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Abstract: 1,2,4-Benzothiadiazine 1,1-dioxide derivatives (e.g., chlorothiazide, hydrochlorothiazide)
have been long used in the human therapy as diuretic and antihypertensive agents. Marketed drugs
containing the structurally related phthalazinone scaffold are applied for the treatment of various
diseases ranging from ovarian cancer to diabetes and allergy. 1,2,3-Benzothiadiazine 1,1-dioxides
combine the structural features of these two compound families, which led to their more intensive
research since the 1960s. In the present review, we summarize the literature of this period of more than
half a century, including all scientific papers and patent applications dealing with the synthesis and
reactions of this compound family, briefly hinting at their potential therapeutic application as well.

Keywords: 1,2,3-benzothiadiazine 1,1-dioxide; ring closure; alkylation; acylation; reduction;
ring contraction

1. Introduction

Several medicaments containing a 1,2,4-benzothiadiazine 1,1-dioxide scaffold (Figure 1) are used
as diuretic and antihypertensive agents [1–4].
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Figure 1. Marketed drugs with a 1,2,4-benzothiadiazine 1,1-dioxide scaffold. 

1-Hydrazinophthalazine (hydralazine, Figure 2) is a drug for the treatment of various 
cardiovascular diseases [5,6], while the structurally related phthalazinone derivatives are applied in 
a wide range of indications: olaparib as an anticancer agent [7,8], zopolrestat as an antidiabetic [9,10], 
and azelastine as an antihistamine [11,12]. 

Figure 1. Marketed drugs with a 1,2,4-benzothiadiazine 1,1-dioxide scaffold.

1-Hydrazinophthalazine (hydralazine, Figure 2) is a drug for the treatment of various
cardiovascular diseases [5,6], while the structurally related phthalazinone derivatives are applied in a
wide range of indications: olaparib as an anticancer agent [7,8], zopolrestat as an antidiabetic [9,10],
and azelastine as an antihistamine [11,12].

Nearly 20 years ago, our focus at Egis Pharmaceuticals (Hungary) turned to the chemistry of
2H-1,2,3-benzothiadiazine 1,1-dioxides (BTD, see parent compound 1a, Scheme 1) as relatively scarcely
used potential building blocks in medicinal chemistry, which combine the structural features of the
abovementioned therapeutically efficient compound families. In this review, we intend to summarize
the synthetic strategies that have been employed in the literature to prepare BTDs, briefly mentioning
the observed pharmacological activities as well. We seek to specify the reaction conditions and the
yields of the discussed reactions in each case if the data are clearly present in the literature sources.
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Figure 2. Marketed drugs with a phthalazine or phthalazinone scaffold. 

Nearly 20 years ago, our focus at Egis Pharmaceuticals (Hungary) turned to the chemistry of 2H-
1,2,3-benzothiadiazine 1,1-dioxides (BTD, see parent compound 1a, Scheme 1) as relatively scarcely 
used potential building blocks in medicinal chemistry, which combine the structural features of the 
abovementioned therapeutically efficient compound families. In this review, we intend to summarize 
the synthetic strategies that have been employed in the literature to prepare BTDs, briefly mentioning 
the observed pharmacological activities as well. We seek to specify the reaction conditions and the 
yields of the discussed reactions in each case if the data are clearly present in the literature sources. 

 
Scheme 1. The first described syntheses of 2H-1,2,3-benzothiadiazine 1,1-dioxide (BTD) parent 
compound 1a. (i) NH2NH2 (56%); (ii) PCl5, POCl3, NH2NH2 (5–80%); (iii) SOCl2, DMF; (iv) NH2NH2 
(50%, two steps). 

2. Synthesis and Reactions of 4-Unsubstituted, 4-Aryl and 4-Alkyl Derivatives 

2.1. Synthesis of 4-Unsubstituted, 4-Aryl and 4-Alkyl Derivatives 

The synthesis of the parent compound (1a) was first described by King et al. in 1969, starting 
from sodium 2-formylbenzenesulfonate (2) via hydrazone 3 with erratic reproducibility and low 
yields (Scheme 1). Better results were obtained by changing the order of the two steps, i.e., by 
transformation of the sulfonate salt 2 to 2-formylbenzenesulfonyl chloride 4a and cyclization of the 
latter with hydrazine [13,14]. 

It is obvious that the key issue regarding the construction of the heterocyclic ring is the 
availability of an ortho-disubstituted benzene derivative suitable for cyclization with hydrazine. The 
syntheses of the “commercially available” [14] key intermediate 2 were already described at the turn 
of the 20th century in German patents [15,16]. 

Simultaneously with the aforementioned work, Wright et al. published the synthesis of 4-
arylbenzothiadiazine dioxides 5 (Scheme 2) [17–19]. Diazotation of 2-aminobenzophenones 6 
followed by reaction with sulfur dioxide in the presence of copper (II) chloride gave ortho-
benzoylbenzenesulfonyl chlorides 7, which were cyclized with hydrazine to give 4-aryl-substituted 
target compounds 5. 
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(50%, two steps).

2. Synthesis and Reactions of 4-Unsubstituted, 4-Aryl and 4-Alkyl Derivatives

2.1. Synthesis of 4-Unsubstituted, 4-Aryl and 4-Alkyl Derivatives

The synthesis of the parent compound (1a) was first described by King et al. in 1969, starting
from sodium 2-formylbenzenesulfonate (2) via hydrazone 3 with erratic reproducibility and low yields
(Scheme 1). Better results were obtained by changing the order of the two steps, i.e., by transformation
of the sulfonate salt 2 to 2-formylbenzenesulfonyl chloride 4a and cyclization of the latter with
hydrazine [13,14].

It is obvious that the key issue regarding the construction of the heterocyclic ring is the availability
of an ortho-disubstituted benzene derivative suitable for cyclization with hydrazine. The syntheses of
the “commercially available” [14] key intermediate 2 were already described at the turn of the 20th
century in German patents [15,16].

Simultaneously with the aforementioned work, Wright et al. published the synthesis of
4-arylbenzothiadiazine dioxides 5 (Scheme 2) [17–19]. Diazotation of 2-aminobenzophenones 6 followed
by reaction with sulfur dioxide in the presence of copper (II) chloride gave ortho-benzoylbenzenesulfonyl
chlorides 7, which were cyclized with hydrazine to give 4-aryl-substituted target compounds 5.

Some representatives of the 4-aryl-BTD family (5) are useful as intermediates for the preparation of
disinfectants, mothproofing agents, pickling inhibitors and herbicides [17]. Cyclization of the suitably
substituted ortho-benzoylbenzenesulfonyl chloride 7a with hydrazine to give 5a, followed by reduction
of the nitro group and subsequent N-benzylation, afforded aminobenzoic acid 8 (Scheme 3). However,
it was devoid of the expected diuretic activity [20].
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Scheme 2. The first synthesis of 4-aryl-BTDs (5). (i) NaNO2, AcOH, HCl; (ii) SO2, CuCl2; (iii) NH2NH2, 
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Scheme 3. Synthesis of diuretic candidate 8. (i) NH2NH2∙H2O, H2O, 5 °C, 1.5 h (42%); (ii) FeSO4, NH3, 
H2O, rt, 0.5 h (35%); (iii) PhCH2Br, MeOCH2CH2OH, 100 °C, 24 h (32%). 

A widely applicable procedure, based on ortho-lithiation methodology, has been developed at 
our laboratory for the synthesis of a significant variety of 4-unsubstituted, 4-aryl- and 4-alkyl-BTDs 
(1, 5 and 9, Scheme 4), starting from variously substituted benzaldehydes (R = H) [21] benzophenones 
(R = aryl) [22] or acetophenones (R = Me) [23,24] of type 10 or 11, which were masked in the first step 
as 1,3-dioxolanes (12, 13, Scheme 4) using microwave technology [25]. Ortho-lithiation was carried 
out by exploiting the combined ortho-directing ability of the 1,3-dioxolan-2-yl group and another 
substituent of the aromatic ring, or by Br→Li exchange. Trapping aryllithiums (14) with sulfur 
dioxide and subsequent treatment with sulfuryl chloride gave the corresponding sulfonyl chlorides 
(15). 

From this point, two reaction sequences were applied for the synthesis of BTDs 1, 5 and 9. 
Hydrolysis of 1,3-dioxolanes 15 under acidic conditions followed by cyclization of the resulting 2-
formyl-, 2-aroyl- and 2-acylbenzenesulfonyl chlorides (4, 7, 16) with hydrazine monohydrate gave 
target compounds 1, 5 and 9 in good yields (Method A). An alternative route was also elaborated 
(Method B): treatment of acetal 15a and ketals 15b and 15c with acetohydrazide afforded sulfonyl-
acetohydrazides 17. Removal of the 1,3-dioxolane protecting group, N-deacetylation and ring closure 
took place under strongly acidic conditions in one pot, giving rise to the formation of target 
compounds 1 [21,26] 5 [27] and 9 [25,26]. 

Scheme 2. The first synthesis of 4-aryl-BTDs (5). (i) NaNO2, AcOH, HCl; (ii) SO2, CuCl2; (iii) NH2NH2,
NaOAc, EtOH.
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(Method B): treatment of acetal 15a and ketals 15b and 15c with acetohydrazide afforded sulfonyl-
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Scheme 3. Synthesis of diuretic candidate 8. (i) NH2NH2·H2O, H2O, 5 ◦C, 1.5 h (42%); (ii) FeSO4, NH3,
H2O, rt, 0.5 h (35%); (iii) PhCH2Br, MeOCH2CH2OH, 100 ◦C, 24 h (32%).

A widely applicable procedure, based on ortho-lithiation methodology, has been developed at
our laboratory for the synthesis of a significant variety of 4-unsubstituted, 4-aryl- and 4-alkyl-BTDs
(1, 5 and 9, Scheme 4), starting from variously substituted benzaldehydes (R = H) [21] benzophenones
(R = aryl) [22] or acetophenones (R = Me) [23,24] of type 10 or 11, which were masked in the first step
as 1,3-dioxolanes (12, 13, Scheme 4) using microwave technology [25]. Ortho-lithiation was carried
out by exploiting the combined ortho-directing ability of the 1,3-dioxolan-2-yl group and another
substituent of the aromatic ring, or by Br→Li exchange. Trapping aryllithiums (14) with sulfur dioxide
and subsequent treatment with sulfuryl chloride gave the corresponding sulfonyl chlorides (15).

From this point, two reaction sequences were applied for the synthesis of BTDs 1, 5 and 9.
Hydrolysis of 1,3-dioxolanes 15 under acidic conditions followed by cyclization of the resulting
2-formyl-, 2-aroyl- and 2-acylbenzenesulfonyl chlorides (4, 7, 16) with hydrazine monohydrate
gave target compounds 1, 5 and 9 in good yields (Method A). An alternative route was also
elaborated (Method B): treatment of acetal 15a and ketals 15b and 15c with acetohydrazide afforded
sulfonyl-acetohydrazides 17. Removal of the 1,3-dioxolane protecting group, N-deacetylation and ring
closure took place under strongly acidic conditions in one pot, giving rise to the formation of target
compounds 1 [21,26] 5 [27] and 9 [25,26].

A new approach was disclosed by Kacem et al. for the synthesis of BTDs 5, 9 and 18 [28].
Treatment of N-arylsulfonylhydrazides 19 (Scheme 5) with orthoesters afforded
N-arylsulfonylhydrazonates 20, which underwent ortho-lithiation with lithium diisopropylamide
(LDA) and N,N,N′,N′-tetramethylethylenediamine (TMEDA). Subsequent cyclization of lithium
derivative 22 provided BTDs 5 and 9 in reasonable yields. Better yields were achieved by a similar
cyclization of N-methylated derivative 21 to 2-methyl-BTDs 18 via lithium derivative 23.
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Scheme 4. Lithiation-based synthetic approaches for the synthesis of 4-unsubstituted (1), 4-aryl- (5) 
and 4-alkyl-BTDs (9). (i) HOCH2CH2OH, p-TsOH, toluene, reflux, MW, 450–650 W, 2–3 h or 
traditional heating; (ii) BuLi, THF or DEE, −78–(−5) °C, 2–4 h; (iii) 1. SO2, THF or DEE; 2. SO2Cl2, hexane 
at (−30)–(+5) °C, 0.5–2 h; (iv) H2SO4, CHCl3, Kieselgel, rt, 4 h; (v) NH2NH2 × H2O, THF, reflux, 4 h; (vi) 
NH2NHAc, iPrOH, rt, 2 h; (vii) 10% HCl reflux, 2 h. 
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(vi) NH2NHAc, iPrOH, rt, 2 h; (vii) 10% HCl reflux, 2 h.
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Scheme 5. Synthesis of BTDs (5, 9, 18) by directed ortho-lithiation-cyclization reactions. (i) RC(OEt)3,
AcOH, 80–90 ◦C (87–95%); (ii) NaH, THF, 0 ◦C, MeI (76–90%); (iii) LDA/TMEDA, 0 ◦C, 1.5 h (43–85%).

Chandra et al. elaborated a method for the N-acylation reactions of peptides by ketenes, generated
from malonic acids in the presence of a coupling agent (HBTU, HATU, TATU, etc.) and bases
(DIPEA, TEA) in DMF or DMSO at 0 ◦C [29]. When extending this procedure to the N-acetylation
of sulfonylhydrazide 19 (Scheme 6), they concluded that under the reaction conditions applied for
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the acetylation (not specified in detail), intermediate 24 underwent immediate cyclization to BTD
9a. However, the attached spectroscopic data are not in accordance with structure 9a, which was
previously convincingly characterized by Kacem et al. [28].
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Scheme 6. Synthesis of 4,6-dimethyl-BTD (9a) by cyclization of para-toluenesulfonyl-acetohydrazide (24).

2.2. Reactions of 4-Unsubstituted, 4-Aryl and 4-Alkyl Derivatives

2.2.1. Alkylations

We found that alkylation of 2H-1,2,3-benzothiadiazine 1,1-dioxide and its derivatives substituted
on the aromatic ring (1) with methyl and ethyl iodide occurred both at N(2) and N(3) atoms (25 and 26,
Scheme 7) [30,31]. The N(3)-alkylated derivative (26) exhibited a unique mesoionic structure. When
using t-BuOK as the base in DMF, compound 25 was the main product, while deprotonation with
NaH in THF followed by alkylation preferred the formation of the N(3)-alkyl compound 26. The two
products could be selectively isolated without chromatography.
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Scheme 7. Alkylation of 4-unsubstituted BTDs (1) leading to two different products (25, 26).

It is interesting to mention that two earlier Japanese patents dealt with the alkylation reactions
of compound 1a (R1, R2 = H, Scheme 7). Here, a large variety of alkylating agents were used (e.g.,
ω-halogen carboxylic acid esters); however, only N(2)-substituted derivatives were isolated, and no
N(3)-alkylation was mentioned [32,33]. Some derivatives proved to be efficient fungicides preventing
rice blast, one of the most destructive diseases of rice.

Wright described the alkylations of variously substituted 4-aryl-BTDs 5 with alkyl iodides [17,18] and
aminoalkyl bromides and chlorides [19] in the presence of sodium hydroxide (NaOH) in aqueous ethanol
solution resulting in N(2)-alkyl derivatives 27 (Scheme 8, Method A). We carried out N(2)-methylation
of compounds 5 at room temperature in DMF using either t-BuOK or NaH as the base (Method B).
Similar alkylation with butyl iodide was conducted at an elevated temperature (60 ◦C) [27].

N(2)-Alkylations of 4-aryl derivatives 5 occurred more selectively than in the case of 4-unsubstituted
congeners 1. For the sake of completeness, a detailed examination was carried out in one case: a small
amount of mesoionic derivative 28 (Scheme 8) could be isolated. According to 1H NMR measurements,
the ratio of the N(2)- and N(3)-alkylated compounds in the crude product mixture was 10:1 in this
case [27].
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Alkylation of 4-methyl derivatives 9 with various alkylating agents (Scheme 9) in the presence of
t-BuOK in DMF afforded the corresponding N(2)-alkylated derivatives 29 [24,30].
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Scheme 9. Alkylation of 4-methyl-BTDs (9).

N(2)-Haloalkylations enable the attachment of pharmacologically interesting ligands to the BTD
core, as demonstrated by the alkylation of compound 5b with 1-bromo-4-chlorobutane (30) and the
subsequent reaction with pharmacophore 31, resulting in compound 32, which was expected to exhibit
serotonergic activity (Scheme 10) [27].
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Scheme 10. Synthesis of a potential serotonergic compound (32).

Carbapenem antibacterials, useful against Gram-positive microorganisms containing a BTD
building block (33), were synthesized using Mitsunobu chemistry for N(2)-alkylation of BTDs (1, 5, 9)
with hydroxymethyl-carbapenem derivative 34. Optionally, a R1 substituent of compound 35 was
further transformed before removal of the protecting groups (Scheme 11) [34].
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Wright published the acylation of 4-phenyl derivative 5c with some acyl chlorides in refluxing 
chloroform to afford N(2)-acyl derivative 37 (Scheme 13) [17,18]. In a Japanese patent, similar 
acetylation and propionylation of compound 1a are mentioned [33]. 

 
Scheme 13. N(2)-Acylation of 6-chloro-4-phenyl-BTD (5c). 

2.2.3. Reductions of the C=N Double Bond and Subsequent Alkylations and Acylations 

There are two ways to perform the reduction of the C=N double bond of BTDs 1, 5 and 9. 3,4-
Dihydro derivatives 38 were obtained either: (a) through catalytic reduction in the presence of 
platinum(IV) oxide or palladium on activated charcoal at 3.5 or 10–15 bar hydrogen pressure in acetic 
acid (Scheme 14, Method A), or (b) with NaBH4 in a mixture of trifluoroacetic acid (TFA) and 
dichloromethane (Method B) [19,24,26,27,30,38]. Compounds 38 were regioselectively alkylated at 
position N(3) by catalytic reductive alkylation using aldehydes or acetone to give derivatives 39 
[24,30,38]. 
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2.2.2. Acylations and Carbamoylations

Three Japanese patent applications were filed for the synthesis of N(2)-carbamoyl-2H
-1,2,3-benzothiadiazine 1,1-dioxides (36) by the treatment of compound 1a with various isocyanates
(Scheme 12) [35–37]. In all cases, the aim was to develop effective bactericides and fungicides.
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Wright published the acylation of 4-phenyl derivative 5c with some acyl chlorides in refluxing
chloroform to afford N(2)-acyl derivative 37 (Scheme 13) [17,18]. In a Japanese patent, similar acetylation
and propionylation of compound 1a are mentioned [33].
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Scheme 13. N(2)-Acylation of 6-chloro-4-phenyl-BTD (5c).

2.2.3. Reductions of the C=N Double Bond and Subsequent Alkylations and Acylations

There are two ways to perform the reduction of the C=N double bond of BTDs 1, 5 and 9.
3,4-Dihydro derivatives 38 were obtained either: (a) through catalytic reduction in the presence of
platinum(IV) oxide or palladium on activated charcoal at 3.5 or 10–15 bar hydrogen pressure in
acetic acid (Scheme 14, Method A), or (b) with NaBH4 in a mixture of trifluoroacetic acid (TFA)
and dichloromethane (Method B) [19,24,26,27,30,38]. Compounds 38 were regioselectively alkylated
at position N(3) by catalytic reductive alkylation using aldehydes or acetone to give derivatives
39 [24,30,38].
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Scheme 15. Reduction and subsequent alkylation reactions of N(2)-alkyl-BTDs (25, 27, 29). (i) Method 
A: H2/PtO2 or Pd/C, AcOH or THF–AcOH, 10–15 bar, rt (44–94%); Method B: NaBH4/TFA, CH2Cl2, 0–
5 °C (29–100%); (ii) CH2O or CH3CHO, THF; or THF–AcOH, H2, Pd/C, 10–15 bar, rt (21–89%). 

The case of mesoionic compounds 26 deserves a special mention. Their reduction to 3,4-dihydro 
derivatives 39 with sodium borohydride in methanol (Scheme 16, Method A) gave excellent yields 
and catalytic hydrogenation in the presence of PtO2 catalyst (Method B) was also feasible. 
Compounds 39 may serve as precursors of 2,3-dialkylated products, e.g., 42 [30,38]. 
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rt (80–96%); Method B: H2/PtO2, THF–AcOH, 10 bar, rt (73–75%); (ii) (a) MeI, t-BuOK, DMF, rt (51–
72%); or (b) MeI, NaH, THF, rt (33–38%). 

An unexpected result was obtained in the course of acetylation and alkylation reactions of 
compounds 43. Treatment of the latter with acetic anhydride resulted in 2,3-diacetylated derivatives 
44 in high yield [39]. When treating the latter with t-BuOK and methyl iodide in DMF (Scheme 17), 

Scheme 14. Preparation of N(3)-alkyl-3,4-dihydro-BTDs (39). (i) Method A: H2, PtO2 or Pd/C, AcOH
or THF–AcOH, 3.5 or 10–15 bar, rt (43–71%); Method B: NaBH4/TFA, CH2Cl2, 0–5 ◦C (80–97%);
(ii) aldehydes or acetone, H2, PtO2; or Pd/C, AcOH, 10 bar, rt (29–60%).

Reduction of the C=N double bond of N(2)-alkyl derivatives 25, 27 and 29 was executed in the
same ways as in the case of the corresponding N(2)-unsubstituted compounds (Method A or B) to
furnish 3,4-dihydro derivatives 40 (Scheme 15) [24,27,30,38]. Catalytic reductive alkylation of the latter
was carried out with 4-alkyl compounds resulting in 2,3,4-trialkyl derivatives 41 [24,30,38].
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Scheme 15. Reduction and subsequent alkylation reactions of N(2)-alkyl-BTDs (25, 27, 29). (i) Method
A: H2/PtO2 or Pd/C, AcOH or THF–AcOH, 10–15 bar, rt (44–94%); Method B: NaBH4/TFA, CH2Cl2,
0–5 ◦C (29–100%); (ii) CH2O or CH3CHO, THF; or THF–AcOH, H2, Pd/C, 10–15 bar, rt (21–89%).

The case of mesoionic compounds 26 deserves a special mention. Their reduction to 3,4-dihydro
derivatives 39 with sodium borohydride in methanol (Scheme 16, Method A) gave excellent yields and
catalytic hydrogenation in the presence of PtO2 catalyst (Method B) was also feasible. Compounds 39
may serve as precursors of 2,3-dialkylated products, e.g., 42 [30,38].
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Scheme 16. Reduction of mesoions 26 and subsequent N(2)-alkylation. (i) Method A: NaBH4, MeOH,
rt (80–96%); Method B: H2/PtO2, THF–AcOH, 10 bar, rt (73–75%); (ii) (a) MeI, t-BuOK, DMF, rt (51–72%);
or (b) MeI, NaH, THF, rt (33–38%).

An unexpected result was obtained in the course of acetylation and alkylation reactions of
compounds 43. Treatment of the latter with acetic anhydride resulted in 2,3-diacetylated derivatives
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44 in high yield [39]. When treating the latter with t-BuOK and methyl iodide in DMF (Scheme 17),
3-acetyl-2-methyl product 45 was obtained. It was planned to replace the 3-acetyl function by an alkyl
group as well. However, attempts to remove the 3-acetyl function of 45 (R = Me) to give compound
40a even under drastic conditions were unsuccessful.
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2.2.5. Ring Contraction

On treatment of 3,4-dihydro-1,2,3-benzothiadiazine 1,1-dioxides 45 with NaOH powder in THF,
a ring contraction leading to 1,2-benzisothiazoles 46 was discovered (Scheme 19) [39]. We supposed that
the deprotonation at C(4) followed by ring opening leads to an acylimine intermediate, which undergoes
an intramolecular Michael addition and subsequent protonation, resulting in 1,2-benzisothiazole
1,1-dioxides 46.
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2.2.6. Chlorination and Thermolysis of 2H-1,2,3-Benzothiadiazine 1,1-dioxide (1a)

In an early study, attempts were made to generate sulfene 47 by chlorination of BTD 1a (Scheme 20).
The formation of compound 48 in dry dichloromethane/chloroform mixture at 0–2 ◦C argues for
the intermediacy of sulfene 47. Depending on the reaction conditions, various reaction sequences
involving chlorination, nitrogen extrusion, hydrolysis, ring opening, etc. led to compounds 48–52 [40].
Thermolysis of 1a at 500 ◦C in a quartz tube gave sultine 53 in 25% yield [14].
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3. Synthesis and Transformations of 4-Hydrazino-2H-1,2,3-benzothiadiazine 1,1-dioxides

The first published compound exhibiting a BTD skeleton was 4-hydrazino derivative 54a
(R = H) disclosed by Schrader in 1917 (Scheme 21, Method A) [41]. It was obtained by treatment of
2-cyanobenzenesulfonylchloride (55a) with hydrazine. More attention was paid to the compound
family when two related compounds, the diuretic agent hydrochlorothiazide (Figure 1) and the
antihypertensive compound hydralazine (Figure 2), successfully entered the pharmaceutical market in
the 1950s [42–45]. In 1962, Schmidt et al. prepared the corresponding 7-chloro derivative 54b similarly
(Method B), but with a much simpler work-up of the reaction mixture. When starting from 7-ethoxy
derivative 55c, intermediate 56 was also isolated [46]. A detailed study on the hypotensive activity of
54a was published in 1965 [47].
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Scheme 21. The syntheses of 4-hydrazino-BTDs (54). (i) Method A: R = H, benzene, 1 h, rt (54a·HCl,
41%) [42]; Method B: R = Cl, EtOH, 5 min, reflux (54b, 78%) [44]; (ii) R = OEt, hydrazine, EtOH, 5 min,
60 ◦C (74%); (iii) EtOH/HCl, 60 ◦C (54c·HCl, >99%) [46].

The presence of the hydrazino group in the molecule enabled the synthesis of new types of
derivatives. Schrader reported the formation of hydrazone 57 (R1 = Ph, R2 = H, R = H) in the reaction
of 54a with benzaldehyde as a structure proof for the starting compound (Scheme 22) [41]. A large
variety of hydrazones 57 were synthesized starting from compound 54a using structurally diverse
aldehydes and ketones. Some of them showed a significant antihypertensive activity [42]. As regards
the stability of hydrazones 57, when refluxing a solution of 57c in the presence of air, the formation of
dehydrogenated derivative 58 was observed, which was also prepared by reacting 54c with acetone in
the presence of hydrogen peroxide [46].
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The 4-hydrazino group of compounds 54 retained the doubly nucleophilic character of hydrazine,
as demonstrated by the synthesis of pyrazole derivative 59 by the treatment of 54c with acetylacetone
(Scheme 23) [46]. Similar cyclization with ethoxymethylene-acetylacetone afforded 4-acetylpyrazole 60,
which was further functionalized with paraformaldehyde and 4-fluorophenylpiperazine to give
arylpiperazinyl derivative 61. This latter step represents a variant of N(2)-alkylation reactions of BTDs.
Compound 61 did not show significant activity in antihypertensive and adrenolytic tests [48,49].
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Attempts were made to combine the potentially synergistic pharmacological activities of 1,2,4-
and 1,2,3-benzothiadiazine 1,1-dioxides in one molecule. 1,2,4-Benzothiadiazine 1,1-dioxide 62 was
coupled with 4-hydrazino-BTD 54a to give product 63 (Scheme 24), which was evaluated for diuretic
activity; however, it did not show efficacy [50].
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4. Synthesis and Transformations of 1,2,3,4-Tetrahydro-1,2,3-benzothiadiazine-1,1,4-triones

In 1962, Loev and Kormendy observed the formation of the 1,2,3,4-tetrahydro-1,2,3
-benzothiadiazine-1,1,4-trione (64) in the reaction of 2-chlorosulfonylbenzoic acid isopropyl ester
65a with hydrazine (Scheme 25) [51]. Almost fifty years later, Ramana and Reddy described the
same synthesis, giving details for the preparation of starting compound 65a from saccharin (66) via
2-sulfobenzoic acid (67) and 2-chlorosulfonylbenzoyl chloride (68). Cyclization of either 65a or 68
with hydrazine afforded benzothiadiazine-trione 64. N(2)-Phenyl derivative 69 was obtained by the
cyclization of 68 with phenylhydrazine [52].
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(33 w/w%), 90 ◦C, 2 h (85%); (ii) PCl5, 60 ◦C, 2 h (ca. 70%); (iii) hydrazine hydrate, MeOH, rt, 15 min
(42%); (iv) phenylhydrazine, MeOH, rt, 65 min (20%).

A useful method for coupling the BDT building block with indoles has been disclosed (Scheme 26).
4-Oxo derivative 64 obtained from methyl 2-chlorosulfonyl benzoate (65b) was transformed to
4-chloro-BTD 70 with POCl3. The latter was connected to indoles 71 by Friedel–Crafts type reaction to
afford compounds 72, which were further functionalized in three steps to furnish target compounds 73.
BTDs coupled with indole-1-acetic acids (73) proved to be antagonists of the prostaglandin D2 receptor
and exhibited an anti-asthmatic effect [53].
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In a recent Chinese patent application, the preparation of variously substituted 2,3-diaryl-1,2,3,4
-tetrahydro-1,2,3-benzothiadiazine-1,1,4-triones was described. The synthesis of a representative
example 74 started from the corresponding 2-sulfobenzoic acid 75 via 2-chlorosulfonylbenzoyl chloride
76 (Scheme 27). Trioxo derivative 77 was used as the starting material for the synthesis of molecules
emitting light when exposed to electric current, thus they can be utilized in organic light-emitting diodes
(OLED). For example, dibromo derivative 77 was treated with carbazole to furnish compound 74 [54].



Chemistry 2020, 2 687
Chemistry 2020, 2, x 14 

 

 

Scheme 27. Synthesis and further transformation of 6,7-dibromo-2,3-diphenyl-1,2,3,4-tetrahydro-
1,2,3-benzothiadiazine-1,1,4-trione (77). (i) SO2Cl2, o-Cl2C6H4, DMF, 80–85 °C, 4 h (100%); (ii) PhNH-
NHPh, TEA, o-Cl2C6H4, 0 °C to rt, 4 h (68%); (iii) carbazole, K2CO3, 18-crown-6, CuI, o-phenanthroline, 
reflux, 28 h (60%). 

5. Synthesis and Transformations of 4-Amino-2H-1,2,3-benzothiadiazine 1,1-dioxides 

Deodhar et al. described the synthesis of 4-amino-BTD derivatives 78 (Scheme 28). Sodium 
saccharinate (66∙Na) was N-alkylated (79) and transformed to 3-thio derivative 80 which gave, by 
treatment with hydrazine, target compounds 78 in a ring expansion reaction (Scheme 28) [55,56]. 
Cyclin-dependent kinase 4 (CDK4) inhibitor activity found in this compound family (e.g., 78, R = 4-
F-C6H4) may prevent the overproliferation of cancer cells [57,58]. 

 
Scheme 28. Synthesis of 4-amino-BTDs (78) with ring expansion. 

It was found that compound 79 behaved differently from its thio analogue 80 in the reaction 
with hydrazine, resulting in the formation of hydrazone 81 (Scheme 29) instead of ring expansion to 
78 (Scheme 28). However, the reaction of 81 with substituted benzaldehydes in refluxing benzene 
and subsequent treatment with hydrazine afforded N(2)-alkyl-4-amino-BTDs 82, a compound family 
exhibiting a significant antibacterial activity [56,59]. 

N-CH2R
S

OO

O

79

N-CH2R
S

OO

NH-NH2

81

R1CHO
N-CH2R

S
OO

N-N
R1

N
N

S
O O

HN R

R1H2N-NH2

82

R = Ph, 4-Cl-C6H4, 3,4-di-Cl-C6H3 R1 = 2-NO2-C6H4, 4-Cl-C6H4, 4-Me2N-C6H4, 3,4-di-Cl-C6H3

benzene
3 h, reflux

12 h
reflux

69 74%

H2N-NH2

 
Scheme 29. Synthesis of N(2)-substituted 4-amino-BTDs (82). 

6. Conclusions 

1,2,3-Benzothiadiazine 1,1-dioxides combine the structural features of two compound families, 
1,2,4-benzothiadiazine 1,1-dioxides and phthalazinones, some of whose members are important 
medicines on the market. This structural similarity led to an intensive research of 1,2,3-
benzothiadiazine 1,1-dioxides, starting from the 1960s. This review summarizes the methods 

Scheme 27. Synthesis and further transformation of 6,7-dibromo-2,3-diphenyl-1,2,3,4-tetrahydro-1,2,3
-benzothiadiazine-1,1,4-trione (77). (i) SO2Cl2, o-Cl2C6H4, DMF, 80–85 ◦C, 4 h (100%); (ii) PhNH-NHPh,
TEA, o-Cl2C6H4, 0 ◦C to rt, 4 h (68%); (iii) carbazole, K2CO3, 18-crown-6, CuI, o-phenanthroline, reflux,
28 h (60%).

5. Synthesis and Transformations of 4-Amino-2H-1,2,3-benzothiadiazine 1,1-dioxides

Deodhar et al. described the synthesis of 4-amino-BTD derivatives 78 (Scheme 28). Sodium
saccharinate (66·Na) was N-alkylated (79) and transformed to 3-thio derivative 80 which gave, by
treatment with hydrazine, target compounds 78 in a ring expansion reaction (Scheme 28) [55,56].
Cyclin-dependent kinase 4 (CDK4) inhibitor activity found in this compound family (e.g., 78,
R = 4-F-C6H4) may prevent the overproliferation of cancer cells [57,58].

Chemistry 2020, 2, x 14 

 

 

Scheme 27. Synthesis and further transformation of 6,7-dibromo-2,3-diphenyl-1,2,3,4-tetrahydro-
1,2,3-benzothiadiazine-1,1,4-trione (77). (i) SO2Cl2, o-Cl2C6H4, DMF, 80–85 °C, 4 h (100%); (ii) PhNH-
NHPh, TEA, o-Cl2C6H4, 0 °C to rt, 4 h (68%); (iii) carbazole, K2CO3, 18-crown-6, CuI, o-phenanthroline, 
reflux, 28 h (60%). 

5. Synthesis and Transformations of 4-Amino-2H-1,2,3-benzothiadiazine 1,1-dioxides 

Deodhar et al. described the synthesis of 4-amino-BTD derivatives 78 (Scheme 28). Sodium 
saccharinate (66∙Na) was N-alkylated (79) and transformed to 3-thio derivative 80 which gave, by 
treatment with hydrazine, target compounds 78 in a ring expansion reaction (Scheme 28) [55,56]. 
Cyclin-dependent kinase 4 (CDK4) inhibitor activity found in this compound family (e.g., 78, R = 4-
F-C6H4) may prevent the overproliferation of cancer cells [57,58]. 

 
Scheme 28. Synthesis of 4-amino-BTDs (78) with ring expansion. 

It was found that compound 79 behaved differently from its thio analogue 80 in the reaction 
with hydrazine, resulting in the formation of hydrazone 81 (Scheme 29) instead of ring expansion to 
78 (Scheme 28). However, the reaction of 81 with substituted benzaldehydes in refluxing benzene 
and subsequent treatment with hydrazine afforded N(2)-alkyl-4-amino-BTDs 82, a compound family 
exhibiting a significant antibacterial activity [56,59]. 

N-CH2R
S

OO

O

79

N-CH2R
S

OO

NH-NH2

81

R1CHO
N-CH2R

S
OO

N-N
R1

N
N

S
O O

HN R

R1H2N-NH2

82

R = Ph, 4-Cl-C6H4, 3,4-di-Cl-C6H3 R1 = 2-NO2-C6H4, 4-Cl-C6H4, 4-Me2N-C6H4, 3,4-di-Cl-C6H3

benzene
3 h, reflux

12 h
reflux

69 74%

H2N-NH2

 
Scheme 29. Synthesis of N(2)-substituted 4-amino-BTDs (82). 

6. Conclusions 

1,2,3-Benzothiadiazine 1,1-dioxides combine the structural features of two compound families, 
1,2,4-benzothiadiazine 1,1-dioxides and phthalazinones, some of whose members are important 
medicines on the market. This structural similarity led to an intensive research of 1,2,3-
benzothiadiazine 1,1-dioxides, starting from the 1960s. This review summarizes the methods 

Scheme 28. Synthesis of 4-amino-BTDs (78) with ring expansion.

It was found that compound 79 behaved differently from its thio analogue 80 in the reaction
with hydrazine, resulting in the formation of hydrazone 81 (Scheme 29) instead of ring expansion to
78 (Scheme 28). However, the reaction of 81 with substituted benzaldehydes in refluxing benzene
and subsequent treatment with hydrazine afforded N(2)-alkyl-4-amino-BTDs 82, a compound family
exhibiting a significant antibacterial activity [56,59].

Chemistry 2020, 2, x 14 

 

 

Scheme 27. Synthesis and further transformation of 6,7-dibromo-2,3-diphenyl-1,2,3,4-tetrahydro-
1,2,3-benzothiadiazine-1,1,4-trione (77). (i) SO2Cl2, o-Cl2C6H4, DMF, 80–85 °C, 4 h (100%); (ii) PhNH-
NHPh, TEA, o-Cl2C6H4, 0 °C to rt, 4 h (68%); (iii) carbazole, K2CO3, 18-crown-6, CuI, o-phenanthroline, 
reflux, 28 h (60%). 

5. Synthesis and Transformations of 4-Amino-2H-1,2,3-benzothiadiazine 1,1-dioxides 

Deodhar et al. described the synthesis of 4-amino-BTD derivatives 78 (Scheme 28). Sodium 
saccharinate (66∙Na) was N-alkylated (79) and transformed to 3-thio derivative 80 which gave, by 
treatment with hydrazine, target compounds 78 in a ring expansion reaction (Scheme 28) [55,56]. 
Cyclin-dependent kinase 4 (CDK4) inhibitor activity found in this compound family (e.g., 78, R = 4-
F-C6H4) may prevent the overproliferation of cancer cells [57,58]. 

 
Scheme 28. Synthesis of 4-amino-BTDs (78) with ring expansion. 

It was found that compound 79 behaved differently from its thio analogue 80 in the reaction 
with hydrazine, resulting in the formation of hydrazone 81 (Scheme 29) instead of ring expansion to 
78 (Scheme 28). However, the reaction of 81 with substituted benzaldehydes in refluxing benzene 
and subsequent treatment with hydrazine afforded N(2)-alkyl-4-amino-BTDs 82, a compound family 
exhibiting a significant antibacterial activity [56,59]. 

N-CH2R
S

OO

O

79

N-CH2R
S

OO

NH-NH2

81

R1CHO
N-CH2R

S
OO

N-N
R1

N
N

S
O O

HN R

R1H2N-NH2

82

R = Ph, 4-Cl-C6H4, 3,4-di-Cl-C6H3 R1 = 2-NO2-C6H4, 4-Cl-C6H4, 4-Me2N-C6H4, 3,4-di-Cl-C6H3

benzene
3 h, reflux

12 h
reflux

69 74%

H2N-NH2

 
Scheme 29. Synthesis of N(2)-substituted 4-amino-BTDs (82). 

6. Conclusions 

1,2,3-Benzothiadiazine 1,1-dioxides combine the structural features of two compound families, 
1,2,4-benzothiadiazine 1,1-dioxides and phthalazinones, some of whose members are important 
medicines on the market. This structural similarity led to an intensive research of 1,2,3-
benzothiadiazine 1,1-dioxides, starting from the 1960s. This review summarizes the methods 

Scheme 29. Synthesis of N(2)-substituted 4-amino-BTDs (82).

6. Conclusions

1,2,3-Benzothiadiazine 1,1-dioxides combine the structural features of two compound families,
1,2,4-benzothiadiazine 1,1-dioxides and phthalazinones, some of whose members are important
medicines on the market. This structural similarity led to an intensive research of 1,2,3-benzothiadiazine
1,1-dioxides, starting from the 1960s. This review summarizes the methods developed for the synthesis
of 1,2,3-benzothiadiazine 1,1-dioxides substituted with various functional groups, allowing the
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attachment of new building blocks (among other pharmacophores) to the parent molecule. Efforts to
use this compound family in drug development are also presented.
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