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Abstract: Background: The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is crucial to viral entry and can cause cardiac injuries. Toll-like receptor 4 (TLR4) and
NOD-, LPR-, and pyrin-domain-containing 3 (NLRP3) inflammasome are critical immune system
components implicated in cardiac fibrosis. The spike protein activates NLRP3 inflammasome through
TLR4 or angiotensin-converting enzyme 2 (ACE2) receptors, damaging various organs. However,
the role of spike protein in cardiac fibrosis in humans, as well as its interactions with NLRP3
inflammasomes and TLR4, remain poorly understood. Methods: We utilized scratch assays, Western
blotting, and immunofluorescence to evaluate the migration, fibrosis signaling, mitochondrial calcium
levels, reactive oxygen species (ROS) production, and cell morphology of cultured human cardiac
fibroblasts (CFs) treated with spike (S1) protein for 24 h with or without an anti-ACE2 neutralizing
antibody, a TLR4 blocker, or an NLRP3 inhibitor. Results: S1 protein enhanced CFs migration and
the expressions of collagen 1, α-smooth muscle actin, transforming growth factor β1 (TGF-β1),
phosphorylated SMAD2/3, interleukin 1β (IL-1β), and nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB). S1 protein increased ROS production but did not affect mitochondrial
calcium content and cell morphology. Treatment with an anti-ACE2 neutralizing antibody attenuated
the effects of S1 protein on collagen 1 and TGF-β1 expressions. Moreover, NLRP3 (MCC950) and NF-
kB inhibitors, but not the TLR4 inhibitor TAK-242, prevented the S1 protein-enhanced CFs migration
and overexpression of collagen 1, TGF-β1, and IL-1β. Conclusion: S1 protein activates human CFs by
priming NLRP3 inflammasomes through NF-κB signaling in an ACE2-dependent manner.

Keywords: angiotensin-converting enzyme 2; cardiac fibroblasts; NLRP3 inflammasome; spike protein

1. Introduction

The COVID-19 pandemic has had a devastating worldwide impact, and many individ-
uals with a history of COVID-19 have cardiovascular complications [1–4]. One cardiovas-
cular complication of particular concern is cardiac fibrosis, which adversely affects cardiac
function and increases overall morbidity and mortality rates [5–7]. Several studies have
underscored the role of the spike protein of SARS-CoV-2 in influencing cardiovascular
pathology [8–16]. Notably, one study specifically reveals that the SARS-CoV-2 spike protein
induces cardiac fibrosis by causing long-term transcriptional suppression of mitochondrial
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metabolic genes in obese mice, leading to impaired myocardial contractility and increased
cardiac fibrosis, as shown using a spike protein pseudotyped virus model. This contributes
to long COVID-related cardiomyopathy [9]. However, the mechanisms underlying this
pro-fibrotic effect remain unknown. These findings prompt us to further investigate the
molecular mechanisms by which the spike protein activates cardiac fibrosis and to identify
potential therapeutic targets to mitigate this condition.

The spike protein of SARS-CoV-2 interact with angiotensin-converting enzyme 2
(ACE2) receptors [17,18]. ACE2 is expressed in respiratory epithelial cells and various
cell types within the cardiovascular system, such as cardiomyocytes and CFs [19–22]. The
interaction of ACE2 receptors and the spike protein of SARS-CoV-2 facilitates viral entry
into host cells and initiates a cascade of intracellular events that may cause cardiovascular
dysfunction. Furthermore, the spike protein activates CFs, causing phenotypic transforma-
tion and promoting fibrotic processes [9]. However, the precise mechanisms underlying
spike protein-induced activation of CFs and the implications of this activation for cardiac
fibrosis remain poorly understood.

The NOD-, LPR-, and pyrin-domain-containing 3 (NLRP3) inflammasome and toll-like
receptor 4 (TLR4) are critical components of the immune system in the body’s defense
against pathogens such as viruses [23,24]. The NLRP3 inflammasome and TLR4 recognize
pathogen-associated molecular patterns (PAMPs) and damage-associated molecular pat-
terns (DAMPs) and activate inflammatory responses [25,26]. Research reveals that spike
protein can activate NLRP3 inflammasomes in lipopolysaccharide-primed microglia in an
ACE2-dependent manner through nuclear factor kappa-light-chain-enhancer of activated B
cell (NF-κB) signaling [27]. Furthermore, spike protein-induced TLR4 activation can trigger
the activation of NLRP3 inflammasomes [28–30], suggesting that modulating the activity
of NLRP3 and TLR4 might mitigate the inflammatory response and associated cardiac
injury prompted by the SARS-CoV-2 spike protein. Accordingly, this study investigates the
impacts of the SARS-CoV-2 spike protein on CFs and elucidates the molecular mechanisms
underlying spike protein-induced fibrogenesis.

2. Materials and Methods
2.1. Human CFs Cultures

Human atrial CFs (NHCF-A) (Lonza, Basel, Switzerland, LONCC-2903) were cultured
in Fibroblast Growth Medium-3 (FGM3, Lonza, CC-4526). Passage 5 NHCF-A cells were
treated with or without 5 nM of S1 protein (Genscript Biotech, Piscataway, NJ, USA, Z03501)
for 24 h in the presence or absence of 1 µM TAK-242 (a TLR-4 blocker, Millipore, Darmstadt,
Germany, 614316), 10 µM MCC950 (an NLRP3 inhibitor, Sigma, St. Louis, MO, USA,
CP-456773), 3 µM Bay 11-7802 (an NF-κB inhibitor, MCE, HY-13453), and 5 µM anti-ACE2
antibody (Sino Biological, Beijing, China, 10108-MM37) for the following experiments.

2.2. Scratch Assay

The CFs were cultured in 6-well plates in serum-free medium, and scratches were
made after treatment with or without S1 protein for 24 h under the presence or absence of
MCC950 (10 µM) and TAK-242 (1 µM). Images were taken immediately after making the
scratch lines (0 h) and again after 12 h. The percentage of closure areas was calculated by
dividing the difference between the areas at 0 h and 12 h by the areas of the scratches at 0 h.

2.3. MTS Proliferation Assay

CellTiter 96 AQueous One Solution Cell Proliferation Assay (MTS; Promega Corpora-
tion, Australia, G358C) was employed to study the effects of S1 protein on CFs proliferation
following the manufacturer’s protocol.

2.4. Immunoblotting

Proteins from CFs were extracted using a mammalian protein extraction reagent
with protease and phosphatase inhibitors (Thermo Fisher Scientific, Waltham, MA, USA).
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Total proteins (30 µg) were separated using sodium dodecyl sulfate-polyacrylamide gel
electrophoresis and then transferred to polyvinylidene difluoride membranes. The blocking
membranes were incubated overnight with primary antibodies against the following
targets: ACE2 (Abcam, Cambridge, UK, catalog no. ab15348), alpha-smooth-muscle actin
(α-SMA) (ab32575, Abcam), collagen type 1 alpha 1 (COL1A1, sc-293182, Santa Cruz, CA,
USA), transforming growth factor β1 (TGF-β1, 3711s, Cell Signaling, Danvers, MA, USA),
phosphorylated SMAD2/3 (#8828, Cell Signaling), interleukin (IL)-1β (ab9722, Abcam),
and phosphorylated-NFκB p65 (Ser536) (#3033, Cell Signaling). Secondary antibodies
were added, and the membranes were incubated for 2 h at room temperature after being
washed five times on an orbital shaker. Bound antibodies were detected using an enhanced
chemiluminescence detection system (Millipore, Darmstadt, Germany). AlphaEase FC
(Alpha Innotech, San Leandro, CA, USA) was used to analyze band intensities. The
target bands were initially normalized to the internal control, glyceraldehyde-3-phosphate
dehydrogenase (MBL, Nagoya, Japan) and then further normalized to the control.

2.5. TGF-β1 Enzyme-Linked Immunosorbent Assay (ELISA)

The secreted TGF-β in CFs-cultured medium was quantified using a Quantikine
ELISA kit (DB100C, R&D Systems, Minneapolis, MN, USA) following the manufacturer’s
instructions.

2.6. TGF-β1 Real-Time Polymerase Chain Reaction (RT-PCR)

CFs cultured in 6-well plates were treated with or without S1 protein for 24 h and
total RNA was extracted using Trizol reagent (Invitrogen, 15596026) following the manu-
facturer’s protocol. Cells were lysed by adding 1 mL of Trizol reagent and incubated for
5 min at room temperature. The lysate was then transferred into 1.5 mL Eppendorf tubes,
and 0.2 mL of chloroform was added, thoroughly mixed, and centrifuged at 12,000× g
for 15 min at 4 ◦C. Subsequently, the aqueous phase was transferred to a new Eppendorf
tube. RNAs were precipitated by adding 0.5 mL of isopropanol to the aqueous phase and
incubated for 10 min at 4 ◦C, followed by centrifugation at 12,000× g at 4 ◦C. The RNA
pellets were collected by discarding the supernatant, after which 1 mL of 75% ethanol
was added, followed by brief vortexing and centrifugation for 5 min at 7500× g at 4 ◦C.
Finally, the supernatant was discarded, and the pellets were air dried for 5 to 10 min, then
resuspended in 20 µL of RNAase-free water.

RNA concentrations were determined using a nanodrop. Reverse transcription and
qPCR were performed using the ReverTra Ace TM qPCR-RT kit (TOYOBO, Osaka, Japan,
FSQ-101) and SYBR Green Real-Time PCR Master Mix (TOYOBO, Osaka, Japan, QPK-201)
according to the manufacturer’s instructions. The primer sequences for TGF-β1 were for-
ward 5′-TACCTGAACCCGTGTTGCTCTC-3′ and reverse 5′-GTTGCTGAGGTATCGCCAG
GAA-3′. The relative changes in TGF-β1 transcript level were assessed by analyzing the
threshold cycle (Ct) value and normalizing it to the respective Ct value of β-actin, followed
by normalization to the control group.

2.7. Statistical Analysis

Continuous variables are expressed as means ± standard errors. The comparison
between S1 protein-treated and control cells was conducted using paired t-tests and a
one-way repeated-measures analysis of variance followed by Tukey’s post hoc correction
for multiple group comparisons. p-values of ≤ 0.05 was considered statistically significant.

3. Results
3.1. Effects of S1 Protein on CFs Migration and Proliferation

To assess the impacts of S1 protein on CFs activation, we conducted a scratch assay and
evaluated the expression of myofibroblast markers. Our findings revealed that S1 protein
enhanced CFs migration ability (Figure 1A) and increased the expression of pro-COL1A1



Cells 2024, 13, 1331 4 of 13

and α-SMA (Figure 1C), while not affecting CFs proliferation (Figure 1B). These results
indicate that S1 protein activates CFs.
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Figure 1. S1 protein enhanced CFs activation. Treatment with S1 protein (5 nM) for 24 h increased
cell migration (A) but not cell proliferation (B) in CFs. (C) Additionally, S1 protein also elevated
pro-COL1A1 and α-SMA protein expressions. n = 4 independent experiments.

3.2. Effects of S1 Protein on CFs Fibrosis Signaling

To elucidate the mechanisms underlying CFs activation by the S1 protein, we analyzed
TGF-β1 expression at the protein and mRNA levels. Our results revealed that the S1 protein
promoted TGF-β1 protein synthesis (Figure 2A), secretion (Figure 2B), and transcription
(Figure 2C). Furthermore, S1 protein enhanced the expression of phosphorylated SMAD2/3,
the downstream targets of TGF-β1 (Figure 2A), indicating that S1 protein directly influences
the expression of extracellular matrix proteins by enhancing the fibrotic signaling.

3.3. Role of NLRP3 and TLR4 in S1 Protein-Induced CFs Activation

To investigate the roles of NLRP3 and TLR4 in the activation of CFs by S1 protein, we
pretreated CFs with MCC950 (an NLRP3 inhibitor) at 10 µM and TAK-242 (a TLR4 inhibitor)
at 1 µM. We observed that MCC950 inhibited the effects of S1 protein on CFs migration
(Figure 3A) and the expression of pro-COL1A1, TGF-β1, and pSMAD2/3 (Figure 4), while
TAK-242 did not exhibit inhibitory effects on these processes (Figures 3B and 5).
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Figure 2. S1 protein increased profibrotic signaling. Treatment with S1 protein (5 nM) for 24 h
increased protein expressions of TGF-β1 and pSMAD2/3 measured using Immunoblot ((A) n = 4
independent experiments), secretion of TGF-β1 in cultured medium measured using ELISA assays
((B) n = 5 independent experiments), and TGF-β1 mRNA quantified using RT-qPCR in CFs ((C) n = 4
independent experiments).

3.4. Role of NF-kB Signaling in S1 Protein-Induced CFs Activation

To investigate the involvement of NF-κB on the activation of CFs by the S1 protein,
we pretreated CFs with Bay 11-7082 (3 µM), which is an NF-κB inhibitor, and discovered
that Bay 11-7082 attenuated the effects of S1 protein on CFs migration (Figure 6A) and
the expression of IL1-β and TGF-β (Figure 6B). This result indicates that NF-κB mediates
the CFs activation effects induced by the S1 protein. Furthermore, we also checked the
activation of IL-1β, which is a marker of NF-κB and NLRP3 inflammasome activation.
Results showed that S1 protein increased IL-1β cleavage in CFs, and this effect was blocked
by BAY 11-7802 (Figure 6B). Moreover, BAY 11-7082 also reversed the effect of the S1 protein
on SMAD2/3 phosphorylation (Figure 6C).
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Figure 4. The role of NLRP3 signaling on S1 protein-induced fibrotic markers in CFs. MCC950
effectively blocked the effect of S1 on expressions of fibrotic markers including pro-COL1A1, TGF-β1,
and its downstream target, pSMAD2/3. n = 4 independent experiments.
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Figure 6. Role of NF-κB on S1 protein-mediated CFs migration and expressions of fibrotic factors.
Pretreatment with BAY 11-7082 (an NF-κB inhibitor, 3 µM) completely blocked the effects of S1 protein
(5 nM for 24 h) on CFs migration ((A) n = 5 independent experiments) and the protein expressions of
IL1-β cleavage, TGF-β1, and pSMAD2/3 ((B,C) n = 4 independent experiments).
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3.5. S1 Protein Activates CFs in an ACE2-Dependent Manner

To investigate whether ACE2 receptors mediate the effects of S1 protein on CFs, we
pretreated the cells with an anti-ACE2 antibody before adding S1 protein. Remarkably,
in the presence of the anti-ACE2 antibody, the S1 protein did not affect the migration of
CFs (Figure 7A) or the expression of pro-COL1A1 or TGF-β in CFs (Figure 7B). Moreover,
S1 protein alone increased p-p65; however, this change was abolished by anti-ACE2 ab
(Figure 7B). These results indicate that the S1 protein exerts its effects in an ACE2-dependent
manner.
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4. Discussion

Since the first cases were identified in December 2019 [31], SARS-CoV-2 has rapidly spread
worldwide and remains a global public health concern. As of 24 March 2024, 757,132,086
confirmed infections and 7,042,222 deaths have been reported [32]. The disease primarily
affects the epithelial compartment in the upper and lower airways but also damages several
organs, including the heart [33,34]. The incidence of cardiac injury in individuals with
COVID-19 ranges from 7.2% to 19.7% [34]. Additionally, one study reported the persistence
of COVID-19 symptoms in various systems beyond the acute phase [35], a condition known
as post-acute COVID-19 syndrome. Cardiovascular complications, including myocardial
injury, heart failure, arrhythmias, and coagulation disorders, manifest not only during the
acute phase but also beyond the initial 30 days of SARS-CoV-2 infection, escalating mortal-
ity and morbidity [36]. However, the precise mechanisms underlying cardiac involvement
in COVID-19 remain unclear. The spike protein of SARS-CoV-2, composed of subunits
S1 and S2, plays a critical role in receptor recognition and cell membrane fusion during
the viral cell entry process. The S1 protein binds directly to the ACE2 receptor, which is
highly expressed in the heart, initiating the cell entry process [18]. Thus, spike protein may
be implicated in cardiac complications in COVID-19. Evidence indicates that the spike
protein can independently induce cardiovascular complications by binding to cell mem-
brane receptors, leading to inflammation and damage to cells, tissues, and organs [37,38].
However, most studies have focused on the effects of spike protein on cardiomyocytes,
the myocardium, cardiac pericytes, or vascular endothelial cells. Fibroblasts, among the
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most abundant cell types in the heart, are crucial to cardiac fibrosis, which contributes
cardiac remodeling, arrhythmias, and heart failure [39] under pathological stimuli such as
inflammatory cytokines, ROSs, TGF-β, and the renin–angiotensin–aldosterone system [40].
In this study, we used atrial fibroblasts because they exhibit greater secretory activity and
reactivity, making them more suitable for studying the mechanisms of cardiac fibrosis. We
discovered that exposure to the S1 protein significantly enhanced human CFs migration
and induced the expression of key fibrotic markers, including COL1A1 and α-SMA, TGF-
β1 and pSMAD2/3, and IL-1β. These results indicate that the S1 protein plays a crucial
role in promoting fibrotic processes within cardiac tissues. Moreover, in an animal model
study, Cao et al. discovered that spike protein promotes cardiac fibrosis in obese mice [9].
While they proposed that the spike protein causes myocardial contractile impairment in
obese mice by inducing long-term aberrances in the cardiac transcriptional signatures
of mitochondrial respiratory chain genes, such as ATP synthases, nicotinamide adenine
dinucleotide:ubiquinone oxidoreductase, and cytochrome c oxidase gene members [9], they
did not delineate the mechanism by which spike protein promotes cardiac fibrosis.

TLR4, a pattern recognition receptor, plays a pivotal role in the immune response to
bacterial lipopolysaccharides and various endogenous and exogenous danger signals. In
the heart, TLR4 signaling is activated by various DAMPs, eliciting downstream signaling
pathways, including the NF-κB and MAPK pathways, which stimulate the production
of proinflammatory cytokines and chemokines [41]. TLR4 activation has been associ-
ated with inflammatory and fibrotic responses. NLRP3 inflammasomes—multiprotein
complexes—are components of intracellular pattern recognition receptors primarily re-
sponsible for detecting PAMPs and DAMPs within cells. They process and activate proin-
flammatory cytokines, such as IL-1β and IL-18 [42]. NLRP3 is one of the most extensively
studied members within the human NLR family, which consists of 22 members. In car-
diac fibrosis, various stimuli, including oxidative stress, mitochondrial dysfunction, and
metabolic disturbances common in heart diseases, can activate NLRP3 inflammasomes.
TLR4 and NLRP3 inflammasomes, critical components of the immune system, are highly
involved in the development of cardiac fibrosis in response to inflammatory signals and
pathogens. Previous studies have revealed that spike protein directly interacts with and
activates TLR4 and its downstream signaling, triggering inflammatory responses in im-
mune cells [29], the lungs [43], and the brain [44]. However, the results of the present study
indicate that the TLR4 inhibitor (TAK-242) does not inhibit the effects of the S1 protein on
CFs. Additionally, spike protein increases mitochondrial ROS production, leading to sub-
sequent mitophagy blockage, NLRP3 activation, enhanced NF-κB activity, elevated IL-18
levels, impaired cardiopulmonary function, and cardiac fibrosis in human-ACE2 transgenic
mice [45]. Albornoz et al. demonstrated that spike protein activates NLRP3 inflammasomes
through NF-κB signaling in an ACE2-dependent manner [27]. Consistent with these results,
our study showed that the NLRP3 inhibitor (MCC950) completely inhibited the effects of
the S1 protein on CFs. Moreover, inhibition of the NF-κB signaling pathway effectively
prevented CFs migration and suppressed the increase in pro-COL1A1, TGF-β1, and IL-
1β expression induced by the S1 protein. These findings underscore the crucial roles of
the NF-κB and NLRP3 inflammasome signaling pathways in mediating the profibrotic
effects of the S1 protein on CFs, implicating the NF-κB signaling pathway in the cellular
response to SARS-CoV-2 infection. Given the well-established role of NF-κB in regulating
inflammatory and fibrotic processes, our findings suggest that targeting this pathway may
offer promising therapeutic approaches for preventing or treating COVID-19-associated
cardiac fibrosis.

Our previous study revealed that the S1 protein altered the biogenetics of human
cardiomyocytes by inducing mitochondrial calcium overload, ROS accumulation, and
impairing mitochondrial dynamics [10]. In the present study, although the S1 protein
did not affect mitochondrial morphology (Figure S1) or mitochondrial calcium content
(Figure S2), it did increase ROS production (Figure S3). Since ROS also activates NLRP3
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inflammasomes, increased ROS levels promote IL-1β and TGF-β production, leading to the
fibrotic effects observed in human CFs.

The present study revealed that treatment with an anti-ACE2 antibody effectively
countered the effects of S1 protein on the expression of pro-COL1A1 and TGF-β1 in CFs.
This finding is consistent with our previous study, which showed that the S1 protein
induces dysfunction in human cardiomyocyte via ACE2 [10]. These findings underscore
the role of the ACE2 receptor in mediating the cellular response to S1 protein and indicate
a potential therapeutic strategy for mitigating SARS-CoV-2-induced cardiac fibrosis.

In conclusion, our study sheds insights on the molecular mechanisms underlying the
effects of the S1 protein on CFs and the development of cardiac fibrosis. As illustrated in
Figure 8, the S1 protein binds to ACE2, activating intracellular NF-κB signaling. Accumula-
tion of ROS triggers NLRP3 inflammasome activation and IL-1β production. Subsequently,
IL-1β binds to its receptors, initiating signaling cascades that upregulate the transcription
of TGF-β1, ultimately leading to cardiac fibrosis.
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enhancing TGF-β1 production, promoting CFs activation, and inducing ECM synthesis, ultimately
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