR-MSC administration on BLM-induced lung
damage in mice may depend on whether the donor is an IPF patient or not. This hypothesis
is supported by recent evidence showing that the features and function of LR-MSC and
progenitor cells are altered in IPF, which would explain their potential contribution to fibro-
sis. In particular, in vitro studies have shown that IPF lung-resident progenitor cells tend
to differentiate into myofibroblasts [11,20], express higher levels of inflammatory-related
genes, induce a pathological phenotype in surrounding MSC and fibroblasts [23], and
exhibit mitochondrial dysfunction [19]. Then, it could be expected that the IPF environment
induces LR-MSC to exacerbate lung fibrosis. However, our in vivo results did not support
it, and several reasons could explain it. First, there is the ratio between the degree of lung
damage and the number of instilled cells, as the acute lung damage could be too big to
observe any additional effect mediated by LR-MSC, and/or because the number of cells
was too low. Second is the communication between murine and IPF patient cells, because
BLM-exposed murine cells might be poorly responsive to the factors involved in promoting
fibrosis released by the LR-MSC from IPF patients and/or, vice versa, the IPF LR-MSC
might be poorly responsive to the murine BLM-induced profibrotic microenvironment.
The latter agrees with our in vitro results, which indicated that IPF LR-MSC are indeed
less responsive than CON cells to TFGβ, suggesting that LR-MSC from IPF patients has
mitigated their ability to acquire a profibrotic phenotype and to promote, at least actively,
lung fibrosis.

By contrast, in the initial stage of pulmonary fibrosis, it is thought that LR-MSC are ac-
tivated and continuously stimulated to proliferate and differentiate into myofibroblasts [7].
In our study, we showed that IPF LR-MSC displayed robust protein expression of the
myofibroblast marker aSMA in basal conditions, in agreement with other studies [23]. The
aSMA expression indicates that LR-MSC had been transformed because of their previous
exposure to a profibrotic environment in the human lung. Their responsiveness to TGFβ
might be attenuated at a certain point of IPF progression. Thus, differences in the features
and behavior of LR-MSC seem to occur throughout IPF evolution. Supporting this argu-
ment, Chanda et al. [51] demonstrated that BAL-derived mesenchymal stromal cells from
progressive IPF patients have reduced FGF-10 expression compared to cells from stable IPF
patients, suggesting that, in an advanced disease stage, LR-MSC have lost the potential to
regenerate the damaged epithelium.

5. Conclusions

Previous evidence, together with our results, allows us to conclude that IPF LR-MSC
differentiate into myofibroblasts; thereby, they actively contribute to IPF. However, the IPF
LR-MSC exhaust and the rest of the LR-MSC display a particular phenotype. They are
transformed into cells expressing aSMA with an apparent decrease in their responsiveness
to TGFβ to further increase the expression of ECM components and the myofibroblast
marker. At the same time, they have acquired senescence-related factors, which could
explain why they do not reduce the induced lung fibrosis and may contribute to the limited
repair ability. However, functional studies investigating the relationships between LR-MSC
from IPF patients and damaged epithelial cells are required to improve our understanding
of the role of LR-MSC in the IPF.
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