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Abstract: (1) Background: Stress granules (S5Gs) are cytoplasmic protein-RNA condensates that
assemble in response to various insults. SG production is driven by signaling pathways that are
relevant to human disease. Compounds that modulate SG characteristics are therefore of clinical
interest. Pifithrin-p is a candidate anti-tumor agent that inhibits members of the hsp70 chaperone
family. While hsp70s are required for granulostasis, the impact of pifithrin-u on SG formation is
unknown. (2) Methods: Using HeLa cells as model system, cell-based assays evaluated the effects
of pifithrin-p on cell viability. Quantitative Western blotting assessed cell signaling events and SG
proteins. Confocal microscopy combined with quantitative image analyses examined multiple SG
parameters. (3) Results: Pifithrin-p induced bona fide SGs in the absence of exogenous stress. These
SGs were dynamic; their properties were determined by the duration of pifithrin-u treatment. The
phosphorylation of el[F2x was mandatory to generate SGs upon pifithrin-u exposure. Moreover,
the formation of pifithrin-u SGs was accompanied by profound changes in cell signaling. Pifithrin-
p reduced the activation of 5'-AMP-activated protein kinase, whereas the pro-survival protein
kinase Akt was activated. Long-term pifithrin-u treatment caused a marked loss of cell viability.
(4) Conclusions: Our study identified stress-related changes in cellular homeostasis that are elicited by
pifithrin-p. These insights are important knowledge for the appropriate therapeutic use of pifithrin-p
and related compounds.

Keywords: pifithrin-p; stress granules; e[F2« phosphorylation; 5'-AMP-activated protein kinase
(AMPK); protein kinase Akt

1. Introduction

Stress granules (SGs) are transient cytoplasmic RNA-protein condensates that form in
response to various insults. During stress, SG formation can promote adaptation and cell
survival [1-3]. While the cell type and stressor determine the molecular composition of
SGs [2], several granule components are commonly present. These include translationally
stalled mRNAs, RNA-binding proteins, and key regulators of cell fate [4,5].

The assembly of canonical SGs requires the phosphorylation of translation initiation
factor elF2a on Ser51 (S51). This modification destabilizes polysomes and liberates mRNAs,
which become available for binding to SG nucleators, such as G3BP1 [6,7]. Several signaling
routes control SG formation and thereby affect cell survival. Specific examples are the
energy sensors 5'-AMP-activated protein kinase (AMPK) and mTORC1, PI3 kinase, O-
GlcNAc transferase, and the RhoA /Rockl pathway [5,8-12].

Additional cellular regulators add further complexity to the stress response through
the control of SG assembly and dissolution. Molecular chaperones in particular are critical
for granule homeostasis [13-17], referred to as granulostasis. Specifically, hsp70s prevent
the aggregation of SG-nucleating proteins [18], facilitate SG disassembly [19], and maintain
overall granulostasis [17,20].
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Given their importance for cellular homeostasis and stress survival, hsp70s have
emerged as targets for therapeutic intervention. Consequently, pharmacological modu-
lators of molecular chaperones continue to be assessed in clinical trials [21]. One lead
compound for drug development is the small molecule pifithrin-p (PFT-p, also known
as 2-phenylethynesulfonamide or PES [22]), which has been included in several patent
applications [23-25]. PFT-u inhibits the chaperone cycle for members of the hsp70 family
(hsp70s and hsc70, here collectively called hsp70s). The compound interacts with the hsp70
substrate-binding domain in the carboxyl-terminal portion of the chaperone [26,27] and
covalently modifies cysteine residues of hsp70 [28]. To date, PFT-p represents an estab-
lished inhibitor of hsp70s that has been widely used in pre-clinical studies. At the cellular
level, PFT-p affects diverse cellular compartments and activities, including mitochondria,
lysosomes, autophagy, and necrosis [29-35].

PFT-p may deregulate the cellular redox balance, thus generating a stressful envi-
ronment [34,36]. In addition, the compound compromises the association of p53 with
mitochondria, which modulates apoptosis [37]. It should be noted that PFT-«, which has
been extensively used to ablate p53 function, differs from PFT-p in its effects on cellular
homeostasis [37]. The current study focuses on PFT-p.

Due to the various contributions of hsp70s to cell physiology, PFT-u has been evaluated for
therapeutic applications of health conditions which range from peripheral neuropathy [38,39]
to cancer [30,40—46]. As a potential anti-cancer agent, PFT-p1 enhances the anti-tumor effects of
heat stress [47] and is effective in combination with hsp90 inhibitors [48,49].

Diverse signaling pathways regulate tumor cell survival and proliferation. The roles
of AMPK [50-52] and the PI3 kinase/ Akt pathway are especially well characterized [53-55].
Notably, there is crosstalk and negative feedback between AMPK and Akt signaling routes,
especially under conditions of oxidative stress [56-59]. Heat shock proteins, particularly
hsp70s, control this crosstalk [60].

Although important for the design of therapeutic regimens, the cellular effects of PFT-
u are not fully defined. To fill these knowledge gaps, we focused on the stress responses
triggered by PFT-u. Our study demonstrates that PFT-u induces the formation of bona fide
SGs. This process relies on elF2« phosphorylation. In addition, PFT-u significantly alters
the signaling through AMPK and Akt kinases, and long-term PFT-p treatment reduces cell
viability. Taken together, we identified novel roles of PFT-y1 in the regulation of three major
pathways that are essential for the survival of deleterious conditions: SG formation, AMPK
activation, and Akt signaling. Our study advances the understanding of the mechanism-of-
action of the lead compound PFT-p. This has important implications for the development
of therapeutic applications.

2. Materials and Methods
2.1. Primary and Secondary Antibodies

All horseradish peroxidase (HRP)-coupled, fluorescently labeled, and secondary anti-
bodies were generated in donkeys. They were affinity-purified and cross-absorbed against
antibodies from multiple species (see Table 1 for details).

Table 1. Source of primary antibodies and the dilutions for Western blotting or immunolocalization.

NA, not applicable.
Primary Antibodies
. . Dilution for Dilution for
Protein Supplier Catalog Number Western Blotting Immunolocalization
G3BP1 (mouse) BD Biosciences, Franklin Lakes, NJ, USA clone 23/G3BP1 1:1000 1:2000
G3BP1 (mouse) Santa Cruz Biotechnology, Dallas, TX, USA sc-365338 1:1000 1:500
G3BP1 (rabbit) Bethyl Laboratories, Montgomery, TX, USA A302-033A NA 1:1000

HuR

Santa Cruz Biotechnology sc-5261 1:2000 1:1000
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Table 1. Cont.
Primary Antibodies
Protein Supplier Catalog Number W:ztltl;rlrtll (I)B?oft(:;ng Imm?lggltj)zglf::tion
p-elF2ux (S51) Cell Signaling Technology, Withby, ON, Canada #3597 1:1000 NA
Total elF2« Santa Cruz Biotechnology sc-30882 1:1000 NA
TIA-1/TIAR Santa Cruz Biotechnology sc-28237 1:1000 NA
Hsp70 (hsp72) Enzo Life Sciences, Toronto, ON, Canada SPA-812 1:1000 NA
elF4G Cell Signaling #2469 NA 1:250
Lamin A Santa Cruz Biotechnology sc-20680 1:1000 NA
PARP1 Santa Cruz Biotechnology sc-25780 1:1000 NA
p-AMPK-a1/2 Cell Signaling #2535 1:2000 NA
AMPK-«1/2 Cell Signaling #2532 1:2000 NA
p-T308-Akt Cell Signaling #4056 1:2000 NA
p-S473-Akt Santa Cruz Biotechnology sc-7985 1:4000 NA
Akt Cell Signaling #9272 1:1500 NA
Actin Chemicon, Temecula, CA, USA mab1501 1:100,000 NA
Secondary Antibodies
Tag Supplier wDilution fo.r Dilution for )
estern blotting Immunolocalization
Jackson
Horseradish peroxidase (HRP) ImmunoResearch, 1:2000 NA
West Grove, PA, USA
Alexa Fluor® 488, Cy™s3, Jackson NA 1:200-1:500

Alexa Fluor® 647

ImmunoResearch

2.2. Cell Culture and Drug Treatments

HeLa cells were originally obtained from ATCC (American Type Culture Collec-
tion). Their characteristics are available through the Cellosaurus database (accession num-
ber: CVCL_0030) [61]. HeLa cells were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) with 8% fetal bovine serum (FBS) under standard tissue culture conditions (37 °C,
5% COy).

Wildtype and elF2xS51 A mutant mouse embryonic fibroblasts (MEFs) were kindly
provided by Dr. Koromilas, McGill University. The generation of knock-in MEFs has
been published [62]. These MEFs carry a serine 51 to alanine mutation (S51A) in both
elF2 alleles. The cells encode human elF20S51A; an internal ribosome entry site (IRES)
regulates the production of green fluorescence protein (GFP). The presence of GFP marks
cells that synthesize the mutant elF2xS51A protein. MEFs were cultured in DMEM supple-
mented with FBS and 2.5 ug/mL puromycin (Sigma, Oakville, ON, Canada), as described
previously [5,62].

HelLa cells and MEFs were incubated with the vehicle DMSO or 50 uM PFT-pu for the
times indicated in the figure legends. The final concentration of DMSO was 0.1%. Treatment
with staurosporine (24 h, 1 uM final concentration) was used to induce apoptosis [63].

2.3. Preparation of Crude Cell Extracts

The protocol to generate crude cell extracts has been described in detail [64]. In brief,
control or treated HeLa cells were scraped into 0.5 concentrated gel sample buffer and
boiled at 95 °C. Proteins were then precipitated with trichloroacetic acid and resuspended
in gel sample buffer (80 mM Tris-HCI, pH 8.0, 0.1 M dithiothreitol (DTT), 2% sodium
dodecyl sulfate (SDS), 11.5% (v/v) glycerol, 0.002% bromophenol blue, supplemented with
a cocktail of protease and phosphatase inhibitors) [65].
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2.4. Western Blotting

Crude cell extracts were separated on 7.5-11% or 10-12% poly-acrylamide gels; West-
ern blotting followed standard procedures [64]. All steps were carried out with gentle
agitation. Blocking and antibody incubation for phospho-epitopes were performed with 1%
bovine serum albumin (BSA)/50 mM NaF in Tris-buffered saline (TBS), containing 0.05%
Tween20. For all other antibodies, blocking and incubation steps were conducted with 5%
skim milk powder in TBS/0.05% Tween 20. After 1 h blocking at room temperature, filters
were incubated with primary and secondary antibodies overnight at 4 °C. Dilutions of
primary and secondary antibodies are listed in Table 1. Bound secondary antibodies were
detected with enhanced chemiluminescence (ECL). ECL reagents were purchased from
Amersham. Raw data for Western blots are included in the Supplementary File.

2.5. Immunolocalization

Immunofluorescent staining followed our published procedures [5,64,66]. In brief,
cells grown on poly-lysine coated coverslips were treated, fixed, permeabilized, and blocked
in 5% fetal bovine serum/phosphate buffered saline (PBS)/0.05% Tween20 (blocking
solution). All subsequent steps were carried out in blocking solution. Primary antibodies
were added overnight at the dilutions listed in Table 1. The following day, samples
were washed and incubated with fluorescently labeled secondary antibodies (Table 1).
After washing, DNA was stained with 1 pg/mL 4/,6-diamidino-2-phenylindole (DAPI).
Coverslips were mounted and samples were inspected by fluorescence microscopy.

2.6. In Situ Hybridization

The detection of polyA*-containing messenger RNA (mRNA) was performed with
oligo-dT50 labeled with 6-FAM (6-carboxyfluorescein; purchased from Bio Basic Inc.,
Markham, ON, Canada). We followed our detailed protocol, essentially as published [67,68].
Instead of transfer RNA, the current study used salmon sperm DNA at a final concentration
of 100 pg/mL.

2.7. Confocal Microscopy and Quantitative Image Analysis

All protocols for image acquisition and quantification have been described by us in
detail [9,64,68]. MetaXpress® software (version 5 5.00.20, Molecular Devices, San Jose, CA,
USA) was used to quantify SG parameters with our published procedures [68]. G3BP1
served as marker protein for SGs.

2.8. Cell Viability Assay

A resazurin (Acros Organics, ThermoFisher Scientific, Saint-Laurent, QC, Canada)
reduction assay evaluated cell viability [69]. To this end, cells were grown in 96-well plates
(Corning, MilliporeSigma, Oakville, ON, Canada), and cell viability was determined with
CellTiter-Blue® (Promega, Madison, WI, USA) according to the manufacturer’s recommen-
dations. Fluorescence (560 ex/590 em) was measured 2 h after addition of the reagent
using a Tecan Infinite M-1000 plate reader (Tecan, Médnnedorf, Switzerland). Background
fluorescence of the medium was subtracted for each treatment condition.

2.9. Statistics
Statistical evaluation was carried out with a one-way analysis of variance (ANOVA)

test combined with Bonferroni post hoc analysis. Differences were considered significant
for p < 0.05. Details of the comparisons are provided in the figure legends.

3. Results and Discussion
3.1. Pifithrin-y Induces Stress Granule Formation in the Absence of Other Stressors

Molecular chaperones, including members of the hsp70 family, contribute to the
regulation of SG dynamics [13,18,19]. The hsp70 inhibitor PFT-u has potent anti-cancer
activities in cellular and mouse models (for example [70]). At the same time, several
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chemotherapeutic agents promote the assembly of SGs and thereby affect cancer cell
survival [1]. These earlier observations provided the rationale to determine whether PFT-u
impinges on SG formation. HeLa cells were selected for our study because they have been
used extensively to examine SG properties (for example [5,12,71,72]). The appropriate
range of PFT-u concentrations for HeLa cells has been determined previously [29,73,74].
These earlier results provided guidance for the experimental design described below.

Our initial immunofluorescence studies revealed that HeLa cells incubated with PFT-
u produced cytoplasmic foci. The foci accumulated the SG markers G3BP1 and HuR,
demonstrating that PFT-u stimulated the formation of SG-like compartments (Figure 1A).
Consistent with established SG properties [75], the granules did not accumulate hsp70. To
substantiate further that PFT-p stimulates the generation of bona fide SGs, we examined
additional characteristics of genuine SGs (Figure 1B-D). As such, cycloheximide abolished
the PFT-p-dependent production of cytoplasmic granules (Figure 1B). Further consistent
with authentic SGs [76], PFT-p-induced cytoplasmic granules that contain the translation
initiation factor eIF4G (Figure 1C) and polyA*-containing RNA (Figure 1D). Taken together,
these results show that PFT-u triggered the formation of bona fide SGs.

DAPI  G3BP1  Hsp70 G,_?SEZ,%/

DAPI HSp70  Hreas

B + CHX
DAPI G3BP1 DAPI G3BP1

o - - -
PFT-u
20 um

DAPI elF4G G3BP1 elF4G/G3BP1
-

o - -
PFT-p
ZWm

oI|go dT50/

Figure 1. PFT- triggers the assembly of bona fide cytoplasmic stress granules. (A) HeLa cells were incu-
bated with vehicle or PFT-y (50 1M, 1 h), and the proteins indicated were detected by immunolocalization.

D DAPI oligo-dT50 G3BP1

Vehicle

PFT-p

20 pm
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Cytoplasmic condensates induced by PFT-p accumulated the SG markers G3BP1 and HuR. (B-D) HeLa
cells were treated with vehicle or PFT-p (50 uM, 2 h). (B) The treatment with vehicle or PFT-p was
conducted in the absence or presence of 10 pg/mL cycloheximide (CHX). G3BP1 provided the SG
marker. (C) The translation initiation factor eIF4G and G3BP1 were visualized by immunofluorescence
in cells incubated with vehicle or PFT-1. (D) PolyA*-containing RNA and G3BP1 were detected with a
combination of in situ hybridization with oligo-dT50 and immunostaining. All scale bars are 20 um.

3.2. SG Formation with Pifithrin-u Requires the Phosphorylation of elF2«

Many stressors stimulate the phosphorylation of translation initiation factor el[F2x on
serine 51 (S51), which serves as an upstream signaling event to trigger SG formation [77].
However, SGs can also form independently of elF2« phosphorylation [78,79]. To begin
to define the molecular mechanisms through which PFT-p promotes SG formation, we
examined how the compound affects the phosphorylation of eI[F2« on S51. Arsenite treat-
ment (0.5 mM, 30 min) was used as positive control, as it elevates elF2cc phosphorylation.
Figure 2A reveals that PFT-p1 increased the S51 phosphorylation of elF2x. By contrast, the
abundance of total el[F2« remained largely unaffected.

A 40 p/total total elF2a/
- AU] elF2 AU ti
p-elF2a. . [10] ° O%* [1.5] —
-40
total elF20. e ™ == g 1.0
actin e = 4 0.5 I I
2i i
PFT-p — + - 0 0TS
Arsenite — — + - - % - - +
B MEFs: wild type elF2a (851)

DAPI G3BP1

MEFs: mutant elF2a (S51A)
DAPI G3BP1 HuR

Figure 2. The formation of PFT-u SGs relies on eIF2«x phosphorylation. (A) HeLa cells were incubated
with vehicle, PFT-y, or arsenite. Crude extracts were evaluated for the phosphorylation of el[F2x on
551 (p-elF2«x) and total elF2«. Actin provided a reference for loading. The molecular mass of marker
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proteins is indicated in kD at the right margin. The relative phosphorylation of elF2a (p/total
elF2x) and the abundance of total eIF2x were quantified for at least three independent experiments.
Results normalized to vehicle controls are depicted as average + standard error of the mean (SEM).
One-way ANOVA combined with Bonferroni post hoc analysis identified significant differences

between groups. Comparison to vehicle: **

, p < 0.01. Comparison between PFT-y. and arsenite,
#p < 0.05. (B) Wildtype and mutant mouse embryonic fibroblasts (MEFs) were incubated with PFT-p.
The formation of SGs was assessed with the SG marker proteins G3BP1 and HuR. Cells that produce
mutant elF2« (S51A) also synthesize GFP (Materials and Methods). All images were acquired with
identical settings; scale bar is 20 um. Several SGs are marked with arrowheads. Note that MEFs with

mutant elF2cc do not generate SGs when treated with PFT-p.

We next determined whether S51 phosphorylation was necessary to generate PFT-p
SGs. This was accomplished with mouse embryonic fibroblasts (MEFs) engineered to
synthesize the non-phosphorylatable S51A mutant of elF2«. In Figure 2B, cells producing
the S51A elF2x mutant are identified with the fluorescent marker GFP [62]. (Note that the
cells produce S51A elF2x and GFP as separate proteins, not as a fusion protein). These
mutant MEFs failed to form SGs upon PFI-p treatment (Figure 2B). By contrast, PFT-p
clearly generated SGs in the cytoplasm of wild type MEFs. In summary, PFT-u stimulated
elF2a phosphorylation on S51; this was a mandatory step to assemble PFT-u SGs. Our
results also demonstrate that PFT-u caused SG assembly in cell lines derived from cancer
cells as well as non-malignant fibroblasts.

3.3. The Properties of Pifithrin-yu-Induced SGs Change in a Time-Dependent Fashion

To characterize the SGs generated with PFT-i1, we determined the kinetics of granule
formation (Figure 3). To this end, HeLa cells were assessed at different time points of
PFT-p treatment. Granule production was monitored with two SG markers, G3BP1 and
HuR. During PFT-p incubation, SGs were generated as early as 1 h. The granules increased
further in size (area/SG) when the incubation time was extended to 4 h. A similar time
course was observed for the number of SGs/cell, total SG area/cell, pixel intensity /SG, and
pixel intensity /SG area. However, prolonged exposure to PFT-p (21 h) reduced the values
for all SG parameters. At the same time, cells displayed alterations in morphology, and
pyknotic nuclei became more abundant (Figure 3, arrowhead). The nuclear accumulation of
HuR was not static during the incubation period; these data are consistent with the nucleo-
cytoplasmic shuttling and subcellular relocation of HuR reported by others [80]. Together,
the experiments show that all monitored SG properties were dynamic and determined by
the duration of PFT-u exposure. The changes observed after 21 h exposure to PFT-u were
consistent with elevated cell death.

To define the signaling events that drive PFT-p-mediated SG assembly, we monitored
the S51 phosphorylation status of elF2«x at different time points. PFT-u stimulated elF2o
phosphorylation in a time-dependent fashion (Figure 4). Moreover, the rise in elF2«
phosphorylation at 2, 3, and 4 h coincided with maximum SG formation (Figure 3). PFT-pn
slightly increased the abundance of total elF2x at 1 and 4 h of treatment, but diminished
total elF2« levels after 21 h.

3.4. Pifithrin-u Diminishes the Abundance of SG Nucleators G3BP1 and TIA-1/TIAR

Experiments in Figure 4 linked the dynamics of PFT-p-induced elF2c phosphorylation to
the generation of SGs. To identify additional mechanisms contributing to the time-dependent
changes in SG characteristics, we measured the abundance of the SG nucleators G3BP1 and
TIA-1/TIAR. The SG marker HuR and hsp70, the chaperone targeted by PFT-u, were also
examined (Figure 5). The rationale for these experiments was our previous observation that
the loss of SG nucleators diminishes SG size [81]. After 21 h PFT-u incubation, the levels of
G3BP1, TIA-1/TIAR, and hsp70 were significantly reduced. Notably, no marked changes
were observed for HuR. Together, our data are consistent with the interpretation that multiple
factors contribute to the decrease in SG number and size at the 21 h time point. These factors
include the diminished phosphorylation of elF2c (Figure 4) and the reduced abundance of
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SG nucleators (Figure 5). Notably, the loss of SGs upon prolonged PFT-p treatment may
compromise cell viability [5]. Indeed, cell survival declined after an extended period of PFI-p
incubation (21 h), as discussed in the next section.

DAPI G3BP1 HuR  G3BP1/HuR

1h
PFT-u

Vehicle

2h
PFT-u
3h
PFT-u
4h
PFT-u
21h
PFT-u
[AU] SGs/cell [AU] Total SG arealcell
4 - . .
3 . N 3
2 H ﬂ 2
1 1
000 | TR O D Y
VPVPVPVPVP VPVPVPVPVP
[h] 1 2 3 4 21 1 2 3 4 21
[AU] Area/SG [AU] Pixel intensity/SG
4 5 * *
3 4
3
** * %k
2 I I %k 2
| I )
| I - - - s on % - -~ - -
VPVPVPVPVP VPVPVPVPVP
[h] 1 2 3 4 21 1 2 3 4 21

[P:‘SU] Pixel intensity/SG area

2 Fekk *
Allmilmilmilal
VPVPVPVPVP

[h] 1 2 3 4 21

Figure 3. Kinetics of SG formation in response to PFT-i treatment. HeLa cells were incubated
with the vehicle DMSO (V) or PFT-u (P) for the times indicated [h]. Scale bar is 20 um. The
arrowhead points to a pyknotic nucleus, which indicates cell death. For the measurements of SG
properties, all images were acquired with identical settings. SG parameters were quantified for two
independent experiments, each set with at least 112 cells per condition for each experiment. Results
were normalized to the 1 h PFT-u datapoint. Bar graphs depict data as average + SEM. Statistical
evaluation was performed with one-way ANOVA and Bonferroni post hoc analysis. The 1 h vehicle
control was used as reference for pairwise comparisons; *, p < 0.05; **, p < 0.01; ***, p < 0.001. AU,
arbitrary units.
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p-elF2c "= e - . g ap - "=

Lo -35

L
total elF2a. ---.. - - - "~ .
Actin " ap oo P e Sp oo oo B0 S
VP‘V F’|V P|V P|VP
(h 1 2 3 4 21

[AU] phospho-/total elF2a
12 1
AU
'l
itk ity %
8 * kK f
L
# *
4 ! 1
e
E_l T I_I T i—l T I_E T I—I "L‘ 1

[AU] total elF2a/actin
157 I

#
itk
1.0 1

0.5+

V PV PV PV P V P
h 1 2 3 4 21

Figure 4. PFT-y1 elevates the phosphorylation of elF2«x in a time-dependent fashion. HeLa cells were
incubated with vehicle (V) or PFT-u (P) for the hours [h] indicated. Crude extracts were assessed for
elF2x phosphorylation on S51 (p-elF2«) and total e[F2«. Actin provided a loading reference. The
molecular mass of marker proteins is shown in kD at the right margin. ECL signals were measured
and normalized to the vehicle control for each time point. Two independent experiments were
evaluated for p-elF2«, and at least three independent experiments were performed for total elF2«.
Results are shown as average + SEM. Statistical evaluation was performed with one-way ANOVA,
followed by Bonferroni post hoc analysis. Significant differences were identified relative to the vehicle
control (*, p < 0.05; ***, p < 0.001). Pairwise comparisons showed significant differences between
PFT-p-treated samples (#, p < 0.05; ##, p < 0.01; ####, p < 0.001). AU, arbitrary units.

3.5. Prolonged Pifithrin-u Treatment Reduces Cell Viability

The formation of SGs is linked to the survival of stress ([1] and references therein).
Accordingly, the time-dependent decline in PFT-p SGs (Figure 3) may be associated with
a loss of cell viability. To address this question, we monitored cell metabolic activities
with CellTiter-Blue®, a resazurin reduction assay. Resazurin is only cleaved by viable,
metabolically active cells to resorufin, a fluorescent compound [82].

As shown in Figure 6A, PFT-u diminished HeLa cell viability in a time-dependent
fashion. A 4 h incubation period reduced cell viability to ~80%, which was further de-
creased to ~34% after 21 h. Staurosporine was included as a positive control, as it induces
morphological changes and apoptosis in mammalian cells [63,83]. After 24 h, staurosporine
reduced the metabolic activity of HeLa cells to ~25% of the vehicle controls (Figure 6A).
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TIA1/TIAR s= #% S8 Sa &% = on s o= = 4

HUR "B as «= o= "t e G G = .

HspTO — G W w— — oy — o w= 70

—
Actin s S S S TF TF S e -
Y

vV P ‘ v P | P| v P|Vv P
1 2 3 4 21
(AU] G3BP1/actin
15
1.0 1 -
kK
0.5 -
[AU] TIA-1,TIAR/actin
15 , :
f ’r
T
1.0 T
*k
05+ H H I -
[AU] HuR/actin
15
L
T
1.0 o |
0.5 — —~ H H H
(AU] Hsp70/actin
15
#
|
1.0 - -
*
0.5 -

V PV PV P V P V P
h 1 2 3 4 21

Figure 5. Impact of PFT-p treatment on the abundance of SG nucleators, HuR, and hsp70. The levels
of different SG components and hsp70 were determined by Western blotting as described for Figure 4.
The molecular mass of marker proteins is depicted in kD at the right margin. Three to four independent
experiments were conducted for each protein analyzed. Graphs show averages + SEM. Statistical eval-
uation was conducted with one-way ANOVA and Bonferroni post hoc analysis. Significant differences
are indicated relative to the vehicle control (*, p < 0.05; **, p < 0.01, ***, p < 0.001). Pairwise comparisons
identified significant differences relative to the 21 h PFT-u treatment (#, p < 0.05; ##, p < 0.01; ###, p < 0.001).
V, vehicle; P, PFT-u; AU, arbitrary units.
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Figure 6. PFT-p induces cell death in a time-dependent fashion. HeLa cells were incubated with
vehicle (V), PFT-p (P), or staurosporine (STS) for the hours [h] indicated. (A) PFT-p reduced the
metabolic activity of HeLa cells. Results for each condition were normalized to the vehicle control.
Data are depicted as average + SEM for three independent experiments. One-way ANOVA combined
with Bonferroni post hoc analysis was used for statistical evaluation. The vehicle control served as
reference. *, p < 0.05; ***, p < 0.01. Pairwise comparison demonstrated significant differences between
4 h and 21 h PFT-p treatments; ###, p < 0.001. AU, arbitrary units. (B) Crude extracts were prepared
for HeLa cells that were treated as described for part A. Western blotting evaluated the cleavage of
lamin A and PARP1. Actin served as loading reference. The molecular mass of marker proteins is
shown in kD at the right margin.

PFT-p can cause cell death through different pathways [33,34,70]. To monitor the
possible contribution of apoptosis, the cleavage of lamin A and PARP1 was assessed
(Figure 6B). There was no pronounced effect of PFT-u on lamin A and PARP1 abundance.
By contrast, staurosporine resulted in a marked reduction of both proteins, which indicates
staurosporine-induced apoptotic cell death.

In summary, our experiments revealed that (i) PFI-p caused time-dependent changes
related to the presence and properties of SGs. While short-term incubation triggered a stress
response associated with SG formation, long-term treatment diminished the number of
SGs/cell and altered all SG parameters quantified by us. (ii) Long-term incubation with PFT-
u led to a significant loss of cell viability. (iii) The changes in metabolic activity triggered
by PFT-p did not correlate with a marked cleavage of lamin A or PARP1. These results
support the interpretation that PFT-p induced death predominantly through non-apoptotic
routes. Our data are in line with unrelated studies that report non-apoptotic cell death
upon treatment with PFT-p [33,34]. While PFT-p is linked to necroptotic cell death [33], the
current study did not assess necroptotic mediators in treated cells. To uncover the type(s) of
cell death instigated by long-term PFI-p exposure, future experiments will have to evaluate
biomarkers of necroptosis and other forms of regulated cell death [84,85].

3.6. Pifithrin-y Treatment Significantly Reduces AMPK Activation

AMPXK functions as a stress sensor, and our earlier work showed that the kinase
directly modulates SG biogenesis [5,9]. These previous insights prompted us to examine
the effects of PFT-u on AMPK signaling. To this end, we assessed the phosphorylation
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of AMPK on T172 of the catalytic a-subunit, which represents an important step to fully
activate the kinase [86]. Western blotting demonstrated that PFT-u significantly reduced
AMPK activation throughout the incubation period (Figure 7). By contrast, the abundance
of total AMPK did not significantly change over the time course of the experiment.
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Figure 7. PFT-p diminishes the phosphorylation of AMPK on T172. Cells were incubated with vehicle
(V) or PFT-p for the hours [h] depicted. Crude extracts were evaluated for the phosphorylation of
AMPK on T172 (p-AMPK). The same samples were also probed with antibodies against total AMPK
(t-AMPK) and actin. The molecular mass of marker proteins in kD is indicated at the right margin.
ECL signals were quantified for three independent experiments. Data were normalized to vehicle
controls for each time point. Bars show average + SEM for each datapoint. Statistical evaluation
was performed with one-way ANOVA combined with Bonferroni post hoc analysis. Changes were
assessed relative to the vehicle control; ***, p < 0.001. AU, arbitrary units.

Collectively, our results show that PFT-u downregulates signaling through AMPK.
The profound reduction in AMPK phosphorylation on T172 during PFT-u treatment is
accompanied by the loss of cell viability. These data substantiate and extend our previous
and unrelated work. Specifically, we have demonstrated earlier that AMPK activation
enhances the survival of oxidative stress. Furthermore, oxidative and other stressors can
diminish AMPK phosphorylation on T172 [5,9,65]. Figures 6 and 7 corroborate these links,
as PFT-p caused a simultaneous loss of cell viability and AMPK activation.

We have shown previously that AMPK activity regulates SG formation [5,9,87]. Our
work demonstrated that AMPK activation modulates elF2x phosphorylation; the kinase
also controls SG properties through its effect on core SG proteins and microtubules. Based
on these observations, AMPK is expected to contribute to multiple cellular responses to
PFT-p. Ultimately, these responses determine cell fate decisions and fine-tune SG properties.

3.7. Pifithrin-y Treatment Activates the Pro-Survival Kinase Akt

The crosstalk between AMPK and Akt signaling is well-documented [56-59], and the
pivotal role of Akt in cancer cell survival is firmly established [53-55]. The kinase activity
of Akt is regulated by two major posttranslational modifications. T308 phosphorylation
is mandatory to activate the kinase; the kinase activity is further enhanced by S473 phos-
phorylation [55]. Notably, 5473 phosphorylation limits oxidant-induced apoptosis [88] and
promotes adhesion-dependent survival [89].
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Directly relevant to our study, signaling through the PI3 kinase pathway stimulates
SG assembly and requires Akt phosphorylation on T308 [12]. This motivated us to examine
the possible effects of PFT-u on Akt phosphorylation and abundance. As illustrated in
Figure 8, PFT-u stimulated T308 phosphorylation, especially during prolonged treatment
(>1 h). At the same time, SG numbers and sizes reached maximal values (Figure 3). Unlike
T308, the phosphorylation of 5473 increased significantly after 21 h incubation with PFT-p.
These data suggest that PFT-u has different outcomes for the steady-state phosphorylation
of T308 and S473.
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Figure 8. PFT-p modulates Akt activation. HeLa cells were incubated with vehicle (V) or PFT-u (P) for
the hours [h] specified. Crude extracts were evaluated for Akt phosphorylation on T308 (p-T308) or 5473
(p-5473) and for total Akt. The bands quantified for p-T308, p-5473, and total Akt are marked with square
brackets. Actin was used as loading reference. The molecular mass of marker proteins is indicated at the
right margin in kD. ECL signals were quantified and normalized to the vehicle control for each time point.
Results for four to seven independent experiments are depicted as average + SEM. Statistical evaluation
was performed with one-way ANOVA followed by Bonferroni post hoc analysis. Significant differences
were identified relative to the vehicle control (**, p < 0.01). Pairwise comparisons between PFT-p-treated
samples showed a significant difference for p-S473 (#, p < 0.05). AU, arbitrary units.

The pro-survival signaling mediated by Akt is important for cell viability. The up-
regulation of 5473 phosphorylation after 21 h of PFT-u treatment may limit cell apoptosis.
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Whether the enhanced 5473 modification during chronic PFT-p stress restricts cell death
will have to be investigated in the future.

4. Conclusions

This study evaluated the impact of PFT-p on cell physiology. To our knowledge, this
is the first in-depth investigation that links PFT-u to the formation of bona fide SGs and
the signaling events that are relevant to granule assembly and cell viability (summarized
in Figure 9). Here, we demonstrated that the SG formation triggered by PFT-pu was a
dynamic process and required elF2« phosphorylation. Time-dependent alterations in
elF2o phosphorylation were accompanied by changes in AMPK and Akt signaling; all
of these processes control stress responses and cell survival. We uncovered significant
differences between the initial responses to PFT-u that lasted up to 4 h and the later effects
that were uncovered at 21 h. While cells activated pro-survival pathways at the earlier time
points and cell death was limited, prolonged exposure to PFT-p profoundly altered SG
properties and signaling, concomitant with an extensive loss of cell viability.

conditions

Vehicle PFT-u: short-term PFT-u: chronic
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Figure 9. Simplified model of the cellular responses triggered by PFT-y. Stress granules are depicted
as green spherical compartments in the cytoplasm. Short-term refers to the incubation period up to
4 h; chronic represents a 21 h treatment. 1, upregulation; |, downregulation. See text for details.

Together, our results support the model that different signaling pathways converge to
control SG formation and cell survival when cells are treated with PFT-p (Figure 9). We
identified the following key events that are directly relevant to these processes: (i) The
presence of SGs was most prominent between 2 and 4 h of PFT-p incubation. (ii) PFT-p
elevated the phosphorylation of elF2«, which peaked concomitantly with SG formation.
(iif) The decline of SG-nucleators G3BP1 and TIA-1/TIAR at the 21 h time point coincided
with reduced SG numbers and substantial cell death. (iv) PFT-u diminished AMPK activa-
tion; this decline continued throughout the incubation period. (v) Akt phosphorylation
on T308 followed similar kinetics as SG production and elF2« phosphorylation on S51.
(vi) Prolonged exposure to PFT-p caused cell death. The loss of cell viability was at least in
part mediated by non-apoptotic pathways.

The current study broadens the information on signaling events that regulate granu-
lostasis. As such, both AMPK and Akt activities impinge on SG biogenesis. As described
by us for PFT-p, oxidative stress also inhibits the phosphorylation of AMPK on T172 [9].
Collectively, these results emphasize the interplay between AMPK and SG formation. On
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the other hand, Akt negatively regulates the expression of the G3BP1 gene [90], which
could limit SG formation at later time points. Consistent with this idea, PFT-u reduced SG
numbers and size after 21 h incubation when compared with earlier time points. Further-
more, PI3 kinase, which stimulates Akt phosphorylation on T308, may function as pro-SG
kinase under oxidative stress conditions [12]. This observation is in line with our results, as
Akt activation accompanied the production of PFT-p SGs.

PFT-p targets molecular chaperones of the hsp70 family, which are key components of
the cellular proteostasis network and stress-related signaling. In the context of SGs, hsp70s
control granule assembly, dynamics, and their removal during stress recovery [20]. Hence,
the inhibition of hsp70 by PFI-p may promote the interactions among granule-nucleation
factors and, at the same time, limit the dissolution of SGs. Moreover, hsp70 associates with
protein kinases and phosphatases that are implicated in granulostasis [91]. This includes
subunits of AMPK and the protein phosphatase PP1, which dephosphorylates phospho-
S51 of elF2« [92]. Therefore, it is likely that hsp70 inhibition affects multiple aspects
of granulostasis, either by direct binding of granule components or through regulating
signaling events that control granule properties.

At present, it is not known how PFT-u increases the phosphorylation of elF2x. Possible
factors contributing to this event include the elF2a kinases PERK (PKR-like endoplasmic
reticulum kinase), PKR (protein kinase double-stranded RNA-dependent), GCN2 (general
control non-derepressible-2), and HRI (heme-regulated inhibitor). As well, PFT-p may
impinge on the phosphatase complexes that antagonize the action of e[F2« kinases [93].
These are interesting questions that need to be explored in the future.

In summary, our study provides novel insights into the modulation of stress-responsive
pathways by PFT-p (Figure 9). Our findings are important information for the develop-
ment of therapeutic applications that explore molecular chaperones or other factors of the
integrated stress response. Such regimens are clinically relevant to the treatment of various
forms of cancer and other diseases [1,3,93,94].
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