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Abstract: Three distinct four-component supramolecular nanorotors were prepared, using, for the
first time, bipyridine instead of phenanthroline stations in the stator. Following our established self-
sorting protocol to multicomponent nanodevices, the nanorotors were self-assembled by mixing the
stator, rotators with various pyridine head groups, copper(I) ions and 1,4-diazabicyclo[2.2.2]octane
(DABCO). Whereas the exchange of a phenanthroline vs. a bipyridine station did not entail significant
changes in the rotational exchange frequency, the para-substituents at the pyridine head group of
the rotator had drastic consequences on the speed: 4-OMe (k298 = 35 kHz), 4-H (k298 = 77 kHz) and
4-NO2 (k298 = 843 kHz). The exchange frequency (log k) showed an excellent linear correlation with
both the Hammett substituent constants and log K of the copper(I)–ligand interaction, proving that
rotator–copper(I) bond cleavage is the key determining factor in the rate-determining step.

Keywords: self-sorting; multicomponent rotor; exchange frequency; Hammett correlation

1. Introduction

Over the years, researchers have been probing numerous techniques to mimic the
function of biological machines, such as ATP synthase [1,2], bacterial flagella [3], histidine
kinase [4], etc. During the iterative and systematic optimization of manmade motors [5–7],
increasingly better design strategies have been identified to implement intricate movements
and various functions derived therefrom [8–11]. Thus, significant progress has been
achieved, for instance, in the field of molecular rotors [12–17], gears [18–21], pumps [22–24],
walkers [25–27] and caterpillars [28].

To mimic nature’s strategy even closer, one has to realize that life preferentially uses
multicomponent assembly for building biological machines. Such approach requires
a careful balance of weak interactions that allow for sufficient spatiotemporal binding
between components during motion. It is unsurprising that, in the arena of artificial
multicomponent devices [29–31], examples with sophisticated dynamic motion are still
scarce [32]. Because in multicomponent devices the exchange of a single component may
lead to drastically different properties, fundamental insights are needed in how structural
and electronic variations will impact on the kinetics of motion.

Herein, we demonstrate that speed changes in four-component nanorotors by exclu-
sively varying the rotator head group are linearly correlated with Hammett substituent
constants. Whereas Hammett correlations are abundant for describing kinetic reactivity
and thermodynamic properties of organic compounds [33], analogous correlations with
supramolecular devices remain largely unexplored [34–36], possibly because many of the
design strategies are not robust enough to tolerate larger electronic and steric changes.
Although at first glance these results appear marginal, they furnish a tool to precisely pre-
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dict and tune the frequency of such four-component rotors that, as we know, are catalytic
machinery, where the machine speed determines the rate of catalysis [37].

The family of four-component nanorotors [38] has demonstrated, in our hands,
great potential in various fields of application, ranging from catalysis [33] to molecu-
lar logic [39]. Till now, several strategies to change the rotational frequency have been
explored, including adding external brake stones [40,41], changing the flexibility of the
rotator arm [42], changing the number of binding sites [33] and adding nucleophilic addi-
tives [43]. All of these studies corroborated our initial hypothesis that the rate-determining
step depended on the ligand–metal dissociation. Therefore, the kinetic behavior (rotational
frequency of the nanorotor) should correlate with thermodynamic data (binding constant
of the metal complex). The present work now sought to establish a quantitative relationship
by using the well-known Hammett equation as a link between thermodynamic and kinetics.
Undoubtedly, the Hammett equation [44] is known as the most important member of a
large amount of linear free energy relationships (LFERs) [45].

The four-component nanorotors of this study (Figure 1) were assembled by following
our established self-sorting protocol, by combining rotators 1–3 (with various pyridine
head groups), stators 4 and 5, copper(I) ions and 1,4-diazabicyclo[2.2.2] octane (DABCO).
In this process, the zinc porphyrin units from the stator and rotator are linked by DABCO,
in a hetero-sandwich complex, whereas the copper(I)-filled phenanthroline sites of the
stator are additionally connected to the pyridine nitrogen of the rotator (see, for instance,
[Cu2(1)(4)(DABCO)]2+) (Figure 1b). The rotators were designed in a way so as to enable
electronic influence of the para-substituent onto the pyridine head group that is bound to
the copper(I) ion sitting in the diimine station of the stator. Since, in the rate-determining
step, the Npy→[Cu(diimine)]+ linkage has to be cleaved, the donor and acceptor qualities
of the para-substituent were expected to impact on the exchange frequency.
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Both bipyridine and phenanthroline have been amply used as bidentate ligands in
supramolecular and coordination chemistry. Compared with phenanthroline, the bipyri-
dine shows less binding strength with metal ions, but higher flexibility for complex reorga-
nization [46]. At the onset, we wanted to evaluate the importance of the flexibility of the
bipyridine binding site onto the exchange kinetics of the rotor.

2. Materials and Methods
2.1. Synthesis

Four nanorotors were synthesized by combining one of the three rotator ligands 1–3 with
one of the stators 4 and 5: ROT-1a’ = [Cu2(1)(4)(DABCO)]2+, ROT-1b’ = [Cu2(1)(5)(DABCO)]2+,
ROT-2′ = [Cu2(2)(4)(DABCO)]2+ and ROT-3′ = [Cu2(3)(4)(DABCO)]2+. For better char-
acterization, equally, the static precursor assemblies containing only one copper(I) ion,
here denoted as prerotors, were prepared: ROT-1a = [Cu(1)(4)(DABCO)]+, ROT-1b =
[Cu(1)(5)(DABCO)]+, ROT-2 = [Cu(2)(4)(DABCO)]+ and ROT-3 = [Cu(3)(4)(DABCO)]+.
All compounds and complexes were characterized by 1H-NMR, 13C NMR, mass spec-
troscopy and elemental analysis (see Supplementary Materials).

2.2. Determination of Binding Constants

UV–Vis titrations were analyzed by fitting the recorded spectra at 0.5 nm intervals,
using the SPECFIT® global analysis system by Spectrum Software Associates (Marlborough,
MA, USA) [47]. The SPECFIT® program analyzes equilibrium datasets with the help of
singular value decomposition and linear regression modeling by the Levenberg–Marquardt
method, to determine cumulative binding constants.

2.3. NMR Simulation

A conventional dynamic NMR spectroscopic method [48] based on a model involving
a two-spin system undergoing mutual exchange was applied to simulate the spectra and
determine the exchange frequency. The NMR signal used for the simulation is indicated in
the corresponding spectra by an asterisk (*). The exchange frequency that is identical with
the rotational frequency was obtained from an analysis of the exchange-broadened NMR
signal of proton 16-H of the stator. Activation enthalpy (∆H‡) and activation entropy (∆S‡)
were determined from transition state theory. The temperature-dependent rate constants
of the rotors were fitted to the Eyring equation [49]:

k = (kBT/h)e−∆G‡/RT, (1)

ln(k/T) = − ∆H‡/RT + ln(kB/h) + ∆S‡/R (2)

3. Results
3.1. Design

Previous work about Hammett correlations has mainly focused on mono-substituted
aromatic systems, e.g., in equilibria and in fundamental reactions, like hydrolysis of esters,
etc. [33]. However, in our rotator’s design, the pyridine head groups are disubstituted
due to connections to the arm and the probing substituent. It is advisable to attach the
rotator’s arm in the meta position of the pyridine, to minimize any steric hindrance in the
HETPYP (heteroleptic pyridine and phenanthroline) [50] complexation to the copper(I)
phenanthroline site.

To check whether the Hammett equation applies to the Lewis acid–base interaction
of pyridine (Npy)→ [Cu(bipyAr2)]+, the copper(I)-loaded 6,6′-dimesityl-2,2′-bipyridine
[Cu(bipyAr2)]+, here C1 = [Cu(6)]+, and its complexes with substituted pyridines Npy →
[Cu(bipyAr2)] were studied. As in other HETPYP complexes [50], the steric shielding about
the bipyAr2 effectively prevents formation of homoleptic copper bipyridine complexes
[Cu(bipyAr2)2]+. To quantitatively prepare complex C1, [Cu(CH3CN)4](PF6) and 6 (1:1)
were simply mixed in CH2Cl2. The 3-bromo-4-X-pyridine ligands 8–10 were titrated
with a standard solution of C1 = [Cu(6)]+ in CH2Cl2 and the binding isotherms were
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determined by UV–Vis spectroscopy (Figures S58–S60). For comparison, the copper(I)-
loaded phenanthroline C5 = [Cu(7)]+ was titrated with ligand 8, for determining the
binding constant in C6 (Figure S61). The Gibbs free energy, ∆G298, of C2, C3, C4 and C6
was calculated based on the binding constants (Table 1). Both log K and ∆G298 show a
linear correlation with σp (Figure 2).

Table 1. Substituent constants, binding constants and Gibbs free energy of C2–C4 and C6, as deter-
mined from UV–Vis titrations.

Motifs 4-X a σp log K ∆G298 (kJ mol−1)

C2 = [Cu(6)(8)]+ OMe −0.268 4.59 −26.2
C3 = [Cu(6)(9)]+ NO2 0.778 2.93 −16.7
C4 = [Cu(6)(10)]+ H 0.000 4.10 −23.4
C6 = [Cu(7)(8)]+ OMe −0.268 4.63 −26.4

a Substituent at 4-position of the pyridine head groups.
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tained from 1-iodo-2,3,5,6-tetramethyl-4-[2-(trimethylsilyl)ethynyl]-benzene (14), fur-
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3.2. Synthesis and Characterization of Four-Component Nanorotors

The strong correlation between σp and log K encouraged us to prepare the four-
component nanorotors based on the above design of the head group. In this regard, the sub-
stituted pyridine rotators 1–3 were synthesized by Sonogashira coupling of zinc(II)-5-(4-
ethynylphenyl)-10,15,20-trimesitylporphyrin (11) with 8, 9 and 10, as shown in Scheme 1.

The new bipyridine stator 4 was afforded in six steps, as outlined in Scheme 2. First,
the bipyridine binding site was separately prepared in two steps: Suzuki–Miyaura coupling
between 6,6′-dibromo-2,2′-bipyridine (12) and mesitylene-2-boronic acid (13)–furnished
6-bromo-6′-mesityl-2,2′-bipyridine (16) in 75% yield. On the other hand, nucleophilic
substitution at isopropoxyboronic acid pinacol (15), using the lithiated species obtained
from 1-iodo-2,3,5,6-tetramethyl-4-[2-(trimethylsilyl)ethynyl]-benzene (14), furnished com-
pound 17. Thereafter, Suzuki–Miyaura coupling between 16 and 17 yielded product 18.
A follow-up deprotection of the TMS-alkyne unit in the presence of NaCO3 provided 19
in good yield. After Sonogashira coupling between 19 and zinc(II)-meso-5,15-bismesityl-
10,20-bis(4-iodophenyl)porphyrin (20), the stator 4 was afforded in 45% yield (over five
steps). The new ligands 1–4 were characterized unambiguously by NMR, ESI-MS, IR and
elemental analysis (see Supplementary Materials).
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from the unloaded bipyAr2 (Figure S15). Two sets of broad singlets at −4.45 and −4.54 ppm, 
corresponding to the DABCO protons, confirmed that DABCO acted as a hinge between 
the two different zinc porphyrins, 1 and 4. The 1H NMR shifts, thus, clearly confirmed 
formation of ROT-1a as a hetero-sandwich structure. 1H-1H COSY, ESI-MS, and elemental 
analysis further supported the assignment. 

After the addition of one further equivalent of [Cu(CH3CN)4](PF6) to ROT-1a, the 
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To prepare the prerotor ROT-1a = [Cu(1)(4)(DABCO)]+ (Figure 3), rotator 1 was mixed
with stator 4, DABCO and [Cu(CH3CN)4](PF6) (1:1:1:1) in CD2Cl2. The 1H NMR displayed
two singlets (1:1 ratio) for protons of the bipyridine–mesityl unit, e.g., for 9-H at 7.01 and
6.92 ppm and 16-H at 2.38 and 2.33 ppm (Figure 3a). All bipyridine protons (3-H, 4-H, 5-H,
6-H, 7-H and 8-H) showed up as two sets of signals (1:1 ratio) as well. For protons [3/8]-H,
the downfield-shifted set of signals corresponded to that of the coordinated bipyridine
station, i.e., Npy → [Cu(bipyAr2)]+, while the upfield signals originated from the unloaded
bipyAr2 (Figure S15). Two sets of broad singlets at −4.45 and −4.54 ppm, corresponding
to the DABCO protons, confirmed that DABCO acted as a hinge between the two different
zinc porphyrins, 1 and 4. The 1H NMR shifts, thus, clearly confirmed formation of ROT-1a
as a hetero-sandwich structure. 1H-1H COSY, ESI-MS, and elemental analysis further
supported the assignment.
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complexed bipyridine (9c-H, 16c-H) are different from those that belong to the unloaded bipyridine (9u-H, 16u-H) and the
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After the addition of one further equivalent of [Cu(CH3CN)4](PF6) to ROT-1a, the re-
sulting ROT-1a’ = [Cu2(1)(4)(DABCO)]2+ exhibited averaged signals for protons 9-H and
16-H (Figure 3b), as well as for all other bipyridine protons (Figure S17). Eventually the
1H-DOSY corroborated ROT-1a’ as a single species in solution (Figure S39). The dynamic
behavior in the nanorotor was monitored by variable temperature (VT) 1H NMR, in the
range from 25 to −75 ◦C in CD2Cl2 (Figure 3c). During cooling, the signal of proton
16-H transformed from a sharp singlet at 25 ◦C (2.34 ppm) to a broad singlet at −25 ◦C
(2.31 ppm) and then split into two singlets at −40 ◦C (2.32 and 2.27 ppm). These two sin-
glets were assigned to the copper(I)-loaded bipyridine stations that were either connected
to the pyridine terminal or not. The rotational frequency of the rotor was determined by
simulation of the proton 16-H signal, using the WinD-NMR (Department of Chemistry,
University of Wisconsin, Madison, WI, USA) software to k298 = 3.5 × 104 Hz at 25 ◦C and
the corresponding free energy activation barrier to ∆G‡

298 = 47.1 kJ mol−1 (Figure S32).
Preparation of the prerotors ROT-1b = [Cu(1)(5)(DABCO)]+, ROT-2 = [Cu(2)(4)(DABCO)]+

and ROT-3 = [Cu(3)(4)(DABCO)]+ were accomplished in a similar manner as that of
ROT-1a. Addition of one equiv of [Cu(CH3CN)4]PF6 to ROT-1b, ROT-2 or ROT-3 afforded
rotors ROT-1b’ = [Cu2(1)(5)(DABCO)]2+, ROT-2′ = [Cu2(2)(4)(DABCO)]2+ and ROT-3′ =
[Cu2(3)(4)(DABCO)]2+, respectively. Analysis of the VT 1H NMR (Figures S31–S38) re-
vealed an exchange frequency at 298 K of k298 = 2.0 × 104 Hz and activation free energy
barrier ∆G‡

298 = 48.6 kJ mol−1 for ROT-1b’; k298 = 8.4 × 105 Hz, ∆G‡
298 = 39.2 kJ mol−1

for ROT-2′; and k298 = 7.7 × 104 Hz, ∆G‡
298 = 45.2 kJ mol−1 for ROT-3′. The rotational

frequencies of the nanorotors showed significant differences (Table 2).

Table 2. Experimental rotational frequency and activation barriers at 25 ◦C, as calculated from VT
1H NMR.

Nanorotor 4-X ∆G‡298 (kJ mol−1) k298 (Hz) log k

ROT-1a’ 4-OMe 47.1 3.5 × 104 4.55
ROT-1b’ 4-OMe 48.6 2.0 × 104 4.30
ROT-2′ 4-NO2 39.2 8.4 × 105 5.93
ROT-3′ 4-H 45.2 7.7 × 104 4.88

4. Discussion
4.1. Bipyridine vs. Phenanthroline Stator in Nanorotors

By comparing ROT-1a’ with ROT-1b’, the rotational frequency difference between
bipyridine stator and phenanthroline stator turned out to be rather small (k298 of ROT-1a’



Chemistry 2021, 3 122

and ROT-1b’ = 3.5 × 104 Hz and 2.0 × 104 Hz, respectively). The coalescence temper-
ature of ROT-1a’ and ROT-1b’ in the VT 1H-NMR was also located in the same range,
around −25 ◦C. The similar binding constant of C2 and C6 is in full agreement with
the kinetic finding.

The minor rate difference between the two rotors suggests that it is mainly the pyridine
→ copper(I) interaction that matters in the rate-determining step. As one would expect
on the basis of the higher flexibility of the bipyridine ligand, ROT-1a’ (bipyridine station)
rotates a little bit faster than ROT-1b’. We assume that the bipyridine ligand is more apt to
adjust to the distortions at the chelate binding site in the transition state [42,43].

4.2. Hammett Equation Applies to Rotational Exchange in Nanorotors

The plot of the nanorotors’ rotational frequency log k/kH and of ∆G‡
298 of ROT-1a’,

ROT-2′ and ROT-3′ against σp revealed a linear correlation (Figure 4a), indicating that
the electronic effect of the para-substituent is the major contributing factor in the rate-
determining step and that other effects are negligible. Due to the aforementioned linear
relationship between log K/KH of complex formation for C1, C2 and C3 and σp, a linear
free energy relationship (LFER) between thermodynamic and kinetic data was established
(Figure 4b), suggesting that the Hammett equation can directly be used for predicting the
rotational frequency in nanorotors with other para-substituents.

log k/kH = 0.27 σp + 1.00 (R2 = 0.9997) (3)

∆G‡
298 (kJ mol−1) = −7.59 σp + 45.12 (R2 = 0.9997) (4)

log k298 = −0.84 log K + 8.39 (R2 = 0.9964) (5)
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One therefore expects that substituents like 4-NMe2 (σp = −0.600) and 4-NMe3
+

(σp = 0.860) would result in extreme cases of the rotational frequency. By using the
correlation log k298 = 1.33 σp + 4.89 (Figure S62) for the rotor with the rotator head 4-
NMe2, we would expect log k298 = 4.09, k298 = 1.2 × 104 s−1 and ∆G‡

298 = 51.7 kJ mol−1,
whereas, for that with rotator head 4-NMe3

+, the expected kinetic data are log k298 = 6.03,
k298 = 1.1 × 106 s−1 and ∆G‡

298 = 38.6 kJ mol−1.

5. Conclusions

In conclusion, we herein presented a small series of four-component nanorotors for
evaluating conformational and electronic effects on their rotational exchange frequency.
Whereas the effect of higher flexibility at the bipyridine vs. phenanthroline binding site in
the stator was rather small (less than a factor of 2), the variation of the electronic character
of substituents in the para-position of the pyridine head group in the rotator led to distinct
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differences in rotational speed (almost 25-fold). The rotational speed, as well as the Gibbs
free activation energy, shows excellent linear correlation with the Hammett substituent
constant. Based on the Hammett equation, the rotational frequency of any analogously
substituted nanorotor can be predicted, resulting in a 100-fold change of the exchange
frequency (from -NMe2 to -NMe3

+). Since the exchange frequency of this type of four-
component rotor is correlated with the rate of click catalysis, as established recently [37],
one should be able to more extensively test the concept that rotating catalytic machinery
shows reduced product inhibition at higher machine speed.
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