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Abstract: This article reports on the structure and electronic properties of carbon-rich polysilazane
polymer-derived silicon carbonitride (C/SiCN) corresponding to pyrolysis temperatures between
1100 and 1600 ◦C in an argon atmosphere. Raman spectroscopy, X-ray diffraction (XRD), energy dis-
persive X-ray spectroscopy (EDX), Scanning Electron Microscopy (SEM) and Hall measurements were
used to support the structural and electronic properties characterization of the prepared C/SiCN
nanocomposites. A structural analysis using Raman spectroscopy showed the evolution of sp2

hybridized carbon phase that resulted from the growth in the lateral crystallite size (La), average
continuous graphene length including tortuosity (Leq) and inter-defects distance (LD) with an increase
in pyrolysis temperature. The prepared C/SiCN monoliths showed a record high room temperature
(RT) electrical conductivity of 9.6 S/cm for the sample prepared at 1600 ◦C. The electronic prop-
erties of the nanocomposites determined using Hall measurement revealed an anomalous change
in the predominant charge carriers from n-type in the samples pyrolyzed at 1100 ◦C to predomi-
nantly p-type in the samples prepared at 1400 and 1600 ◦C. According to this outcome, tailor-made
carbon-rich SiCN polymer-derived ceramics could be developed to produce n-type and p-type semi-
conductors for development of the next generation of electronic systems for applications in extreme
temperature environments.

Keywords: Polymer derived ceramics (PDC); silicon carbonitride (SiCN); semiconductor;
free/sp2-hybridized carbon; nanocomposite

1. Introduction

Broad studies on the electrical properties of polymer-derived ceramics (also called
PDCs, e.g., SiC, SiCN, SiOCN, SiOC, etc.) and their composites have been on the rise in
recent years [1,2]. Motivation for such extensive studies is centered on the tailorability of
their structure, easy shaping processes and their functional applications, particularly in
the area of semiconductor-based electronic systems such as micro-electromechanical sys-
tems (MEMS) and microsensors for applications in high-temperature environments [3–5].
These materials have demonstrated features that announce properties already known for
conventional silicon-based semiconductors and have equally shown unique properties
beyond what was previously achievable. Among these classes of semiconducting ceramic
materials, the non-oxide silicon carbonitrides (SiCN), have shown both higher temperature
stability in terms of oxidation and creep resistance (≥1600 ◦C) and wider band gap (at
room temperature) over others [6–9].

While amorphous Si-C-N produced by the pyrolysis of polysilazane at a temperature
<1200 ◦C in inert atmosphere is made up of a single SixCyNz phase and free carbon, the
crystalline state pyrolyzed beyond ~1350 ◦C comprises of SiC, Si3N4 and C nanocomposite
phases (C is free carbon; also called sp2 hybridized carbon, turbostratic carbon or graphitic
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carbon) [10–12]. The amorphous phase is associated with very low electrical conductivity
(σdc), in the range of 10−9 to 10−2 S/cm, but a vast increase of several orders of magnitude
is observed as the material transforms to crystalline state via increase in pyrolysis temper-
ature [13,14]. Over the years, the strong increase in room temperature (RT) conductivity
has been attributed to increase in pyrolysis temperature during thermal treatment of the
material, which in turn leads to the following: (i) structural transformation of the carbon
phase from amorphous carbon to ordered sp2-hybridized carbon (Note that the RT con-
ductivity of sp2 hybridized carbon is 10◦ to 105 S/cm); (ii) crystallization of β-SiC (Note
that only SiC and sp2-hybridized carbon are semiconductors in the composition, Si3N4
is an insulator and does not contribute to conductivity); and (iii) Nitrogen (N) doping of
the β-SiC as Si3N4 (in the SiC,/Si3N4/C nanocomposite) decomposes gradually to give
off N2 gas at higher temperatures when T > ~1400 ◦C [9,15]. While these assertions have
been proven and corroborated by various characterization techniques such as XANES
spectroscopy, XRD, TEM and Raman Spectroscopy, a profound understanding of the elec-
trical conductivity of SiCN PDCs, particularly the charge carrier transport mechanisms,
remain incomplete. Seeing the emerging potential of SiCN as semiconductor materials for
the next generation of electronics for applications in extreme temperature environments,
developing an understanding of the carrier transport mechanism is important in order to
study the principle leading to its electrical conductivity as this could aid in their fabrication
for various useful electronic purposes.

Evaluation of the electrical conductivity of polysilazane-derived SiCN began in the
early 90s with the work of Mocaer but studies on their charge carrier transport are still very
rare to come by in the literature [16,17]. One of the ways to determine carrier mobility (µH),
carrier type (n-type or p-type), carrier density/concentration (N), conductivity (σdc) and
other useful electrical conductivity parameters in a semiconductor is through Hall mea-
surement. The principle and efficiency of Hall measurement technique for the assessment
of semiconductivity in shaped crystal articles and thin films have been emphasized [18,19].
Usually, semiconductor materials either possess a majority positive or negative charge
carriers signifying p-type or n-type semiconductors, respectively. However, some materials
appear to have played out the two charge carrier types as majority carriers at the same
time under different conditions. In a recent study aimed at characterizing the electrical
properties of SiCN(O) PCDs, Ryu et al. revealed that some samples gave both positive and
negative signs of Hall coefficient, but it could not be inferred as to whether the samples
were of p–type or n-type semiconductors [16].

Similarly, the question of why a single material possesses both positive and negative
Hall coefficient (i.e., both n and p-type majority charge carriers) is still a subject of unre-
solved debate [20,21]. The compositions, processing conditions, and the nanostructure
of the materials could be the intrinsic source of these observations. For instance, after
assessing the effect of thermal treatments on the electrical conductivity of SiCN and SiBCN
ceramics, Hermann et al. recently reported that addition of boron increased the on-set
crystallization temperature of SiCN PDC because boron retarded the atomic mobility,
and the Si(B)CN ceramic showed higher RT conductivity than the as-pyrolyzed SiCN
ceramics [22]. Besides the use of metal addition to improve electrical properties, conscious
formation of sp2 hybridized carbon phases by raising the carbon content can also help
increase electrical properties of PDCs. This can be achieved via custom-made precursor
synthesis [23], mixing of different commercially available precursors [24] or direct addi-
tion of a suitable crosslinker [25,26]. Among these approaches, it is the direct addition of
a suitable cross-linker that is the most straightforward and easy. Divinylbenzene (DVB) is
a common cross-linking agent used to adjust the resulting chemical and structural compo-
sition of PDCs by increasing the carbon content and molecular weight/ceramic yield [27].
The resulting formation of sp2 hybridized carbon phase from the rise in carbon content
has been shown to be beneficial to electrical properties [26,28]. The type of the inert atmo-
sphere adopted during thermal treatment has also been identified as a crucial factor that
determines electrical conductivity behaviour via carbothermic composition adjustments [9].
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In [9], Haluschka et al. investigated the influence of ammonia (NH3) alone and argon
(Ar)/ammonia gas mixture atmosphere on thermally induced RT conductivity of SiCN and
reported that free carbon content of the materials is reduced due to enhanced methane evo-
lution in the ammonia (NH3) atmosphere, resulting in a progressive replacement of carbon
by nitrogen and this led to decrease in RT electrical conductivity by up to 4 orders of mag-
nitude. Consequently, the electrical conductivity of semiconductor engineering ceramics
can also be modified through the choice of pyrolysis atmosphere. So far, some applications
of electrically conducting carbon rich PDCs where tailoring the chemical composition
could influence the properties of the ceramics and make them of functional use have been
displayed in batteries or electrocatalysis [29–31]. Motivated by the exceptional properties
of carbon rich PDCs that have evolved in the recent past and the high temperatures stability
of SiCN PDCs, it is believed that a tailor-made chemical composition of carbon rich SiCN
could hold prospects for novel discoveries in other application areas such as thermopower
or high temperature electronics that requires basically p-type and n-type semiconductors.
Moreover, investigation of the ordering of the sp2-hybridized free carbon phase in SiOC/C
PDCs via thermal treatment reported by Rosenburg et al. [24] could be replicated in the
carbon rich SiCN systems for the extraction of innovative information, and this is where
the current study comes in.

Here we present the electrical properties of carbon-rich SiCN (up to ca. 72 at. %
carbon) with attention to the observed anomalous shift in the dominant charge carriers
from n-type in the amorphous glassy matrix pyrolyzed at 1100 ◦C to mainly p-type in
the crystalline ceramic samples prepared at 1400–1600 ◦C. Such resulting technical ce-
ramics could be of great interest for the development of semiconductors applied in harsh
environments. The amount, size and evolution of the sp2-hybridized free carbon phase
with the thermal treatment in an argon atmosphere as well as the charge carrier transport
mechanism are characterized using Raman spectroscopy, Energy Dispersive X-ray Spec-
troscopy, EDX attached to a (High Resolution) Scanning Electron Microscopy –SEM, X-ray
diffraction (XRD) and Hall measurements. The produced C/SiCN materials also show RT
electrical conductivity (0.148–9.26 S/cm) that are quite higher than previously reported
values for monolith samples produced using similar pyrolysis temperatures. Consequently,
depending on the processing and the final chemical composition, C-rich SiCN PDCs may
be tailored to produce n-type and p-type semiconductors for the development of the next
generation of micro-electromechanical systems (MEMS) and other microelectronic devices
for applications in extremely high temperature environments.

2. Experimental Procedures
2.1. Synthesis

Commercially available Durazane 1800 (Merck KGaA, Darmstadt, Germany) was used
as the primary polysilazane polymer for the fabrication of the carbon-rich SiCN samples
with 50 wt% Divinlybenzene, DVB (Sigma-Aldrich, subsidiary of Merck KGaA, Darm-
stadt, Germany) as a crosslinking agent in the presence of Platinum divinyl-tetramethyl
disiloxane complex, ∼Pt 2% in xylene (Sigma-Aldrich, subsidiary of Merck KGaA, Darm-
stadt, Germany) diluted to 0.1%, as catalyst. The composition was thoroughly stirred with
a magnetic stirrer for 6 h at 120 ◦C for the hydrosilylation reaction which was done using
standard Schlenk techniques in an argon atmosphere. All through the synthesis, the com-
position was appropriately confined under an argon atmosphere and thoroughly degassed
at each point in vacuum to eliminate any dissolved impurities -due to the sensitivity of
polysilazane towards oxygen and humidity. The composition was cross-linked at 250 ◦C for
3 h in an argon atmosphere to obtain an infusible preceramic solid which was ground for
2 h in a milling machine (Mixer Mill MM400, Retsch, Germany) to obtain very fine powder
of about 40 µm. Approximately 200 mg of the preceramic powder was consolidated in a Ø
10 mm die using a warm press at 250 ◦C and 18 kN to form a green body. Consequently,
the green body was pyrolyzed at 1100 ◦C and annealed at 1400 ◦C ≤ T ≤ 1600 ◦C in
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an argon atmosphere to obtain C/SiCN nanocomposite monoliths. Additional descriptions
of polysilazane monolith fabrication processes are reported in the literature [32,33].

2.2. Characterization

The elemental composition was determined using Energy Dispersive X-ray Spec-
troscopy, EDX, attached to a (High Resolution) Scanning Electron Microscopy, SEM (Philips
XL30 FEG, Phillips, Hillsboro, OR, USA) while the morphology characterization was done
using the SEM images. Crystallization of the C/SICN powders was investigated using
X-ray diffraction (XRD) in the transmission mode by STOE STAD1 P (STOE & Cie. GmbH,
STOE, Darmstadt, Germany) using monochromatic Mo Kα radiation at 0.1◦/step with 25 s
acquisition time for each step in the 2theta range of 5–45◦; consequently, the samples were
investigated with a D8 Advance diffractometer (Bruker AXS GmbH, Karlsruhe, Germany)
with Cu Kα radiation in a reflection mode. The sp2-hybridized carbon phase was analysed
using Raman spectroscopy (HR Raman Spectroscope HR800, Horiba Jobin Yvon GmbH,
Bensheim, Germany). The electrical conductivity and Hall measurements were investigated
using the Van der Pauw method as described in [34].

3. Results and Discussion
3.1. Investigation of the Carbon Phase

Previous studies have shown that polysilazane-derived amorphous SiCN ceramics
pyrolyzed at 900–1100 ◦C consist of mixed SixCyNz bond and free carbon [35]. At a higher
ceramization temperature (above ~1350 ◦C), however, the microstructure evolves into crys-
talline nanodomains made up of SiC, Si3N4 and C with the sp2 hybridized carbon phase
playing a major role in influencing the functional properties of the SiCN material [35–37].

The microstructural evolution of the sp2 hybridized carbon phase in the prepared
carbon-rich SiCN samples was investigated using Raman Spectroscopy. The primary
signals of the Raman spectra showing the carbon phase are the D and G bands identified
at ~1350 cm−1 and ~1582 cm−1, respectively, for the monoliths (see Figure 1a–c), but the
secondary signals include prominent overtones and combination bands which are the 2D
(or G’), 2D’, T + D and D + G bands in the range of ~2500–3250 cm−1 [38,39]. A D’ band
(at ~1500 cm−1) and T (~1200 cm−1) band which relate to amorphous carbon fractions and
sp2-sp3 C-C/C=C bonds respectively revealed in the monoliths are other two crucial bands
that often stretch from the G and D band shoulders most especially shown in amorphous
materials. The D’ and T bands are prominent in the amorphous SiCN monolith samples
produced at the pyrolysis temperature of 1100 ◦C. In the sample annealed at 1600 ◦C,
a signal at ca. 820 cm−1 was identified and assigned to β-SiC. In general, the peak position,
width, intensities and overlapping Raman spectra give useful details on the structural
evolution, defects and crystallite size of the graphitic carbon phase. The D band is a defect-
prompted band that results due to a corresponding disorder (amorphization) from carbon
nanostructure while the G band is formed by the internal stretching of highly ordered
sp2 hybridized carbon lattice [9,40,41]. At the temperature of 1100 ◦C, the D and G bands
of the samples are seen to overlap which complicates separation of the profiles but at
a temperature of ≥1400 ◦C, overlapping of the D and G bands has been greatly reduced
(see Figure 1a–c). Moreover, Lorentzian fitting of the Raman bands was performed in
order to extract information about the structural evolution of the carbon phase at elevated
temperatures; and the rising intensities of the 2D band noticed in the prepared samples
with an increase in temperature from 1100 ◦C to 1600 ◦C is an important indicator of the
rising crystallinities of the graphitic nanostructure.

The lateral size of sp2 hybridized carbon, La, used to characterize the width of the
graphitic crystallite of the samples along the a-axis, was determined using Equation (1) [42–44].
Where AD/AG is integrated intensities ratio of the D and G bands and is the laser line
wavelength (514 nm).

(1)
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Figure 1. Raman spectra of the C/SiCN nanocomposites showing the carbon phase of various samples
represented by the peak position and band parameters: (a) Raman spectrum of the amorphous
C/SiCN nanocomposite pyrolyzed at 1100 ◦C; (b) Raman spectrum of the C/SiCN nanocomposite
annealed at 1400 ◦C; (c) Raman spectrum of the C/SiCN nanocomposite annealed at 1600 ◦C.

The consistency of the integrated intensities ratio and its importance in the observation
of the quantum Hall effect in graphitic materials for the design and fabrication of target
electronic systems have been discussed in various studies [42,43,45]. The dependence of
the lateral crystal size, La, of the graphitic nanostructure of the samples on the integrated
intensities of the D and G bands, as well as its reliance on the thermal treatment, is
presented in Figure 2a. The crystallite size, La, increased as the annealing temperatures
used in making the samples increased between 1100 ◦C and 1600 ◦C. La reveals the width
of a single sp2 hybridized carbon crystal unit and analysis of the Raman spectra shows
that during the thermal processing, smaller crystallites grow to form larger size with
higher degree of structural orderliness. This increase in crystallite size could be linked
to kinetics generated within the materials during the annealing process. At 1600 ◦C, the
crystallite size of the graphitic carbon has grown to ca. 10 nm (from ca. 7.7 nm at 1100 ◦C,
see Figure 2a). Moreover, a recorded increase in La as a result of increased ceramization
temperatures conforms with the work of Ricohermoso et al. as well as Rosenburg et al.,
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who both studied the evolution of the sp2-hybridized carbon phase in polymer-derived
SiOC ceramics [24,46]. An improvement in the structural stability of a graphitic material
in terms of strength and ductility could also be achieved via nucleation of the sp2 carbon
crystallite size as discussed in a recent study [47]. In the same vein, Tarhini et al. revealed
that a lateral crystallite size, La, greater than 7 nm led to improvements in in-plane electrical
conductivity, thermal conductivity and tensile strength [48]. Therefore, an increase in La
with temperature increases indicate corresponding growth in the degree of graphitization
in the monoliths. On the other hand, as the degree of graphitization rises, the G band gains
prominence over the defect-prompted D band, resulting in a decline of the integrated ratio
of the D and G band with increasing the annealing temperature (see Figure 2a).

Ceramics 2022, 5, FOR PEER REVIEW  6 
 

 

dependence of the lateral crystal size, La, of the graphitic nanostructure of the samples on 
the integrated intensities of the D and G bands, as well as its reliance on the thermal 
treatment, is presented in Figure 2a. The crystallite size, La, increased as the annealing 
temperatures used in making the samples increased between 1100 °C and 1600 °C. La 
reveals the width of a single sp2 hybridized carbon crystal unit and analysis of the Raman 
spectra shows that during the thermal processing, smaller crystallites grow to form larger 
size with higher degree of structural orderliness. This increase in crystallite size could be 
linked to kinetics generated within the materials during the annealing process. At 1600 
°C, the crystallite size of the graphitic carbon has grown to ca. 10 nm (from ca. 7.7 nm at 
1100 °C, see Figure 2a). Moreover, a recorded increase in La as a result of increased 
ceramization temperatures conforms with the work of Ricohermoso et al. as well as 
Rosenburg et al., who both studied the evolution of the sp2-hybridized carbon phase in 
polymer-derived SiOC ceramics [24,46]. An improvement in the structural stability of a 
graphitic material in terms of strength and ductility could also be achieved via nucleation 
of the sp2 carbon crystallite size as discussed in a recent study [47]. In the same vein, 
Tarhini et al. revealed that a lateral crystallite size, La, greater than 7 nm led to 
improvements in in-plane electrical conductivity, thermal conductivity and tensile 
strength [48]. Therefore, an increase in La with temperature increases indicate 
corresponding growth in the degree of graphitization in the monoliths. On the other hand, 
as the degree of graphitization rises, the G band gains prominence over the defect-
prompted D band, resulting in a decline of the integrated ratio of the D and G band with 
increasing the annealing temperature (see Figure 2a).  

The margin of G band peak position shift between the fabrication temperatures of 
1100 °C and 1400 °C is observed to be much higher than the shift interval noticed from 
1400 °C to 1600 °C (see Figure 2b), indicating a high crystallization rate between 1100 °C 
and 1400 °C and slow ceramization between 1400 °C and 1600 °C. This is an expected 
outcome as the material thermally transforms from the initial amorphous state (at 1100°C) 
to a crystalline state (at ~1400 °C), but further conversion beyond 1400 °C became gentle 
afterward since a margin of the complete crystallization may have been attained around 
1400 °C [49,50]. 

  

(a) (b) 

Ceramics 2022, 5, FOR PEER REVIEW  7 
 

 

 

(c) (d) 

Figure 2. Parameters from Raman spectroscopy which determine the evolution of the sp2 hybridized 
carbon phase in the polymer-derived C/SiCN nanocomposite materials: (a) Dependence of 
crystallite size (La) and integrated ratios of the D and G bands on temperature; (b) shift of the G 
band as a function of the pyrolysis temperature; (c) effect of ceramization temperatures on inter-
defect distance (LD) and defect density (ηD); (d) growth in crystallite size (La) of the sp2 hybridized 
carbon with an increase in average continuous graphene length including tortuosity (Leq). 

The inter-defect distance (LD), average continuous graphene length including 
tortuosity (Leq) and defect density (ηD) were calculated using Equations (2) [51], (3) [52] 
and (4) [44] respectively (where ʎL is 514 nm). The inter-defect distance, LD, and relatively 
defect density, ηD of the samples also show dependence on the annealing temperature 
with which the monoliths were produced. An increase in the inter-defect distance of the 
sp2 hybridized carbon structure as annealing temperature increases invariably led to the 
corresponding reduction in the defect densities, ηD (see Figure 2c). The surge in LD could 
be attributed to the progressive sp3 to sp2 conversion and indeed ordering of the graphitic 
structure noticed between 1100 °C ≤ T ≤ 1600 °C. Meanwhile, the recorded inter-defect 
distance on the C/SiCN nanocomposites in this study is higher when compared with 
C/SiOC PDCs produced under similar temperature conditions [46,53]. The LD values are 
also more favourable than other polymer-derived SiCN materials found in the literature 
–although the recently proposed Cancado equation was not adopted in the studies 
[44,45,54,55]. This shows that the carbon-rich SiCN materials contain minimum defects 
and this could be associated with the fabrication parameters used in the production of the 
sample series.  

LD =  ට(1.8 x 10ିଽ) ʎସ ቀಸವቁ (2)

Leq = 33.6343 ቀమವವ ቁ (3)

η
D =     

ଶ.ସ ௫ ଵమమʎಽర   ቀವಸቁ  (4)

Accordingly, the average continuous graphene length including tortuosity (Leq) 
increased with an increase in crystallite size (La) as shown in Figure 2d. This outcome may 
be correlated with the increase in electrical conductivity noticed in the synthesized 
materials across the increase in annealing temperature as discussed in Section 3.3 

Notice that the 2D band (see Figure 1a–c) becomes more and more pronounced as the 
thermal treatment of the monoliths tends toward 1600 °C. Information on the stacking 

Figure 2. Parameters from Raman spectroscopy which determine the evolution of the sp2 hybridized
carbon phase in the polymer-derived C/SiCN nanocomposite materials: (a) Dependence of crystallite
size (La) and integrated ratios of the D and G bands on temperature; (b) shift of the G band as
a function of the pyrolysis temperature; (c) effect of ceramization temperatures on inter-defect
distance (LD) and defect density (ηD); (d) growth in crystallite size (La) of the sp2 hybridized carbon
with an increase in average continuous graphene length including tortuosity (Leq).
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The margin of G band peak position shift between the fabrication temperatures of
1100 ◦C and 1400 ◦C is observed to be much higher than the shift interval noticed from
1400 ◦C to 1600 ◦C (see Figure 2b), indicating a high crystallization rate between 1100 ◦C
and 1400 ◦C and slow ceramization between 1400 ◦C and 1600 ◦C. This is an expected
outcome as the material thermally transforms from the initial amorphous state (at 1100 ◦C)
to a crystalline state (at ~1400 ◦C), but further conversion beyond 1400 ◦C became gentle
afterward since a margin of the complete crystallization may have been attained around
1400 ◦C [49,50].

The inter-defect distance (LD), average continuous graphene length including tortuos-
ity (Leq) and defect density (ηD) were calculated using Equation (2) [51], Equation (3) [52]
and Equation (4) [44] respectively (where L is 514 nm). The inter-defect distance, LD, and
relatively defect density, ηD of the samples also show dependence on the annealing temper-
ature with which the monoliths were produced. An increase in the inter-defect distance
of the sp2 hybridized carbon structure as annealing temperature increases invariably led
to the corresponding reduction in the defect densities, ηD (see Figure 2c). The surge in
LD could be attributed to the progressive sp3 to sp2 conversion and indeed ordering of
the graphitic structure noticed between 1100 ◦C ≤ T ≤ 1600 ◦C. Meanwhile, the recorded
inter-defect distance on the C/SiCN nanocomposites in this study is higher when com-
pared with C/SiOC PDCs produced under similar temperature conditions [46,53]. The
LD values are also more favourable than other polymer-derived SiCN materials found in
the literature –although the recently proposed Cancado equation was not adopted in the
studies [44,45,54,55]. This shows that the carbon-rich SiCN materials contain minimum
defects and this could be associated with the fabrication parameters used in the production
of the sample series.

(2)

Leq = 33.6343
(

A2D
AD

)
(3)

(4)

Accordingly, the average continuous graphene length including tortuosity (Leq) in-
creased with an increase in crystallite size (La) as shown in Figure 2d. This outcome may be
correlated with the increase in electrical conductivity noticed in the synthesized materials
across the increase in annealing temperature as discussed in Section 3.3.

Notice that the 2D band (see Figure 1a–c) becomes more and more pronounced as
the thermal treatment of the monoliths tends toward 1600 ◦C. Information on the stacking
number of graphene layers, Lc, was examined using G and 2D band shape profiles [56].
The 2D band is an overtone of the D band revealed through vibrations from the intrinsic
defect-free graphitic sp2 hybridized carbon structures and it provides knowledge of the
number of graphene layers. According to Wall, the value of I2D/IG ratio for high-quality,
defect-free single-layer graphene will be equal to 2nm [57]. As shown in Table 1, I2D/IG
ratio of the monoliths is 1.7 nm at all tested temperatures, revealing the presence of single
to three layers-graphene within the material. Besides, it has been reported that during
thermal decomposition of SiCN, the sp2 hybridized carbon forms Basic Structural Units
(BSUs) which are the first phase to nucleate in about 2 or 3 stack of graphene layers piled
up in graphitic arrangements [58].

3.2. Crystallization and Stoichiometry

As reported earlier, only SiC and sp2 hybridized carbon are the electrically conducting
components of the C/SiCN (having SiC/Si3N4/C nanodomains) as Si3N4 does not conduct
electricity but provides structural stability [38]. The crystallization of the carbon-rich
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SiCN is evaluated using XRD. The X-ray diffraction pattern confirms that the material is
amorphous at 1100 ◦C as no reflections were shown at this temperature (Figure 3). However,
reflections indicating the crystallization of the samples were revealed at T ≥ 1400 ◦C and
assigned to the β-SiC (F-43m, Pearson symbol: cF8) as the major crystalline phase with
traces of sacking faults (SF) [59–61]. Further investigation of the normalized diffraction
intensities reveals that as the temperature increases from 1400 ◦C to 1600 ◦C, the stacking
fault (SF) in the β-SiC becomes healed or suppressed by over 50%. This observation could
be linked to the rising stability of beta-SiC with the temperature increase.

Table 1. The carbon phase structure of the carbon-rich SiCN materials.

Parameter/Temperature 1100 ◦C 1400 ◦C 1600 ◦C

Lateral crystallite size, La (nm) 7.66 8.54 10.08

Average continuous graphene length including tortuosity, Leq (nm) 11.06 15.91 17.76

Inter-defect distance, LD (nm) 7.58 8.00 8.69

Defect density, nD, × 1011(cm−2) 7.52 6.75 5.71

I2D/IG ratio, i.e., stacking number of graphene layer, Lc (nm) 1.7 (≤3 layers) 1.7 (≤3 layers) 1.7 (≤3 layers)
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β-SiC have been widely investigated as semiconductors for applications in microelec-
tromechanical systems (MEMS) [62–64]. Electrical conductivity in graphitic PDC materials
has however been attributed to the percolation network of the free carbon (as long as the C
to Si ratio is ≥0.7) [58]. The dominating character of free carbon on the electrical properties
of the carbon rich SiCN materials could be traced to its high conductivity of 1–105 (S/cm)
compared with the conductivity of SiC which is within the range of 10−4 –102 (S/cm) [14].
This, however, depends on composition and processing conditions that could promote
change in hybridization of the carbon atom for sufficient sp3 to sp2 transformation as pyrol-
ysis temperature is increased [33]. SiC has been described as a compound semiconductor
with a wide bandgap and several advantages over silicon [65]. Hole carrier mobility in
SiC polytypes is very small and the majority of the carrier concentration are electrons for
the fabrication of n-type semiconductors [66]. In a recent report, Chen et al. divulged the
need to account for the relationship between the conductivity of the free carbon and that
of the Si-C-N in materials [13]. Kim et al. equally reported the possibility of the notable
contribution of (SiOC PDC precipitated) nano-crystalline SiC grains to the overall electrical
properties [67]. In essence, the carrier transport mechanism in polycrystalline materials may
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be better understood by evaluating the contribution of individual components available for
electrical conduction and the impurities available as dopant. Therefore, electron-dominated
carrier transport resulting in the n-type semiconductors may be possible in SiCN materials
with very low sp2 carbon content or high amorphous carbon (sp3 carbon). However, the
synthesized C/SiCN nanocomposites demonstrated hole-dominated carrier transport of
p-type semiconductors, occasioned by the ordering of the sp2 carbon induced via the
thermal treatments but showed electron-dominated n-type semiconductor at 1100 ◦C (see
Section 3.3 for further details).

The elemental composition was determined using Energy Dispersive X-ray Spec-
troscopy, EDX, attached to a (High Resolution) Scanning Electron Microscopy (SEM). SEM
images showing the morphologies as well as the EDS spectra revealing the energy peaks
corresponding to the various elements identified in the carbon-rich SiCN samples are
shown in Figure 4a–c. The formation of microcracks was noticed on the surface of the
samples, while the wide distribution of dark spots across the morphologies attest to the
high amount of graphitic carbon in the samples (see Figure 4ai,bi,ci). The amorphous
C/SiCN material prepared at 1100 ◦C contains ca. 64 at. % carbon with traces of oxygen
(1.86 at. %). However, the traces of oxygen at T = 1600 ◦C have reduced to 0.59 at. % with
ca. 72 at. % carbon as shown in Table 2. Typically, oxygen is present as small silica domains
in these materials—at high temperatures, these react with sp2 carbon to form beta-SiC and
lead to CO gas release [68,69]. Moreover, a recent study by Haluschka et. al., reported that
at annealing temperature of 1400 ◦C–1600 ◦C, outgassing of N2 leading to a decrease in
nitrogen content and increase in both silicon and carbon content may occur (although only
nitrogen atmosphere was considered in the study as against the argon atmosphere adopted
in this study) [33].
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Table 2. The chemical composition of the C/SiCN nanocomposites after pyrolysis.

Pyrolysis
Temperature

Elemental Composition (wt. %)
N/Si (at. %) C/Si (at. %) Carbon

Content (at. %)Si C N

1100 ◦C 39.87 48.32 9.95 0.50 2.83 64.17
1400 ◦C 41.91 52.87 4.44 0.21 2.95 70.32
1600 ◦C 43.61 53.37 2.43 0.11 2.86 71.60

3.3. Room Temperature Electrical Conductivity and Charge Carrier Transport Mechanism

The room temperature conductivity of the amorphous carbon-rich SiCN produced
at pyrolysis temperature of 1100 ◦C (in an argon atmosphere) was determined to be
1.48 × 10−1 S/cm (see Table 3). This result is concurrent with the submission of Cordelair
that amorphous SixCyNz is a semiconductor with room temperature dc conductivity in
the range of 10−4 to 102 S/cm [14]. However, this value is found to be at least 3 orders of
magnitude higher than previously reported electrical conductivity of amorphous SiCN
PDC materials prepared under similar temperature conditions [13,70]. The higher elec-
trical conductivity recorded could be traced to the higher free carbon content. Various
models governing the dependence of electrical properties of SiCN on fabrication pyrolysis
temperature have been proposed [71–75], but electrical conductivity (σdc) dependence
on temperature of amorphous semiconductors can best be described by variable range
hopping of charge carriers (i.e., single/multiple phonon-assisted jumps of charge carriers
near the Fermi level) described by Mott (Equation (5)) [74,75] (k is Boltzmann constant, ∆E
is the activation energy which equals the energy gap between Fermi level and conducting
bands). Also, it has been shown that at higher temperatures (e.g., T ≥ 1400 ◦C for SiCN
PDCs), Arrhenius equation (see Equation (6)) describes temperature dependence of the RT
σdc [9,14,76].

σdc = σo exp−
(

To

T

) 1
4

(5)

σdc = σo exp−
(

∆E
kT

)
(6)
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Table 3. Electrical properties of the carbon-rich SiCN materials.

Parameter/Temperature 1100 ◦C 1400 ◦C 1600 ◦C

Electrical conductivity σdc, (S/cm) 0.148 4.71 9.26

Carrier density, N (cm−3) 6.42 × 1018 8.45 × 1019 1.63 × 1019

Carrier mobility, µH, (cm2 V−1 s−1) 1.45 × 10−1 3.52 × 10−1 3.55

Consequently, the RT conductivity of the samples prepared at an annealing tempera-
ture of 1400 ◦C increased to 4.70 S/cm and 9.26 S/cm at to 1600 ◦C. The noticed surge in
electrical conductivity of the C/SiCN materials is attributed to the percolation and ordering
of the graphitic domains with increasing the annealing temperature. A demanding search
of the literature shows that the highest electrical conductivity of SiCN monolith so far re-
ported is ~1.0 S/cm (at 1700 ◦C) [9], but the conductivity value recorded on the synthesized
C/SiCN nanocomposite in this study heat-treated at 1600 ◦C is much higher (9.26 S/cm);
revealing the extent to which the temperature-dependent electrical properties of PDCs may
be tailored corresponding to increase in the quantity and ordering of the free carbon.

The electrical properties of the C/SiCN nanocomposites investigated using Hall
measurement showed an anomalous shift in the majority charge carriers from n-type
in the glassy matrix pyrolyzed at 1100 ◦C to p-type in the ceramic samples prepared at
T ≥ 1400 ◦C (see Figure 5a–c). Recall that evaluation of the crystallization of the carbon-
rich SiCN samples supported using XRD indicates that the material is amorphous at
1100 ◦C and crystalline at T ≥ 1400 ◦C (Figure 3). Besides, phase composition of the
amorphous SiC(N) is comparable to that of SiC doped with nitrogen [9]. Nitrogen dopant
is commonly used for producing n-type SiC semiconductors [77,78]. In the amorphous
state, therefore, the transport mechanism of the carbon-rich SiCN samples appears to
behave similar to that of SiC doped with nitrogen by showing predominant n-type charge
carriers. Moreover, the presence of nitrogen doped SiC in SiCN PDCs pyrolyzed in nitrogen
atmosphere has been recently reported, corroborated with results obtained using TEM,
XANES-spectroscopy, XRD and Raman-spectroscopy [9]. In addition, it is known that sp3

carbon is a good electron insulator while sp2 carbon is an excellent charge transmitter [79],
and as shown earlier in Figure 1a (by the prominence of the D’ and T Raman bands), the
pre-eminence of the insulating sp3 carbon can be seen in the amorphous C/SiCN sample
at 1100 ◦C. This may have led to the low carrier mobility and conductivity recorded at
the 1100 ◦C temperature (see Table 3). On the other hand, the crystalline carbon-rich
SiCN semiconductors produced at pyrolysis temperatures of 1400 ◦C and 1600 ◦C show
a change in the predominant charge carrier to p-type. The nature of graphitic carbon charge
carriers has been previously described as a reproducible positive Hall coefficient signal
of hole-dominated transport (p-type) [80], and the p-type carriers shown by the C/SiCN
PDCs could be linked to the prevailing ordering and percolation network of the graphitic
phase within the nanocomposites at the higher temperatures. The progressive ordering,
amount and size of the sp2 carbon at 1400 ◦C and 1600 ◦C can be confirmed by the consistent
increase in the lateral crystallite size (La), as well as the average continuous graphene length
including tortuosity (Leq) as the pyrolysis temperature increases. Furthermore, between
1100 ◦C and 1400 ◦C ≤ T ≤ 1600 ◦C, the sp3 to sp2 conversion is revealed via puniness
of the D’ and T Raman bands (see Figure 1b,c), leading to corresponding increases in the
carrier mobility and electrical conductivity (Table 3), as well as the percolation network of
the free carbon within the nanocomposites to display the recorded shift from the n-type to
a p-type semiconductor.
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at 1600 °C showing p-type carriers. 
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Figure 5. Hall measurement performed in 10 repetitions on the C/SiCN nanocomposites
showing the shift in predominant charge carriers from n-type at 1100 ◦C to p-type at higher
temperatures ≥ 1400 ◦C: (a) Hall coefficients at 1100 ◦C showing n-type carriers; (b) Hall coeffi-
cients of the sample prepared at 1400 ◦C showing p-type carriers; (c) Hall coefficients of the carbon
rich SiCN prepared at 1600 ◦C showing p-type carriers.

4. Conclusions

The structure and electronic properties of carbon-rich polymer-derived SiCN (up to ca.
72 at. % carbon) heat-treated in an argon atmosphere at 1100–1600 ◦C are herein investigated
and reported. The electrical properties of the C/SiCN nanocomposites examined using
Hall measurement demonstrated an anomalous change in the majority charge carriers
from n-type in the samples pyrolyzed at 1100 ◦C to p-type in the samples prepared at
T ≥ 1400 ◦C. Moreover, it was found that RT conductivity of the materials produced
at 1000–1600 ◦C increased from 0.148 S/cm to 9.26 S/cm which are much higher than
the previously reported values for monolith samples produced using similar pyrolysis
and annealing temperature. Both the anomalous shift in predominant carriers and high
electrical conductivities are attributed to the preliminary quantity of carbon content and
evolution of the sp3 to sp2 hybridized carbon transformation as the processing temperature
increases. Furthermore, parameters associated with the sp3 to sp2 transition in the carbon-
rich SiCN structure investigated using Raman spectroscopy such as:the crystallite size (La),
average continuous graphene length including tortuosity (Leq), and inter-defect distance
(LD) all increased with an increase in processing temperatures. Interestingly, the stacking
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number of graphene layers (Lc) of the graphitic carbon phase was found to contain mono
to three layers of graphene across all adopted processing temperatures. Depending on the
phase composition and processing conditions, custom-made carbon-rich SiCN polymer-
derived ceramics could be developed to produce n-type and p-type semiconductors for
the development of the future generation of micro-electromechanical systems (MEMS),
heterojunction diodes and other electronic devices for applications in extremely high
temperature environments.
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