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Abstract: The demand for synthetic bone grafts has increased in recent years. Hydroxyapatite (HA)
is one of the highly suitable candidates as a bone graft material due to its excellent biocompatibility
and high osteoconductive properties with low toxicity. HA has disadvantageous mechanical strength
showing relatively fragile and brittle behavior due to its high hygroscopic properties. This leads to
improper mechanical properties for such grafting applications. Therefore, HA should be combined
with another material with similar biocompatibility and high hardness, such as SiO2. In this work,
HA/SiO2 (HAS) composite material was prepared via a hydrothermal method to obtain the high
purities of HA with a particle size of approximately 35 nm and around 50% crystallinity. It was found
that the addition of SiO2 stimulated the composite system by forming an orthosilicic acid complex
that can reduce the overall solution’s pH, thus contributing to the integrity and stability of the HAS
composite. Therefore, higher SiO2 contents in the HAS composite can enhance its mechanical stability
when immersed in simulated body fluid (SBF). Our work demonstrated that HAS can highly improve
HA material’s hardness and mechanical stability under immersion of SBF. The Vickers test showed
that the 0.05 GPa hardness in 10% SiO2 increased to 0.35 GPa hardness with the addition of 20% SiO2.
The crystal structures of HAS were analyzed using X-ray diffraction, and the morphology of the HAS
composites was observed under electron microscopy.

Keywords: hydroxyapatite-silica composite; hydrothermal method; simulated body fluid; highly
stable mechanical properties

1. Introduction

Recently, demands for bone and tooth grafts have surged dramatically [1,2]. Experts
utilize autografts (bone implantations extracted from the patient’s own body) to substitute
the bone. Autografts involve taking bone tissue from the patient’s body and are associated
with significant drawbacks. These include the limited availability of donor tissue, high
cost, and the potential risk of disease transmission. Consequently, exploring alternative
materials that can address these challenges is crucial. One alternative is using synthetically
prepared materials with properties similar to autografts, such as bio-ceramics, for bone
grafting. Bio-ceramics have emerged as promising candidates for bone grafts due to
their favorable characteristics. They exhibit high biocompatibility, meaning they are well-
tolerated by the body without eliciting adverse reactions. It is essential for promoting
healing and ensuring successful graft integration with the host tissue. Additionally, bio-
ceramics possess osteoconductivity, providing a supportive scaffold for new bone formation
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and enabling the regeneration of damaged or lost bone tissue. This property is crucial
for restoring the structural integrity and function of the affected area. Furthermore, bio-
ceramics demonstrate low toxicity, ensuring they do not introduce harmful substances into
the body. In biomedical applications, minimizing the potential complications and adverse
effects on patient health is paramount. By harnessing the advantageous properties of bio-
ceramics, researchers and clinicians can overcome the limitations associated with autografts.
Bio-ceramics offer a synthetic solution that can be reliably manufactured, readily available,
and cost-effective compared to autografts. Their use as bone graft materials presents
a viable alternative that can effectively address the challenges posed by autografts and
enhance the success and accessibility of bone grafting procedures [3].

Hydroxyapatite (HA) is one example of a highly versatile bio-ceramic with a general
formula of Ca10(PO4)6(OH)2 and a Ca/P ratio of 1.67 [4]. HA has at least 65% of the
components similarly found in the human bone and teeth structure. HA methods, including
gel-casting foams, polymeric sponges, freeze-drying, tape casting, and salt leaching, have
been reported to improve biocompatibility with human bone tissue [5]. Hydroxyapatite is
valuable in the medical field, particularly as a bone and cartilage repair material, thanks
to its outstanding biocompatibility and osteoconductive characteristics [6]. Despite the
high biocompatibility [7], HA has disadvantageous mechanical strength showing relatively
fragile and brittle behavior due to high hygroscopic properties. HA possesses hydroxyl
groups that can readily absorb water from the ambiance. One method of modifying HA is
through Ca ionic substitution. However, this method has some drawbacks, including rapid
ion release. It can occur if ions are adsorbed or mixed within biomaterials without passing
through the crystal lattice, which can be toxic to the surrounding tissue [7,8]. Therefore,
HA should be combined with another material to accommodate these drawbacks [9].

The investigation involved evaluating the effectiveness of strongly alkaline solutions
in processing medicinal ceramic powders and observing alterations in their phase composi-
tion and surface morphology. Two ceramic powders, alumina, and zirconia, underwent
treatment with two etchant mixtures, resulting in minimal alterations. However, the surface
exhibited modifications by depositing a Ca-deficient hydroxyapatite layer. In the zirconia
case, the deposited layer displayed a nearly continuous, fine film that effectively covered
the ceramic surface. Analysis of the FTIR spectra revealed a significant shift in the ZrO2
band from 486 cm−1 to around 501 cm−1, while the CDH band did not experience any shift.
This indicates an evident interaction between CDH and the modified ZrO2 surface, leading
to improved “wetting” properties due to the alkaline treatment. Therefore, the treated
zirconia surface shows promise as a potential bioceramic material for medical applications
such as prosthetics [10].

An effective method to transport Ca-deficient hydroxyapatite to the targeted region
is through a nanocomposite formulation, where the primary constituent of the nanocom-
posite is a clay mineral. Clay minerals are already extensively utilized in pharmaceutical
applications as active agents with therapeutic properties or excipients. These minerals offer
various advantageous characteristics, including surface reactivity (such as cation exchange,
swelling, and absorption), solubility, a significant specific surface area, and non-toxicity for
human use [11]. In the process of creating dental composites, the treatment of inorganic
particles with silane is employed to enhance their chemical interaction with the organic
matrix, potentially leading to improved mechanical properties of the composite. Despite
limited information on the impact of this process on the ion release capabilities of bioactive
composites containing different calcium phosphate complexes, its influence on enamel
remineralization still needs to be explored. The silanization of particles would not affect
the remineralization potential of the composite [12].

Silica (SiO2) is one of the suitable candidates for a composite with HA. SiO2 has
better mechanical properties with 6–7 Mohs’ hardness, while HA shows a hardness of
around 5 [13]. Moreover, SiO2 has similar biocompatibility with a low thermal expansion
coefficient of ~10–7 K–1, which can be quite beneficial for maintaining the structure of the
HA/SiO2 (HAS) composite under high temperatures. HAS can be prepared by various
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methods, i.e., sonochemistry, sol-gel, and hydrothermal methods [14]. Hydrothermal
synthesis offers a relatively straightforward and easily scalable method, which is more
environmentally friendly than other nanotechnology production techniques. This approach
allows for precise control and high repeatability in achieving desired microstructures.
Hydrothermal synthesis enables the alteration of nanoparticles’ surface properties by
appropriately selecting surface-coating agents, transforming them from hydrophilic to
hydrophobic [15]. The visibility of pH sensitivity will be enhanced when observing the
effect within a narrow optimal pH range, minimizing the difference between the values [16].
Previously, a composite prepared through sonochemistry from an onyx crystal with an
HA-to-SiO2 ratio of 80:20 resulted in a crystal size of 30.57 nm with a Vickers hardness of
26.72 HV [17]. An HAS prepared for collagen scaffolding via the sol-gel method showed
high stability in acidic conditions, yet the hardness was not investigated. In comparison,
the preparation of HA via a hydrothermal method suggested a highly improved crystallite
size of 35.28 nm with a purity of 99.5% [18].

In this study, we focused on examining the mechanical stability of a composite material
called HA/SiO2 (HAS) when immersed in simulated body fluid (SBF), first synthesizing
hydroxyapatite (HA) to create the composite through a hydrothermal process. Silica dioxide
(SiO2) was also prepared using rice husk as the raw material. Subsequently, we combined
the HA and SiO2 using the hydrothermal method, forming the HA/SiO2 composite, which
exhibited improved stability and mechanical properties. This research is unique in that it
explores the mechanical strength of the HAS composite when subjected to immersion in
SBF. Before this study, the preparation of HAS through direct combination of its constituents
using the hydrothermal method had not been reported. Therefore, our research contributes
novel insights into the HA/SiO2 composite synthesis.

Furthermore, our study found that the mechanical hardness of the composite was
enhanced by incorporating 20% SiO2. This result suggests that adding SiO2 positively im-
pacts the composite material’s mechanical properties. The improved mechanical hardness
holds promise for the potential application of HAS as a bone graft material in the future.
Overall, our approach of synthesizing the HA/SiO2 composite through the hydrothermal
method, investigating its mechanical stability in SBF, and demonstrating the enhancement
of mechanical hardness through SiO2 addition offers valuable insights for developing and
utilizing HAS in bone graft materials.

2. Materials and Methods
2.1. Materials

CaO (obtained from thermal treatment of chicken egg shells), ammonium dihydrogen
phosphate (NH4H2PO4 Sigma 99% CAS No. 7722-76-1, Burlington, MA, USA), silica (SiO2)
obtained from gasification of rice husk, and simulated body fluid (SBF).

2.2. Instrumentation

Oven Carbolite, XRD (PANalytical X’Pert PRO serial PW3040/X0, Malvern, UK), FTIR
(PerkinElmer Spectrum 100, Waltham, MA, USA), SEM-EDS (Jeol Jsm-6360LA, Akishima,
Japan), and micro-Vickers hardness tester (HMV-G21ST, Kawasaki-shi, Japan).

2.3. Procedure
2.3.1. Synthesis of HA

HA was prepared using the hydrothermal method [18]. Eggshells obtained from
the chicken egg were cleansed from the contaminants and biological membranes using
deionized water. The ball mill created smaller eggshell particles of ~100 mesh size. The
crushed eggshells were calcined at 1000 ◦C for five hours to convert CaCO3 into CaO as
the precursor of HA synthesis. The obtained CaO was mixed with dihydrogen phosphate
stoichiometrically with a Ca/P ratio of 1.67 in deionized water in a 100 mL autoclave. The
mixture was heated at 230 ◦C for 48 h using hydrothermal synthesis. The prepared HA was
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filtered before washing with deionized water until pH 7 to eliminate the NH4OH from the
side reaction. The washed white powder was dried at 110 ◦C for two hours.

2.3.2. Preparation of SiO2 from Rice Husk

A solution mixture of carbonized rice husk, sodium hydroxide, and deionized water
was stirred with heating at 100 ◦C for 150 min. The hot mixture was directly filtered to
obtain the solid residue. The residue was settled at room temperature, and an aqueous
HCl solution (1:1 w/w) was incrementally added to the residue until the pH reached 7. The
white silica started to precipitate and collect. The silica powder was refiltered and washed
before being dried in an oven at 110 ◦C for two hours.

2.3.3. Preparation of HA/SiO2 (HAS) Composites

The synthesized HA was mixed with SiO2 with various HA:SiO2 ratios of 90:10
(HAS90), 85:15 (HAS85), and 80:20 (HAS80) using mechanical stirring in 60 mL deionized
water. The mixture of HAS was put into an autoclave for hydrothermal preparation at
230 ◦C for 48 h. The precipitate was filtered and washed with deionized water before
drying at 110 ◦C for two hours. The synthesis process for HAS composite is shown in
Figure 1.
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2.3.4. Structural Investigation of HA/SiO2 (HAS) Composites

The crystal structure obtained was analyzed using X-ray diffraction (XRD, Bruker D8
Advance) with CuKα = 1.5311 at the 2θ range of 20–90◦. The morphology of HAS was
observed under electron microscopy (SEM, Jeol JSM-6360LA) with a voltage of 20 kV at
various magnifications of 500, 1000, and 4000, while the Fourier-transformed infrared
spectra (FTIR) were collected using Perkin Elmer Spectrum 100 at a wavenumber range
of 4000 to 500 cm–1. The HAS samples were pressed into pellets by mixing them with
KBr salts.

2.3.5. Characterization of HAS Composites Mechanical Properties

The hardness of HAS samples was analyzed using a micro Vickers hardness test machine
to obtain Vicker’s hardness value. The HAS samples were pelleted to achieve a circular
shape, while a load of 100 g was subjected to the HAS pellets for 10 s.
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2.3.6. In Vitro Test for Biodegradation of HAS Composite Materials

The simulation of the biodegradation of HAS was conducted to observe the decay rate
over the mass loss of the HAS samples by immersing the HAS pellets in simulated body
fluid (SBF). SBF ion content concentrations are similar to that in blood plasma [19]. The
pellets of HAS were immersed in SBF with a pH of 7.67 for three days at a temperature of
37 ◦C. After three days of immersion, the pHs of the SBF solutions were measured while
HAS pellets were washed with deionized water and dried at 70 ◦C for 2 h. The mass of
pellets was weighed until constant, and the mass loss was calculated compared to the initial
mass of the HA pellets.

3. Results

HA has a hexagonal structure with phosphates coordinated to the calcium metal
center. The base structure of HA is calcium apatite with a formula of Ca5(PO4)3(OH),
frequently written as Ca10(PO4)6(OH)2, indicating its double molecule in one crystal struc-
ture, as shown in Figure 2. With the space group of P63/m, HA has a lattice parameter of
a = b = 9.4321 Å and c = 6.881 Å [20]. Silica has a tetrahedral structure with SiO4 clusters
connecting each other. It has a lattice parameter of a = 4.973 Å, b = 6.923 Å, and c = 1.392 Å
based on JCPDS. Silica here frequently appears as a more amorphous phase t, but the
diffraction pattern usually only shows one or two main peaks.
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The crystallite size was determined through Equation (1).

D =
kλ

βcos θ
(1)

where D is the crystallite size (nm), k is the crystal shape factor (0.9–1.0), λ is the X-ray wave-
length (0.15406 nm), β = Full Width at Half Maximum (FWHM) (rad), and θ = diffraction
angle (deg). In comparison, the crystallinity can be calculated from Equation (2).

Xc =
Aθ

Atotal
× 100% (2)

where Xc is the crystallinity (%), Aθ is the area intensity of the crystalline contribution at
which the main pattern is located, 2θ = 31.78◦, dhkl (211). At the same time, Atotal is the total
area intensity from the contribution of crystalline and amorphous regions.
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HA has the main peak at 2θ of 31.78◦ (see Figure 1); from this peak, the crystallinity of
HAS can be calculated as listed in Table 1. Silica, on the other hand, is more amorphous
compared to HA. Therefore, adding silica to HA can reduce the crystallinity by up to 50%.
Interestingly, the crystallinity does not follow the trend of SiO2 contents yet has the lowest
value of 48.6% for HAS85 [21]. It is probably due to a micromolecular interaction between
HA and SiO2 which results in the partial substitution of −PO4 groups in HA with the
presence of an SiO4 cluster as the following reaction [22]:

10Ca2+ + (6− x)PO3−
4 + xSiO4−

4 + (2− x)OH− → Ca10(PO4)6−x(SiO4)x(OH)2−x (3)

Table 1. The crystallinity of HAS composites.

Materials Crystallite Size (nm) Crystallinity (%)

HA [9] 35.28 99.5
HAS90 34.82 50.5
HAS85 35.80 48.6
HAS80 34.21 53.1

The lattice parameters of HAS is listed on Table 2. The composites show a slight
reduction at the a, b-, and c-directions compared to standard HA, and the increase of SiO2
content indicates that distributions of SiO2 throughout the HA particles slightly distorted
the hexagonal structure of HA. This change has no significant effect on the distortion.
Therefore, the base crystal structure of HA remains stable in the composite. At the same
time, a slight decrease in lattice parameter is reasonable since SiO2 has an amorphous phase
and is within the higher contents.

Table 2. Lattice parameters of HAS composites.

Materials Structure Space Group a = b (Å) c (Å)
Intensity Ratio
(27.2 to 31.78◦)

Density
(g·cm−3)

HA ICSD
96-900-2215

Hexagonal P 63/m

9.4390 6.8860 3.14

HAS90 9.4171 6.8753 0.77 3.16
HAS85 9.4168 6.8751 0.64 3.16
HAS80 9.4142 6.8749 0.49 3.16

FTIR analysis was deployed to investigate further functional group interactions be-
tween HA and SiO2 in the composite, as seen in Figure 3 and listed in Table 3. The FTIR
spectra show the main peak of the phosphate group at ~560 cm–1, which indicates the
presence of HA, while OH– peaks at 630 and 3560 cm–1 suggest the presence of both HA
and SiO2, respectively. However, the main peaks of SiO2, indicated by Si–OH and O–Si–O,
are observed at the wavenumbers of approximately 800 and 475 cm–1, respectively [22,23].
The presence of all contributing peaks from HA and SiO2 suggests that an HAS composite
was successfully prepared by the hydrothermal method.

The SEM micrograph shows HAS composite morphology (Figure 4a). At the magnifi-
cation of 4000×, HAS with higher contents of SiO2 (20 wt.%) suggests more agglomerated
particles, with homogeneous distributions showing a particle median of 650 nm (Figure 4b).
The HAS composites with lower SiO2 contents (15 and 10 wt.%) denote median particle
sizes of ~500 and 600 nm, respectively. Interestingly, the HAS showed an optimum trend as
HAS80 > HAS90 > HAS85. The contribution of amorphous SiO2 in the composites can en-
hance the agglomeration of HAS particles, probably due to stronger hydrogen interactions
between Si–OH from SiO4 tetrahedral sites and Ca–OH from HA sites as increasing SiO2
content. However, the absolute value of the HAS particle size from ImageJ analysis might
differ from the actual size. Furthermore, we also conducted particle size analysis (PSA)
using a PSA analyzer, as seen in Table 4. The results suggested that the particle size of HAS
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follows this trend: HAS90 (1660.1 nm), HAS80 (1640.1 nm), and HAS85 (1462.0 nm), which
consistently follows the trend obtained from ImageJ analysis. Data regarding the value of
the mean, mode, median, standard deviation, and polydispersity index (PI) are shown in
Table 4.
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Table 4. Particle size analysis statistics of HAS with different SiO2 contents.

Sample
Measurement Parameters

Mean (nm) Mode (nm) Median (nm) Standard Deviation PI

HAS 80 20 1631.0 1746.5 1640.0 190.5 1.250
HAS 85 15 1459.1 1643.7 1462.0 282.2 1.438
HAS 90 10 1649.4 1748 1660.1 182.1 0.807
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A lower value generally indicates a narrower and more uniform particle size distribu-
tion in the context of PI values. A higher PI value in particle size analysis indicates a wider
and more heterogeneous particle size distribution, meaning a greater range of particle sizes
is present in the sample. In such cases, the sample contains a greater range of particle
sizes, with some particles being significantly larger or smaller than the average size. This
can result in a less uniform distribution, with both large and small particles in the sample.
A sample with a PI value close to 0.1 would have a very narrow distribution of particle
sizes, where most particles are very similar. On the other hand, a sample with a PI value
close to 0.9 would have a wide distribution, indicating a significant variation in particle
sizes. The PI value is a valuable parameter in particle size analysis as it provides insights
into the homogeneity or heterogeneity of particle size distribution. It is crucial in various
applications, such as material synthesis, drug delivery systems, and product quality control.
A lower PI value is generally preferred for a more consistent and controlled particle size
distribution [24]. Therefore, among the PI values we had (0.8, 1.4, and 1.25), the PI value of
0.8 (HAS 90) is considered the best to have a more uniform particle size distribution.

To test the robustness of HA-based composites for practical application, we immersed
the HAS materials in simulated body fluid (SBF) for three days, and the pH change and its
mass loss were monitored during the process. After three days of immersion, we found
that the pH of HAS90 increased significantly from its SBF baseline of pH (7.6), as seen
in Figure 5A, yet showed no appreciable difference from the HA-based standard. The
significant increase of HAS can be attributed to the partial dissolution of HA creating
OH– anions during the immersion, as shown in the chemical equation below [25]. The
degradation rate of HAp-based materials increased logarithmically as a function of time [26].
The general dissolution of HA in water can be written as the equilibrium reaction below:

(nx−1)H2O + Ca10(PO4)6(OH )2↔ 10Ca2++3X1PO3−
4 +3X2HPO2−

4 +3X3H2PO−4 +3X4H3PO4 + ncOH−

The water has a pH close to the pH of SBF, which suggests that the immersion of HAS
in SBF fluid can act similarly as described in the chemical equation above [25]. The HAS
material is immersed in the SBF fluid. It is expected to behave similarly to how it would
behave in water due to the similarity in their pH levels. In other words, the properties
and reactions of HAS in SBF might be comparable to those in water because the pH
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conditions are comparable. The pH level is an important factor to consider in the behavior
of HAS in SBF. Since the pH of the SBF is similar to that of water, it may provide a suitable
environment for evaluating how the HAS material interacts and reacts with the fluid, using
SBF as a simulation of the body’s natural environment to assess the biocompatibility and
bioactivity of materials intended for medical or biological applications, especially those
related to bone and tissue regeneration. The similar pH levels between water and SBF make
the immersion in SBF a relevant and informative experiment to understand the potential
response of HAS in a physiological-like environment.
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rial during immersion in SBF. (C) Mechanical strength of HAS with various amounts of silica added.

Interestingly, the addition of silica can reduce the pH. With the higher content of SiO2,
the pH returns closer to that of its original base materials, probably due to the formation of
orthosilicic acid (H4SiO4) from the hydrolysis of SiO2. SiO2 can act as a buffer to stabilize
the basic condition of HAS. In an aqueous environment, SiO2 can dissociate to SiO4

4– + 4H+.
The generated protons will subsequently neutralize the hydroxyl ions [15]. The generation
of orthosilicic is also known to give biological and potential therapeutic effects [16], which
can be very beneficial for applying HAS-based materials such as bone grafts. This trend is
also followed by its mass loss of HA, which shows highly stable HAS with a higher content
of SiO2. Silica has similar water absorptivity of water with HA. The porous structure of
silica can contain more water than HA. Thus, silica can stabilize the overall composite
structure in HAS.

The HAS with a higher content of SiO2 shows less mass loss (Figure 5B), consistent
with the enhanced hardness (Figure 5C). The addition of silica is proven to increase the
hardness more than three times higher than that of the low content of SiO2 due to a
contribution from the intrinsic hardness of SiO2. Therefore, HAS with high content of SiO2
can be applicable for bone grafts.

4. Conclusions

The hydrothermal method successfully prepared the HA/SiO2 (HAS) composites,
resulting in a crystallite size of approximately ~35 nm and around ~50% crystallinity.
The addition of SiO2 stimulated the composite system by forming an orthosilicic acid
complex, which reduced the overall solution’s pH. SiO4

– species acted as a conjugated
base, creating a buffering effect within the mixture, thus contributing to the integrity
and stability of the HAS composite and incorporating higher SiO2 contents in the HAS
composite enhanced mechanical stability when immersed in SBF. It was evidenced by
increased mechanical hardness, as measured by the Vickers test, from 0.05 GPa to 0.35 GPa
with the addition of 20% SiO2. These results indicate that the inclusion of SiO2 positively
influenced the mechanical properties of the composite material, rendering it more resistant
and robust. Based on the improved stability and mechanical properties observed in the
HAS composites, they hold great potential as bone graft material for future applications.
The stability of the composite, combined with the increased mechanical hardness, makes it
a promising candidate for use in bone grafting procedures. The excellent properties of the
HAS composites make them a valuable option to consider in developing advanced bone
grafting materials.
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