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Abstract: The synthesis, crystal structure, and magnetic characterization are reported for three new struc-
turally related iron(III) compounds (NHEt3)[Fe8O5(OH)5(O2PPh2)10] (1), [Fe12 Ca4O10(O2CPh)10(hmp)4]
(2), and [Fe12La4O10(OH)4(tbb)24] (3), where hmpH is 2-(hydroxymethyl)pyridine and tbbH is 4-
tBu-benzoic acid. 1 was obtained from the reaction of Fe(NO3)3·9H2O, diphenylphosphinic acid
(Ph2PO2H), and NEt3 in a 1:4:16 molar ratio in MeCN at 50 ◦C; 2 was obtained from the reaction of
[Fe3O(O2CPh)6(H2O)3](NO3), Ca(NO3)2, and NEt3 in a 1:1:4:2 ratio at 130 ◦C; and 3 was obtained
from the reaction of Fe(NO3)3·9H2O, La(NO3)3·6H2O, 4-tBu-benzoic acid, and NEt3 in a 1:1:4:4 ratio
in PhCN at 140 ◦C. The core of 1 consists of two {Fe4(µ3-O)2}8+ butterfly units stacked on top of each
other and bridged by O2− and HO− ions. The cores of 2 and 3 also contain two stacked butterfly units,
plus four additional Fe atoms, two at each end, and four M atoms (M = Ca2+ (2); La3+ (3)) on the sides.
Variable-temperature (T) and solid-state dc and ac magnetization (M) data collected in the 1.8–300 K
range revealed that 1 has an S = 0 ground state, 2 has a χMT value at low T consistent with the central
Fe8 in a local S = 0 ground state and the two Fe3+ ions in each end-pair to be non-interacting, whereas
3 has a χMT value at low T consistent with these end-pairs each being ferromagnetically coupled with
S = 5 ground states, plus intermolecular ferromagnetic interactions. These conclusions were reached
from complementing the experimental studies with the calculation of the various Fe2 pairwise Jij

exchange couplings by DFT computations and by using a magnetostructural correlation (MSC) for
polynuclear Fe3+/O complexes, as well as a structural analysis of the intermolecular contacts in the
crystal packing of 3.

Keywords: iron-oxo clusters; molecular magnetism; pseudo-carboxylates; exchange interactions;
density functional theory; magnetostructural correlation

1. Introduction

The chemistry of Fe3+/oxo complexes attracts considerable attention owing to its
relevance to a wide range of areas including molecular magnetism [1], bioinorganic chem-
istry [2], catalysis [3,4], and materials science. Many Fe3+/oxo/carboxylate complexes
spanning various nuclearities have been synthesized over the years from Fe2 [5–11] up to
hexameric [Fe28]6 nanocages [12,13]. Dinuclear Fe3+ complexes serve as model systems to
understand magnetic exchange couplings via magnetostructural correlations (MSCs) and
as synthetic analogues of di-iron biomolecules such as ribonucleotide reductase [14–16],
methane monooxygenase [14,15,17–20], hemerythrin [21–23], and others [24–26]. Higher
nuclearity Fe3+/oxo clusters are highly desired and very useful for studies of interesting
magnetic effects such as spin frustration, and even as models of intermediates in the growth
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of nanoscale Fe3+/O/OH units within the ferritin Fe storage protein [27–35]. The high
charge and Lewis acidity of Fe3+ strongly favor the formation of oxide bridges from water
molecules and thus higher-nuclearity clusters [27,36,37], and these have been of particular
interest within the field of molecular magnetism since spin frustration often leads to a
significant ground state spin value [28,38,39] and even single-molecule magnetism. Thus,
there is continuing interest in Fe3+/oxo cluster chemistry.

Our work in this area has concentrated on carboxylates, either alone or in conjunction with
chelating/bridging groups, and has led to clusters such as, e.g., [Fe18(pd)12(pdH)12(O2CPh)6
(NO3)6]6+ (pdH2 = propane-1,3-diol) [40], which is the largest single-stranded homometallic
iron wheel and [Fe22O14(OH)3(O2CMe)21(mda)6]2+ (mdaH = N-(methyl)diethanolamine)
salts. [27] We have also extended our work to various ‘pseudo-carboxylates’, anionic groups
that can bridge metals in a manner analogous to that of carboxylates but with differing
electronic and/or steric properties. Their general formula is [RxYOy]z−, where Y = P, As,
S, or Se, x = 1 or 2, y = 2 or 3, and z = 1 or 2, and examples include diphenylphosphinate
(Ph2PO2–), benzenesulfonate (PhSO3–), benzeneseleninate (PhSeO2–), and dimethylarsinate
(Me2AsO2–) groups. In previous work, we have explored such ligands extensively in Mn/O
cluster chemistry [41–47], but related application in Fe/O chemistry has been limited to
date [48–52]. Therefore, we have employed diphenylphosphinic acid (Ph2PO2H) [53] in the
present work.

In addition to the ligand type, we have also explored some reactions that contain a
heterometal salt and have chosen diamagnetic La3+ and Ca2+ for preliminary study for
the following reasons: (i) The number of known Fe-lanthanide (Ln) clusters is currently
limited and includes Fe12Ln4, Fe14Gd12, Fe13La6, Fe22La6, Fe29M16, and Fe33M12 (M = Y,
Gd) [54–58]; and (ii) given our past interest in the Mn4Ca/oxo cluster that is part of
the oxygen-evolving complex (OEC) in the photosynthetic apparatus of green plants
and cyanobacteria [59–61], we have found it interesting that the alkaline phosphatase
from P. fluorescens, PhoX, consists of an Fe2Ca/oxo cluster with two additional Ca2+ ions
nearby [62–65]. There are only a few Fe/Ca/oxo clusters in the literature, including
moderate nuclearity examples: Fe2Ca, and two Fe3Ca clusters with differing oxidation
states [64,66,67], and higher-nuclearity Fe14Ca12 [68] and Fe9Ca2 [69].

A variety of reactions were explored involving different permutations of the above
ligand types and metal compositions, as well as metal:ligand and Fe:La(Ca) ratios, reaction
temperature, and the additional presence of a chelate such as 2-(hydroxymethyl)pyridine
(hmpH). Among the products that could be isolated in pure form and structurally character-
ized, we noted that three of them are structurally related, in that they all contain the same
{Fe8(oxo)10} core unit either alone or as a fragment of a larger core unit, consisting of two
butterfly units [28] stacked on top of each other and linked by six additional O2−/HO− ions.
These clusters were (NHEt3)[Fe8O5(OH)5(O2PPh2)10] (1), [Fe12Ca4O10(O2CPh)10(hmp)4]
(2), and [Fe12La4O10(OH)4(tbb)24] (3), where tbbH is 4-tBu-benzoic acid. We herein describe
the syntheses and structures of 1–3, together with a detailed analysis of their magnetic
properties using experimental magnetic susceptibility studies, density functional theory
(DFT), and magnetostructural correlation (MSC) methods.

2. Materials and Methods
2.1. Synthesis

All manipulations were performed under aerobic conditions using chemicals as re-
ceived. [Fe3O(O2CPh)6(H2O)3](NO3) was prepared as described elsewhere [70]. Abbrevia-
tions: hmpH = 2-(hydroxymethyl)pyridine; tbbH = 4-tBu-benzoic acid.

2.1.1. (NHEt3)[Fe8O5(OH)5(O2PPh2)10] (1)

To a stirred solution of NEt3 (1.11 mL, 8.00 mmol) and Ph2PO2H (0.436 g, 2.00 mmol)
in warm (~50 ◦C), MeCN (20 mL) was added, Fe(NO3)·9H2O (0.20 g, 0.50 mmol), resulting
in an orange suspension. After stirring for 2 h, the reaction was filtered, the resulting orange
solid was discarded, and the filtrate was capped and maintained undisturbed at ambient
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temperature. After 1 week, the closed cap was replaced with a slow evaporation cap. Well-
formed X-ray quality orange crystals of 1·7MeCN grew over 12 days. These were collected
by filtration, washed with Et2O, and dried under vacuum; the yield was ~9% based on Fe.
Selected IR data (KBr pellet, cm−1): 3439(w), 1592(w), 1484(m), 1437(m), 1400(m), 1385(m),
1311(w), 1127(s) 1044(s), 1022(s), 996(s), 925(w), 754(s), 727(s), 693(s), 558(s), 532(s), 471(m),
413(m). Elemental analysis: Calc (Found) for 1· 12 MeCN (C127H122.5N1.5Fe8P10O30): C 52.49
(51.95), H 4.25 (4.32), N 0.72 (0.85)%.

2.1.2. [Fe12Ca4O10(O2CPh)20(hmp)4] (2)

To a stirred solution of Ca(NO3)2·4H2O (0.030 g, 0.125 mmol), hmpH (0.055 g, 0.50 mmol)
and NEt3 (0.350 mL, 0.25 mmol) in MeCN/MeOH (11 mL; 10:1 v/v) was added as a solid
[Fe3O(O2CPh)6(H2O)3](NO3) (0.13 g, 0.125 mmol), resulting in a brown slurry. The mixture
was heated in a microwave reactor for 20 min at 130 ◦C, and the resulting dark red solution
was filtered, and the filtrate was left undisturbed at ambient temperature. After 3–5 days,
X-ray quality red block crystals of 2·(solv) had formed. These were collected by filtration,
washed with MeCN and Et2O, and dried under vacuum; the yield was ~10% based on
Fe. Selected IR data (KBr, cm−1): 3422(br), 2934(w), 1601(s), 1545(s), 1405(vs), 1069(m),
1047(m), 764(w), 718(s), 678(m), 578(w), 464(m). Elemental analysis: Calc (Found) for
2·2H2O (C164H128N4Ca4Fe12O56): C 50.75 (50.47), H 3.32 (3.37), N 1.44 (1.49)%.

2.1.3. [Fe12La4O10(OH)4(tbb)24] (3)

Method A. To a stirred colourless solution of (tbbH) (0.71 g, 4.0 mmol) in benzonitrile
(PhCN) (10 mL) in a microwave reaction vial was added NEt3 (0.56 mL, 4.0 mmol) followed
by Fe(NO3)3·9H2O (0.40, 1.0 mmol) and La(NO3)3·6H2O (0.43, 1.0 mmol) was added,
resulting in a brown solution. This was stirred for a further 5 min at room temperature
and then the vial was sealed and heated at 140 ◦C in a microwave reactor for 1 h. After
cooling to room temperature, the vial was removed from the microwave reactor, and the
obtained near-black solution was mixed with CH2Cl2 (5 mL) and then filtered to remove any
undissolved solids. The filtrate was layered with MeCN and left undisturbed in a sealed
vial at ambient temperature for 3 days, during which time orange-red crystals of 3·5PhCN
had formed. These were collected by filtration, washed with Me2CO, and dried under
vacuum; the yield was ~15% based on Fe. Selected IR data (KBr, cm−1): 3422(br), 2362(m),
2336(m), 1611(w), 1592(m), 1534(m), 1412(br), 784(m), 711(m), 590(m), 543(m), 468(m),
427(m). Elemental analysis: Calc. (Found) for 3·5PhCN·2H2O (C299H345N5Fe12La4O64): C,
57.38 (57.13); H, 5.56 (5.37); N, 1.12 (0.91)%.

Method B. The above procedure was repeated in MeCN (15 mL) as a solvent instead of
PhCN. After cooling the microwave reaction vial to ambient temperature, a yellow-orange
precipitate was collected by filtration and washed with MeCN. It was dissolved in CH2Cl2
(10 mL) and layered with an equal volume of EtOH. After two days, X-ray quality orange-
red crystals had grown, and these were collected by filtration, washed with Me2CO, and
dried under vacuum. The product was confirmed to be 3 by infrared spectral comparison
with the product from Method A. The yield was ~45% based on Fe. Elemental analysis:
Calc. (Found) for 3·4H2O (C264H324O66Fe12La4): C, 54.87 (54.95); H, 5.65 (5.73); N, 0.00
(0.0)%.

2.2. X-ray Crystallography

Single-crystal X-ray data were collected at 100 K on a Bruker Dual micro source D8
Venture diffractometer and PHOTON III detector running APEX4 software package of
programs and using MoKα radiation (λ = 0.71073 Å). The data frames were integrated,
multi-scan scaling was applied, and the intrinsic phasing structure solution provided all
the non-H atoms. The structures were refined using full-matrix least-squares cycles [71].
Non-H atoms were refined with anisotropic displacement parameters, and all H atoms
were placed in calculated, idealized positions and refined riding on their parent atoms.
The refinements were carried out on F2 by minimizing the wR2 function; R1 is calculated
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to provide a reference to the conventional R value but its function was not minimized
(Table 1).

Table 1. Crystal data and structural refinement parameters for 1–3.

1 2 3

Formula a C126H115Fe8NO30.50P10 C163.6H122.4Fe12Ca4N3.6O55.6 C161.76H177.25Fe6La2N4.25O31
Fw, g/mol 2887.68 3858.76 3289.74

Crystal

system
Orthorhombic Monoclinic Triclinic

Space group Pbca P21/c P1
a, Å 25.7321(8) 18.4877(16) 19.6897(9)
b, Å 29.8328(9) 23.1092(19) 21.5274(10)
c, Å 37.9740(12) 23.7055(19) 24.0099(11)
α, ◦ 90 90 97.3530(10)
β, ◦ 90 112.917(2) 111.5360(10)
γ, ◦ 90 90 115.5490(10)

Volume, Å3 29,151.1(16) 9328.4(13) 8028.5(6)
Z 8 2 2

T, K 100(2) 100(2) 100(2)
λ, Å a 0.71073 0.71073 0.71073

ρcalc, Mg/m3 1.316 1.374 1.361
R1

b, d 4.49 5.89 4.72
wR2

c, e 9.90 15.00 11.52
a solvent molecules not included. b Graphite monochromator. c I > 2σ(I). d R1 = Σ(||Fo| − |Fc||)/Σ|Fo|.
e wR2 = [Σ[w(Fo

2 − Fc
2)2]/Σ[w(Fo

2)2]]1/2 where w = 1/[σ2(Fo
2) + (m × p)2 + n × p], p = [max(Fo

2,0)+ 2 × Fc
2]/3,

and m & n are constants.

For 1·7MeCN, the asymmetric unit consists of a complete Fe8 cluster anion, one
NHEt3

+ cation, and seven MeCN solvent molecules disordered over 9 positions. The
cluster has one disordered phenyl ring and was refined in two parts; partial H2O solvent
molecules accompany the disorder. The solvent molecules were too disordered to be
properly refined, and thus the program SQUEEZE/PLATON [72,73] was applied to remove
the solvent contribution to the total diffraction intensity of 5728 Å3 and 1312 electrons per
cell. Five hydroxyl protons were obtained from a Difference Fourier map and refined freely,
H5, H6, H7, H8 and H111. In the final cycle of refinement, 50,378 reflections (of which
35,688 are observed with I > 2σ(I)) were used to refine 1646 parameters, and the resulting
R1, wR2, and S (goodness of fit) were 4.49%, 9.90%, and 1.015, respectively.

For 2·(solv), the asymmetric unit consists of a half Fe12Ca4 cluster located on an
inversion center and a mixture of disordered MeCN and MeOH solvent molecules ac-
counting for the removal of 254 electrons per cell and a total void of 1256 Å3. The cluster
exhibits a disorder over three iron centers where part one has two coordinated two 2-
hydroxymethylpyridine and benzoate ligands and partial methanol and acetonitrile sol-
vent molecules. In the final cycle of refinement, 21,402 reflections (of which 17,520 are
observed with I > 2σ(I)) were used to refine 868 parameters, and the resulting R1, wR2, and
S (goodness of fit) were 5.89%, 15.00%, and 1.107, respectively.

For 3·5PhCN, the asymmetric unit consists of a half Fe12La4 cluster lying on an
inversion center and three PhCN molecules. Most of the cluster ligands and two of the
PhCN molecules are disordered to various degrees, and each was refined in two positions.
The third PhCN was present at only 50% occupancy, giving a total of 5 PhCN per cluster.
In the final cycle of refinement, 28,232 reflections (of which 23,130 are observed with
I > 2σ(I)) were used to refine 1825 parameters and the resulting R1, wR2, and S (goodness
of fit) were 4.72%, 11.52%, and 1.090, respectively.
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2.3. Physical Measurements

Infrared spectra in the 400–4000 cm−1 range were recorded in the solid state (KBr
pellets) using a Nicolet iS5 FTIR spectrometer. Elemental analyses (C, H, and N) were
performed by Atlantic Microlabs in Norcross, GA, USA. Metal oxidation states were
determined from bond valence sum (BVS) calculations [74,75]. Variable temperature dc and
ac magnetic susceptibility data were collected on vacuum-dried samples using a Quantum
Design MPMS-XL superconducting quantum interference device (SQUID) magnetometer,
capable of operating with applied dc fields up to 7 T. Microcrystalline samples were
restrained in solid eicosane to prevent torquing. Dc magnetic susceptibility data were
collected under a constant 0.1 T applied field in the 5.0–300 K temperature range. Ac
magnetic susceptibility studies were performed using a 3.5 G applied ac field in frequencies
up to 1000 Hz and in the 1.8–15 K range. Pascal’s constants were used to estimate the
diamagnetic correction, and eicosane and gel capsule contributions were measured as a
blank. These values were subtracted from the experimental susceptibility to provide the
molar paramagnetic susceptibility (χM) [76].

2.4. Theoretical Calculations

DFT calculations on Fe12La4 complex 3 were performed using the crystal structure
coordinates. A total of 24 distinct Jij nearest-neighbour exchange couplings were deter-
mined from DFT calculations by mapping broken-symmetry solutions to Ising-type spin
configurations, {S}. The employed configurations were one high spin (all spins parallel),
all 12 possible single-spin inversions, and all 24 nearest-neighbor two-spin inversions,
giving a total of 37 broken-symmetry solutions. The energies of these configurations are
expressed in terms of a sum over spin interactions (Equation (1)), where 〈ij〉 stands for all
neighbouring ij pairs, Sk = ±5/2 for Fe3+, and E0 is a constant introduced to match the spin
model with the DFT energies.

E({S}) = E0 − 2∑
〈ij〉

JijSi·Sj (1)

The energies of all configurations {S} resulting from the broken spin-symmetry DFT
calculations were used as the l.h.s. of Equation (1) to perform a linear fit and determine all
the exchange couplings, Jij. This same approach has been successfully used in the literature
to determine exchange couplings in multicenter transition metal complexes [77–81]. In
our case, the R2 coefficient of the linear regression differs from 1 by less than 10−6, indi-
cating that the magnetization is well localized at the magnetic centers, thus the broken
spin-symmetry DFT solutions are reliable representations of the Ising-type model spin
configurations. For all cases, the atomic spin populations of the DFT calculations are
consistent with the expected broken spin-symmetry configurations.

In all DFT calculations, the hybrid Perdew–Burke–Ernzerhof (PBEh) density func-
tional approximation, an admixture of exactly 25% (Hartree-Fock-type) exchange and
75% PBE exchange, is known to perform well for magnetic exchange couplings [82], and
thus was employed. An RMS error of approximately 10%, was determined for the par-
ticular case of oxo-bridged Fe2 couplings, as shown for a set of eleven dinuclear Fe3+

complexes [83]. Pople’s all-electron 6-311+G** basis was used for Fe atoms, 6-31G** for
lighter elements [84–86], and the segmented all-electron relativistically contracted SARC-
DKH2 basis for La atoms [87]. In all calculations, scalar relativistic effects were included
through the second-order Douglass–Kroll–Hess approximation [88–90]. An in-house ver-
sion of the Gaussian 16 program [91] was used for all broken-symmetry DFT energies
obtained, which allowed for spin inversions of the individual magnetic centers to produce a
suitable initial guess for self-consistent broken spin-symmetry calculations. No point group
symmetry was assumed at any point in the model or the DFT calculations. Self-consistency
convergence thresholds of 10−6 Ha = 0.2 cm−1 in the energy and 10−8 in the RMS changes
in the density matrix were used in all calculations.
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3. Results
3.1. Synthesis

As stated in the introduction, many reactions were explored involving different permu-
tations of metal sources, ligands, and other reaction parameters. Complexes 1–3 were ob-
tained from overall similar reaction systems that nevertheless had some distinct differences:
the FeIII source was either Fe(NO3)3 or the preformed trinuclear [Fe3O(O2CPh)6(H2O)3]+

cluster; the peripheral ligands were either carboxylates or pseudo-carboxylate Ph2PO2
−

groups; the reactions were homo- or heterometallic; the chelate hmpH was either included
or not; the solvents were MeCN, MeCN/MeOH, or PhCN; and the reactions were carried
out in the 50–140 ◦C range under thermal or microwave heating. The overall unifying
theme is that 1–3 all contain the same central Fe8 unit. The yields were generally low
(~10%), but through crystallographic identification of 3 we were able to then devise a
rational synthesis that greatly increased the yield to ~45%.

3.2. Description of Structures

Complex 1 crystallizes in the orthorhombic space group Pbca with the asymmetric
unit containing the complete Fe8 anion. The structure of the latter and its labeled core are
shown in Figure 1; a stereopair is provided in Figure S1 (Supplementary Materials). The
core consists of two {Fe4(µ3-O)2}8+ butterfly units, common structural units in Fe4 cluster
chemistry [28,92–100], stacked on top of each other and bridged by one O2− and five HO−

ions. The octahedral FeIII oxidation states (Table S1, Supplementary Materials) and the
protonation level of core O atoms (Table 2) were confirmed by Fe and O bond valence
sum (BVS) calculations, respectively [74,75]; BVS values for all core and ligand O atoms
are listed in Table S2. The BVS of O2− ion O112 is 1.55, lower than expected because it is
involved in a hydrogen-bond with the NHEt3

+ cation (O112···H-N = 2.807(3)Å), akin to a
‘partial-protonation’. Peripheral ligation about the {Fe8O5(OH)5}9+ core is provided by ten
η1:η1:µ2-PhPO2

− groups, and the complete cation has virtual D2h symmetry, ignoring the
disorder and rotation positions of the Ph rings.

Table 2. BVS values and assignments for core O atoms of the anion of 1 and 3.

Complex Atom BVS Assignment a

1 O1 1.86 O2−

O2 1.86 O2−

O3 1.87 O2−

O4 1.91 O2−

O5 0.98 OH−

O6 1.00 OH−

O7 1.02 OH−

O8 0.81 OH−

O111 1.24 OH−

O112 1.55 b O2− b

3 O1 1.72 O2−

O2 1.73 O2−

O3 1.83 O2−

O4 2.07 O2−

O5 1.14 OH−

O6 2.01 O2−

O7 1.15 OH−
a Non-, singly, and doubly protonated O atoms have typical BVS values of ~1.8 to 2.0, ~0.9 to 1.2, and ~0.2 to 0.4,
although H-bonding can affect the ranges. b Decreased from a typical O2− value due to hydrogen-bonding with
the NHEt3

+ cation.
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Figure 1. (top) Complete structure of the anion of 1 from a viewpoint parallel to the stacking axis of 
the two Fe4 butterfly units. H atoms are omitted for clarity. (bottom) Labeled {Fe8O5(OH)5}8+ core 
from a viewpoint nearly perpendicular to the stacking axis. Colour code: Fe3+ light green, P orange, 
O red, HO− purple, C grey. 

Complex 2 crystallizes in the monoclinic space group P21/c with the asymmetric unit 
containing half the Fe12Ca4 cluster. The structure (without aromatic rings for clarity) from 
two viewpoints and the partially labeled core are shown in Figure 2; a stereopair of the 
complete molecule is provided in Figure S2. Additionally, 2 contains the same core of two 
stacked butterfly units as seen in the anion of 1, but now all its inter-butterfly bridging 
ions are O2− (i.e., {Fe8O10}4+) because they are attached to additional metal ions: (i) on each 
end is an attached {Fe2(µ3-OR)2} unit forming an {Fe4O2(µ3-OR)2} cubane, where RO− is the 
alkoxide arm of an hmp− N,O chelate; and (ii) on each side two seven-coordinate pentag-
onal bipyramidal Ca2+ ions are attached, each of them connecting to a cubane µ3-O2− ion, 
making them µ4, and to one of the central µ2-O2− ions bridging two butterfly units, making 
it a µ4-O2− that bridges two Ca2+ ions. Fe and O BVS calculations were again used to con-
firm FeIII oxidation states and non-protonated core O2− ions (Table S3). Peripheral ligation 
is by 4 η1:η3:µ4-hmp−, 12 η1:η1:µ2-PhCO2−, and 8 η1:η2:µ3-PhCO2− groups, the latter provid-
ing further linkages between the central {Fe8O10}4+ unit and the Ca2+ ions. Four of the 

Figure 1. (top) Complete structure of the anion of 1 from a viewpoint parallel to the stacking axis of
the two Fe4 butterfly units. H atoms are omitted for clarity. (bottom) Labeled {Fe8O5(OH)5}8+ core
from a viewpoint nearly perpendicular to the stacking axis. Colour code: Fe3+ light green, P orange,
O red, HO− purple, C grey.

Complex 2 crystallizes in the monoclinic space group P21/c with the asymmetric unit
containing half the Fe12Ca4 cluster. The structure (without aromatic rings for clarity) from
two viewpoints and the partially labeled core are shown in Figure 2; a stereopair of the
complete molecule is provided in Figure S2. Additionally, 2 contains the same core of two
stacked butterfly units as seen in the anion of 1, but now all its inter-butterfly bridging ions
are O2− (i.e., {Fe8O10}4+) because they are attached to additional metal ions: (i) on each
end is an attached {Fe2(µ3-OR)2} unit forming an {Fe4O2(µ3-OR)2} cubane, where RO−

is the alkoxide arm of an hmp− N,O chelate; and (ii) on each side two seven-coordinate
pentagonal bipyramidal Ca2+ ions are attached, each of them connecting to a cubane µ3-
O2− ion, making them µ4, and to one of the central µ2-O2− ions bridging two butterfly
units, making it a µ4-O2− that bridges two Ca2+ ions. Fe and O BVS calculations were
again used to confirm FeIII oxidation states and non-protonated core O2− ions (Table S3).
Peripheral ligation is by 4 η1:η3:µ4-hmp−, 12 η1:η1:µ2-PhCO2

−, and 8 η1:η2:µ3-PhCO2
−

groups, the latter providing further linkages between the central {Fe8O10}4+ unit and the
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Ca2+ ions. Four of the η1:η2:µ3-PhCO2
− groups bridge FeCa pairs, two bridge the butterfly

‘body’ Fe2 pairs, and two bridge Ca2 pairs.
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Complex 3 crystallizes in the triclinic space group P1 with the asymmetric unit con-
taining half the Fe12La4 cluster. The structure (without 4-tBu-Ph groups for clarity) from
two viewpoints and the partially labeled core is shown in Figure 3; a stereopair of the



Chemistry 2023, 5 1607

complete molecule is provided in Figure S2. Furthermore, 3 contains the same core of
two stacked butterfly units as seen in 2 and the anion of 1, and its overall structure is
similar to that of 2 except for the following: (i) four nine-coordinate tricapped trigonal
prismatic La3+ ions have replaced the four Ca2+; and (ii) the cubanes at each end are now
{Fe4O2(µ3-OH)2} with an η1:η1:µ2-RCO2

−, instead of the two chelating/bridging hmp−

groups. FeIII oxidation states and protonation levels of core O2−/HO− ions were again
confirmed by BVS calculations (Table 2 and Table S4). Peripheral ligation is by 14 η1:η1:µ2-
tBuPhO2

−, 8 η1:η2:µ3-tBuPhO2
−, and 2 η1:η2:µ2-tBuPhO2

− groups, which are disposed as
for 2, except that owing to the higher coordination number of La3+ vs. Ca2+, the La2 pairs
on each side are now each bridged by two carboxylates, one η1:η1:µ2-tBuPhO2

− and the
other η1:η2:µ3-tBuPhO2

−.
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Figure 3. Partial structure of 3 from viewpoints parallel (top) and perpendicular (middle) to the
stacking axis. H atoms and aromatic rings are omitted for clarity. (bottom) Partially labeled half of
the core emphasizing the means of attachment of the end Fe2 unit and La3+ ions. Color code: Fe3+

light green, La3+ magenta, O red, HO− purple, and C grey.

The degree of similarity between the Fe8 core of 1 and those within the cores of 2 and
3 was assessed by carrying out root-mean-square-difference (RMSD) calculations for the
cores of 1 vs. 2 and 1 vs. 3. The results are listed in Tables S5 and S6, respectively, and
shown pictorially in Figure 4. The RMSD values are only 0.096 and 0.109 Å, respectively,
and the overall conclusion is therefore that the Fe8 units within the three compounds are
essentially superimposable.
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3.3. SQUID Magnetometry
3.3.1. Dc Magnetic Susceptibility Studies

Solid-state, variable-temperature dc magnetic susceptibility (χM) data were collected
on vacuum-dried microcrystalline samples of 1· 12 MeCN, 2·2H2O and 3·4H2O, restrained
in eicosane to prevent torquing, in a 1.0 kG (0.10 T) magnetic field and a 5.0 to 300 K
temperature range. The data are plotted as χMT vs. T in Figure 5.
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(�), 2·2H2O (�), and 3·4H2O (�).

For 1· 12 MeCN, χMT decreases monotonically and near-linearly from 8.57 cm3 K mol−1

at 300 K to 0.22 cm3 K mol−1 at 5.0 K. The 300 K value is much lower than the spin-only
(g = 2.0) value of 35.0 cm3 K mol−1 for eight non-interacting Fe3+ ions (S = 5/2) indicates
strong antiferromagnetic (AF) interactions within the cluster, and the 5.0 K value and plot
profile indicate an S = 0 ground state.

For 2·2H2O, χMT decreases from 20.23 cm3 K mol−1 at 300 K to a minimum of
15.09 cm3 K mol−1 at 65 K and then increases to a maximum of 16.68 cm3 K mol−1 at
8.0 K before a final slight decrease to 16.31 cm3 K mol−1 at 5.0 K (Figure 5). The 300 K
value is again much smaller than the spin-only value for twelve non-interacting Fe3+ ions
of 52.50 cm3 K mol−1 indicating strong AF interactions. Given the structural similarity
between the three clusters, it is reasonable to propose that 2 consists of a strongly AF central
Fe8 unit with an S = 0 local ground state, as seen for the anion of 1, and a Fe2 pair at each
end that is responsible for the observed χMT at the lowest temperatures. Entertaining
this possibility further, the 16.68 cm3 K mol−1 at 8.0 K would be consistent with four non-
interacting Fe3+ ions (spin-only χMT = 17.5 cm3 K mol−1), suggesting little or no interaction
within each Fe2 pair. This possibility will be assessed further below (vide infra).

For 3·4H2O, χMT decreases from 20.11 cm3 K mol−1 at 300 K to a minimum of
18.71 cm3 K mol−1 at 150 K and then increases to a maximum of 39.01 cm3 K mol−1 at 8.0 K
before a final drop to 38.59 cm3 K mol−1 at 5.0 K (Figure 5). The 300 K value is similar to
that for 2·2H2O, and indeed the χMT vs. T profiles of the two complexes are somewhat
similar except that χMT for 3·4H2O increases to much higher values at the lowest T. Based
on the proposed explanation for the χMT vs. T profile for 2·2H2O, we suggest that the
coupling within the Fe2 pairs at each end is now ferromagnetic (F), leading to each Fe2
having an S = 5 ground state. However, the spin-only χMT for two independent S = 5 units
is 30.0 cm3 K mol−1, significantly below the 8.0 K value. The latter is more consistent with
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two S = 6 units (spin-only χMT = 42.0 cm3 K mol−1) but this seemed very unlikely, and it
was clear that additional studies were necessary to resolve this problem (vide infra).

3.3.2. Ac Magnetic Susceptibility Studies

To remove the possibility of any complicating effect of the dc field on the lowest T data,
especially when studying complexes with some very weak couplings, alternating current
(ac) magnetic susceptibility studies were carried out in the 1.8–15.0 K range using a 3.5 G
ac field at a 1000 Hz oscillation frequency, and with no applied dc field. The obtained ac
in-phase (χ′M) susceptibility of the three complexes is plotted as χ′MT vs. T in Figure 6. For
1· 12 MeCN, χ′MT is essentially zero below 15.0 K, confirming a well-isolated S = 0 ground
state spin as deduced from the dc data. For 2·H2O, χ′MT is essentially constant below
15.0 K at ~17.0 cm3 K mol−1, in agreement with the dc data suggesting four non-interacting
Fe3+ ions. For 3·4H2O, we were very interested to see that χ′MT agreed with the dc χMT
data, with a plateau value at 6–10 K of ~40.5 cm3 K mol−1, confirming that the surprisingly
high value is not an artifact of the dc field.
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Figure 6. Plots of ac in-phase χ′MT vs. T in the 1.8–15.0 K range and a 0.35 G ac field at a 1000 Hz
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3.3.3. Ground State Spin Rationalization Using a Magnetostructural Correlation (MSC)

Generally, a fit of magnetic susceptibility data is used to assess coupling constants
between magnetic ions in cluster chemistry; however, high nuclearity clusters are difficult
to simulate and the experimental data is difficult to fit. Therefore, a more quantitative
rationalization of the magnetic data requires attainment of the constituent pairwise Fe2
exchange interactions, Jij, within the three clusters. However, given their high nuclearity,
low symmetry, and many symmetry-inequivalent Jij even for the anion of 1, we could
not obtain them from fits of experimental data. We thus employed the magnetostructural
correlation (MSC) that we developed specifically for high nuclearity FeIII/oxo clusters,
which yields estimates of the Jij couplings from Fe-O-Fe angles (φ) and average Fe-O bond
lengths (r) for each Fe2 pair [101]. The MSC (Equation (2)) is based on the angular overlap
model and the H = −2JijŜi·Ŝj convention.

J = (1.23× 109)(−0.12 + 1.57cosφ + cos2φ)exp(−8.99r) (2)

The Fe-O and Fe-O-Fe values for each Fe2 pair were used to generate the JMSC values
for 1–3, and these are listed in Table 3. For comparison, we also carried out DFT calcula-
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tions on representative 3 using the broken-symmetry approach, and the resulting JDFT are
provided in Table 3. Because of the very similar Fe8 units in 1–3, we did not carry out DFT
calculations on 1 and 2.

Table 3. Exchange interactions Jij for Fe2 pairs in 1–3.

Pair JMSC 1 a Pair JMSC 2 a Pair JMSC 3 a JDFT 3 a

Fe1–Fe2 −26.9 Fe1–Fe2 −33.5 Fe2–Fe4 −52.4 −44.9
Fe1–Fe4 −20.9 Fe1–Fe3 −32.3 Fe2–Fe5 −53.0 −44.3
Fe2–Fe3 −26.2 Fe2–Fe4 −28.1 Fe3–Fe4 −54.3 −46.3
Fe3–Fe4 −25.4 Fe3–Fe4 −29.3 Fe3–Fe5 −53.7 −44.2
Fe2–Fe4 −8.8 b Fe2–Fe3 −7.6 b Fe4–Fe5 −14.8 +0.8 b

Fe5–Fe6 −29.4 Fe1–Fe4 −3.2 Fe4–Fe5′ −27.4 −27.4
Fe5–Fe8 −20.5 Fe1–Fe5 −0.9 Fe1–Fe6 −3.7 −0.1 d

Fe6–Fe7 −25.7 Fe1–Fe6 −1.5 Fe3–Fe6 −9.6 −7.5
Fe7–Fe8 −29.4 Fe2–Fe3′ −36.3 Fe2–Fe6 −10.2 −7.8
Fe6–Fe8 −9.9 b Fe4–Fe5 −1.3 Fe2–Fe3 −2.3 +2.0
Fe1–Fe5 −5.4 Fe4–Fe6 −0.8 Fe1–Fe2 −10.1 −8.0
Fe3–Fe7 −2.3 Fe5–Fe6 −1.9 d Fe1–Fe3 −8.6 −5.1
Fe2–Fe6 −24.7
Fe4–Fe8 −51.7 c

a cm−1. b Body-body pairs within the Fe4 butterfly units. c This is the Fe4-O112-F8 unit, the only Fe2 pair with a
µ2-O2− bridge, rationalizing a much stronger JMSC even though O112 is involved in hydrogen-bonding with the
NHEt3

+ cation. d Fe2 pairs attached to each end of the central Fe8 unit giving the cubanes.

Elucidating the magnetic properties of the Fe8 anion of 1 is also important in allowing
interpretation of the magnetic properties of the larger Fe12 cores of 2 and 3 that contain an
Fe8 sub-unit. The JMSC for the anion of 1 separates into three groups: weak, strong, and
very strong. Within each Fe4 butterfly, the body-body (Jbb) interactions (Fe2Fe4 and Fe6Fe8)
are weak (−8.8 and −9.9 cm−1, respectively), as expected for bis-monoatomically bridged
Fe2 pairs with their smaller Fe-O-Fe angles (<100◦) [13,39,51,102]. In contrast, the wingtip-
body (Jwb) interactions within each butterfly are strong (−20.9 to −29.4 cm−1), reflecting
their single monoatomic bridge and consequently larger angles (127–132◦). Since each
butterfly unit comprises two edge-fused Fe3 triangles and all the intra-butterfly interactions
are AF, there will be spin frustration effects operating (competing exchange interactions).
However, within each Fe3 triangle, the one weak Jbb is competing with two strong Jwb so
the former is completely frustrated and the Jwb are satisfied, i.e., the spin vector alignments
are determined only by the Jwb (Figure 7). There are four inter-butterfly interactions, two
of which (Fe1Fe5 and Fe3Fe7) are again weak (−5.4 and −2.3 cm−1, respectively) due
to being bis-monoatomically bridged. The third is Fe2(µ2-OH)Fe6 and is strong (−24.7
cm−1), whereas the fourth is Fe4(µ2-O)Fe8 and is very strong (−51.7 cm−1), the difference
assignable to the latter’s shorter Fe-O bonds (av. 1.855 Å) compared with the former’s Fe-
OH bonds (av. 1.936 Å) since the Fe-O-Fe angles are similar (138.63 vs. 134.75◦, respectively).
The inter-butterfly interactions are not competing with each other nor the intra-butterfly
ones, and they are therefore all satisfied, even the weakest ones. This provides the overall
spin vector alignments shown in Figure 7, rationalizing the experimentally observed S = 0
ground state.

The JMSC of the central Fe8 subunit of 2 shows that the Jbb (Fe2Fe3) are again weak
(−7.5 cm−1) and the Jwb are again strong (−28.1 to −33.5 cm−1), slightly stronger than
those for 1. The latter is assigned to the extra Fe3+ and Ca2+ ions affecting the Fe-O bond
lengths in 2; for example, the average wingtip Fe-µ3-O2− lengths decrease from 1.924 Å in 1
to 1.853 Å in 2, giving stronger Jwb in 2. The central Fe8 of 2 should thus have an S = 0 local
ground state (Figure 8), analogous to 1, and the overall ground state is thus determined by
the intra-Fe2 coupling within the Fe2 pairs at each end. If each intra-Fe2 coupling were AF,
as shown arbitrarily in Figure 8, then 2 would have an overall S = 0 ground state, which it
clearly does not; both the dc and ac data indicate four essentially non-interacting Fe3+ ions.
In fact, this is consistent with the very weak JMSC value J56 = −1.9 cm−1 (Table 3), which is
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within experimental error of zero. Note also that the whole molecule behaves, at low T, as
two Fe2 pairs separated by a diamagnetic Fe8 ‘bridge’, so the JMSC couplings between Fe2
pairs and Fe8 ions are moot (Figure 8).
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clearly does not; both the dc and ac data indicate four essentially non-interacting Fe3+ ions. 
In fact, this is consistent with the very weak JMSC value J56 = −1.9 cm−1 (Table 3), which is 
within experimental error of zero. Note also that the whole molecule behaves, at low T, as 
two Fe2 pairs separated by a diamagnetic Fe8 ‘bridge’, so the JMSC couplings between Fe2 
pairs and Fe8 ions are moot (Figure 8). 
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Figure 7. (top) Calculated JMSC from Table 3 and the predicted spin vector alignments for the anion
of 1. Frustrated and satisfied JMSC are shown in red and blue, respectively. (bottom) Spin vector
alignments on the core to emphasize the bridging oxo positions.

The JMSC and JDFT for 3 are overall in satisfying agreement (Table 3) and thus provide
independent support for each other. For both, the Jbb are stronger than those for 2, and
we assign this to an even bigger effect of the La3+ on the Fe8 structural parameters than
the Ca2+. For example, the average wingtip Fe-µ3-O2− lengths are 1.924 Å, 1.853 Å, and
1.845 Å in 1–3, respectively, and although those for 2 and 3 are similar, their average body
Fe-µ3-O2− lengths are very different at 1.958 Å and 1.908 Å, respectively, rationalizing the
stronger couplings in 3. The central Fe8 of 3 should again have an S = 0 local ground state
(Figure 9), whereas as for 2, the overall ground state is again determined by the intra-Fe2
coupling within Fe2 pairs (Fe1Fe6) at each end, for which JMSC and JDFT values are very
weakly AF (−3.7 and −0.1 cm−1). However, both the dc and ac data clearly indicate their
coupling to be F, resulting in S = 5 ground states for both pairs, and showing that their
AF JMSC and JDFT values must be artifacts of the very small numbers involved and their
inherent uncertainties.
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Figure 9. (top) Calculated JMSC from Table 3 and the predicted spin vector alignments for 3. Frustrated
and satisfied JMSC are shown in red and blue, respectively; green interactions are moot at low T due
to the central Fe8 being in its local S = 0 ground state. (bottom) Spin vector alignments shown on the
core to emphasize the bridging oxo positions.

There is still one unexpected experimental observation that needs to be resolved. At
low T, 3 can be described as two S = 5 Fe2 pairs separated by a large diamagnetic Fe8 unit,
and the inter-Fe2 interaction within each molecule of 3 should therefore be zero and the
χMT should be ~30.0 cm3 K mol−1, the spin-only value for two independent S = 5 units.
As stated earlier, however, it is instead 39.01 cm3 K mol−1 at 8.0 K, significantly greater
than expected. After close examination of the crystal packing, we assign this to inter-Fe2
interactions between adjacent molecules of 3, i.e., intermolecular interactions.

The packing shows that 4-tBu-benzoate groups on one molecule of 3 lie essentially per-
pendicular to those on the adjacent molecule, and this is true for all the nearest-neighbours
of a particular molecule. One such pair of molecules showing two of the near-perpendicular
pairs of ligands is shown in Figure 10. Since it is well known that significant π-spin density
will delocalize from metal dπ orbitals to the para-position of an aromatic ligand, such as
benzoate through a π-spin-delocalization mechanism, and then onto any para-substituent
with available π-symmetry atomic or molecular orbitals, such as CH3, CR3, Cl, F, etc, then
the fact that the two π-systems on the different molecules are near-perpendicular should
lead to them being orthogonal and thus provide a resulting F interaction. Its magnitude is
expected to be very weak, but since there is a 3D network of such interactions, it should
lead to an overall significant contribution to χMT at low T, and this would rationalize
the unexpectedly high observed value. Crucially, there are no π-π-stacking interactions
between phenyl groups, common in unsubstituted benzoate complexes, that would be ex-
pected to provide AF interactions, the bulky para-tBu groups preventing close approach of
the aromatic rings in 3. Support for the above rationalization includes the intermolecular F
interactions seen for a Mn4 complex with 4-tert-butyl-salicylidene-2-ethanolamine ligation,
whose tBu-substituted aromatic ligands are also near-perpendicular [103]. Previously re-
ported compounds containing Fe12Ln4 with aromatic ligands also have exhibited unusually
high values of χMT at low temperatures, consistent with the observation of intermolecular
F interactions for such compounds [54,55].
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green are to highlight the interaction pathway. 
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Figure 10. Two adjacent molecules of 3 in the crystal showing two pairs of near-perpendicular
4-tBu-benzoate ligands (all green) between them. Other colours: Fe3+ light green, La3+ magneta, O
red, OH− purple, C grey, and H white. Some C and H atoms were omitted for clarity. Ligands in
dark green are to highlight the interaction pathway.

4. Conclusions

The attainment of a family of three structurally related complexes 1–3 has allowed
comparisons and contrasts of their observed magnetic properties and yielded important
insights into their origin, including those that at first glance appear surprising, and the
effect of the attachment of heterometals Ca2+ and La3+. The presence of spin frustration
and its importance in determining the ground states of polynuclear complexes is yet again
emphasized, as is the usefulness of a multi-pronged approach to their analysis using
experimental data in coordination with estimates of the constituent Jij exchange couplings,
using DFT computations and a magnetostructural correlation derived specifically for FeIII-
oxo clusters.
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