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Abstract: The first total synthesis of the proposed structure of unprecedented indolyl derivative
bearing 1,2-propanediol moiety is described. Isomerization of 3-alkoxyindolines through indolenium
intermediates was the key step in the total synthesis. 1H, 13C-NMR, IR, and HRMS spectra of the
synthetic compound drastically differed to those of the originally reported structure, which suggests
the natural product requires revision.
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1. Introduction

Alkoxyindoles are privileged structures that are found in natural products, which
exhibit significant biological activities and are interesting targets for organic chemistry [1].
For example, koniamborine, isolated from Boronnella koniambiensis aerial parts, shows sig-
nificant cytotoxicity against the L1210 cancer cell line [2]. Cladoniamide G, isolated from
cultures of Streptomyces uncialis, is also cytotoxic to MCF-7 cells in vitro at 10 mg/mL [3].
Pyrrolidinoindoline-type alkaloid CPC-1 was isolated from the seeds and rinds of Chimo-
nanthus praecox f. concolor [4]. Oxytrofalcatins A-F and 3-oxygenated N-benzoyl indole
analogs from the roots of Oxytropis falcata (Leguminosae) were revised to 2,5-diaryloxazoles
by Abe and Yamada [5,6]. Isolated natural products represent a valuable resource of
pharmaceutical reagents [7], such as the 5-HT4 antagonist [8], antiproliferative agents [9],
and VATPase inhibitors [10]. Therefore, developing concise routes for oxygenated indoles
is of great significance. Although there are indirect methods to access such oxygenated
indoles [11–18], many efforts have been made toward direct oxy-functionalization at C2
or C3 positions in indolines or indoles [19–22]. In 2000, Kettle and coworkers reported
that rhodium(II)-catalyzed O–H insertion reactions of 2-carboethoxy-3-diazo-3H-indole to
generate high 3-alkoxyindole yields [23]. Zhang’s group presented a direct approach to
C3-acetoxylated biindolyls via palladium catalysis using AgOAc under oxygen atmosphere
as oxidants [24]. In contrast to the vast majority of metal-catalyzed synthesis approaches
for oxygenated indoles [25–35], metal-free approaches have emerged as powerful syn-
thetic tools owing to their sustainable properties [36–47]. However, these reactions are
limited to the construction of either C2-oxygenated or C3-oxygenated indole/indoline.
Given the difficulty of switchable construction for oxygenated indole/indoline, we recently
reported the regioselective synthesis of both 2- and 3-alkoxyindoles from the common
intermediate, 2-alkoxy-3-bromoindolines (ROBIN) [48]. The synthesis of 2-alkoxyindoles
was achieved by a base-mediated regioselective elimination of HBr from ROBIN. In other
hands, 3-alkoxyindoles were obtained by silver-mediated alkoxylation followed by the
BF3•OEt2-promoted elimination of alkoxide at the C3-position of the indole ring.

1-(1H-Indol-3-yloxy)propan-2-ol (1) is an indolyl derivative isolated from the Red
Sea sponge Haliclona sp. and was published in 2016 by Al-Massarani and co-workers
(Figure 1) [49]. Structurally, 1-(1H-Indol-3-yloxy)propan-2-ol (1) differs from previously
reported alkoxyindoles [1–9]. It has an unprecedented 1,2-propandiol moiety at the C3
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position of indole. Furthermore, 1,2-propandiol possesses anti-microbial activity, and is
used as a preservative agent in pharmaceuticals and food [50].
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Figure 1. Proposed structure of 1-(1H-Indol-3-yloxy)propan-2-ol (1) as the first indolyl 1,2-propandiol
alkaloid.

Potential biological activity in combination with unprecedented indolyl saccharide
bearing 1,2-propandiol makes 1-(1H-indol-3-yloxy)propan-2-ol (1) an attractive synthetic
target for medicinal and synthetic chemistry. However, the structure of 1 was determined
by 2D-NMR and MS analyses, while neither of its [α]D data nor absolute configurations
were presented. Furthermore, the reported 1H-NMR spectrum of 1 in CD3OD showed a
resonance at 7.95 ppm (H-2), which was too low a field shift for 3-alkoxyindoles. These
inconsistencies suggest that organic synthesis is needed to confirm the structure, including
the absolute configuration of 1. Based on our interest in 3-alkoxyindoles, the determination
of the real 1 structure is worth investigating. Herein, we report the total synthesis of the
proposed structure of 1 starting from N-tosylindole (2).

2. Materials and Methods

High-resolution MS spectra were recorded with a Brucker micrOTOF mass spec-
trometers (ESI-TOF-MS). NMR experiments were performed with a JEOL JNM-ECZ600R
(1H NMR: 600 MHz, 13C NMR: 151 MHz) spectrometer, a Varian 600-MR ASW (1H
NMR: 600 MHz, 13C NMR: 151 MHz) spectrometer, and a Varian 400-MR ASW (1H NMR:
400 MHz, 13C NMR: 100 MHz) spectrometer, with chemical shifts expressed in ppm (δ)
using residual undeuterated solvent as an internal reference. 1H NMR spectra were refer-
enced to tetramethylsilane as an internal standard or to a solvent signal (CDCl3: 7.26 ppm,
methanol-d6: 3.31 ppm, DMSO-d6: 2.50 ppm). 13C NMR spectra were referenced to a solvent
signal (CDCl3: 77.1 ppm, methanol-d6: 49.00 ppm, DMSO-d6: 39.52 ppm). The follow-
ing abbreviations were used to explain NMR peak multiplicities: s = singlet, d = doublet,
t = triplet, q = quartet, sep = septet, m = multiplet, dd = doublet of doublets, ddd = doublet
of doublet of doublets, br = broad; coupling constants in Hz; integration. Reactions were
monitored by thin layer chromatography (TLC) carried out on a silica gel plates (60F-254)
and visualized under UV illumination at 254 or 365 nm depending on compounds. Flash
column chromatography was performed on silica gel (WAKO Gel 75–150 mesh, WAKO
Co., Ltd., Tokyo, Japan). All substrates were used as received from commercial suppliers
(Sigma-Aldrich, Tokyo, Japan; Kanto Chemical, Tokyo, Japan; TCI, Tokyo, Japan; and Wako,
Tokyo, Japan) and all reagents were weighed and handled in air at room temperature. All
work-up and purification steps were carried out with reagent-grade solvents in air.

2.1. Synthesis of N-Tosylindoles (2) [51]: N-Tosylindoles (2) Was Prepared by a Reported
Method [50]

1H NMR (400 MHz, CDCl3) δ: 8.00 (ddd, J = 8.3, 1.8, 1.2 Hz, 1H), 7.77 (d, J = 8.4 Hz,
2H), 7.57 (d, J = 3.6 Hz, 1H), 7.53 (ddd, J = 7.7, 1.2, 0.8 Hz, 1H), 7.32 (ddd, J = 8.2, 7.2, 1.2 Hz,
1H), 7.23 (ddd, J = 7.6, 6.8, 1.2 Hz, 1H), 7.22 (d, J = 8.0 Hz, 2H), 6.66 (dd, J = 3.6, 0.8 Hz, 1H),
2.34 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 144.9, 135.3, 134.8, 130.7, 129.8, 126.8, 126.3,
124.5, 123.2, 121.3, 113.5, 109.0, 21.5.
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2.2. Synthesis of Trans-3-Bromo-2-methoxy-1-tosylindoline (ROBIN) [48]

To generate a solution of 2 (2.71 g, 10 mmol) in MeOH (100 mL, 0.1 M), we added NBS
(1.96 g, 11 mmol). The mixture was stirred at room temperature for 2 h. After filtration,
ROBIN was obtained as a crystal; 3.26 g, 85% yield; White crystal; 1H NMR (400 MHz,
CDCl3) δ: 7.70 (d, J = 8.4 Hz, 2H), 7.67 (d, J = 8.0 Hz, 1H), 7.34 (ddd, J = 7.8, 7.8, 1.2 Hz, 1H),
7.28 (ddd, J = 7.8, 1.4, 0.8 Hz, 1H), 7.20 (d, J = 8.8 Hz, 2H), 7.11 (ddd, J = 7.6, 7.6, 0.8 Hz,
1H), 5.59 (s, 1H), 4.95 (s, 1H), 3.61 (s, 3H), 2.34 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 144.5,
140.5, 135.1, 131.3, 130.5, 129.5, 127.7, 126.1, 125.3, 116.9, 99.8, 56.3, 47.1, 21.5.
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2.3.1. Synthesis of Trans-3-((1-tert-Butyldimethylsilyloxy)propan-2-yloxy)-2-methoxy-
1-tosylindoline (TBS-5)

To a solution of a mixture of 5 and 6 (3.33 g, 8.8 mmol, 5:6 = 1:1.7) and imidazole
(236.5 mg, 3.5 mmol) in DCM (60 mL, 0.15 M), we added TBSCl (498.4 mg, 3.3 mmol).
The mixture was stirred at room temperature for 18 h. After filtration, the mixture was
concentrated in vacuo. The residue was purified by silica gel column chromatography
(AcOEt/hexane = 1/5–1/1) to generate TBS-5 (dr = 1.2:1). 523.7 mg, 12% yield; Yellow oil;
IR (KBr): 1358, 1169, 1101 cm−1; 1H NMR (400 MHz, CDCl3) δ: 7.68 (d, J = 8.4 Hz, 1H),
7.64 (d, J = 8.4 Hz, 1H), 7.61–7.59 (m, 1H), 7.33–7.27 (m, 2H), 7.15–7.11 (m, 2H), 7.09–7.03
(m, 1H), 5.42 (s, 0.52H), 5.33 (s, 0.37 H), 4.73 (s, 0.41H), 4.58 (s, 0.48H), 3.72–3.64 (m, 1H),
3.601, 3.598 (2s, 3H), 3.52–3.28 (m, 2H), 2.32, 2.31 (2s, 3H), 1.04 (d, J = 7.2 Hz, 1.04H), 0.92 (d,
J = 8.0 Hz, 1.53H), 0.94, 0.89 (2s, 9H), 0.11, 0.04, 0.03 (3s, 6H); 13C NMR (151 MHz, CDCl3)
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55.9, 26.0, 25.9, 21.56, 21.54, 18.5, 18.3, 17.7, 17.2, −5.25, −5.27, −5.32, −5.42; HRMS (ESI)
m/z: 514.2059 (Calcd for C25H37NNaO5SSi [M + Na]+: 514.2059).
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2.3.2. Synthesis of 2-(Trans-2-methoxy-1-tosylindolin-3-yloxy)propan-1-ol (5)

To a solution of TBS-5 (267.0 mg, 0.54 mmol) in THF (3.6 mL, 0.15 M), we added TBAF
in THF (1.1 mL, 1.1 mmol). The mixture was stirred at room temperature for 1.5 h. The
reaction mixture was quenched with saturated NH4Cl (10 mL) and extracted with AcOEt
(3 × 10 mL). The organic extract was washed with brine (10 mL), dried over Na2SO4, and
concentrated in vacuo. The residue was purified by silica gel column chromatography
(AcOEt/hexane = 1/1) to generate 5 (dr = 1.5:1). 124.7 mg, 61% yield; Yellow oil; IR (KBr):
1352, 1167, 1111, 1090, 999 cm−1; 1H NMR (400 MHz, CDCl3) δ: 7.69 (t, J = 8.0 Hz, 1H), 7.64
(d, J = 8.4 Hz, 1H), 7.60 (d, J = 8.8 Hz, 1H), 7.36 (tt, J = 8.0, 1.6 Hz, 1H), 7.27 (dd, J = 7.4,
0.8 Hz, 1H), 7.18–7.16 (m, 2H), 7.13–7.08 (m, 1H), 5.31 (s, 0.6H), 5.26 (s, 0.38H), 4.53 (s,
0.57H), 4.47 (s, 0.37H), 3.78–3.63 (m, 1H), 3.60, 3.59 (2s, 3H), 3.45 (dd, J = 11.8, 3.6 Hz, 0.50H),
3.31–3.26 (m, 1H), 3.07 (dd, J = 11.6, 6.8 Hz, 0.39H), 2.34, 2.33 (2s, 3H), 1.11 (d, J = 6.0 Hz,
1.20H), 1.03 (d, J = 6.4 Hz, 1.90H); 13C NMR (101 MHz, CDCl3) δ: 144.4, 144.3, 141.8, 141.7,
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117.7, 117.2, 98.2, 97.4, 80.7, 80.4, 74.84, 74.79, 66.1, 66.0, 56.04, 55.96, 21.5, 21.4, 16.0, 15.9;
HRMS (ESI) m/z: 400.1195 (Calcd for C19H23NNaO5S [M + Na]+: 400.1195).
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The mixture was stirred at room temperature for 19 h. After filtration, the mixture was
concentrated in vacuo. The residue was purified by silica gel column chromatography
(AcOEt/hexane = 1/5–1/1) to generate TBS-6 (dr = 1.3:1). 2.23 g, 58% yield; Yellow oil; IR
(KBr): 1358, 1167, 1109, 1084, 1022 cm−1; 1H NMR (400 MHz, CDCl3) δ: 7.67 (d, J = 7.6 Hz
1H), 7.59 (d, J = 7.6 Hz, 2H), 7.34 (t, J = 7.6 Hz, 1H), 7.27 (s, 1H), 7.14 (d, J = 8.0 Hz, 2H), 7.07
(t, J = 7.6 Hz, 1H), 5.31, 5.29 (2s, 1H), 4.37 (s, 1H), 3.57 (s, 3H), 3.57–3.53 (m, 1H), 3.36 (dd,
J = 8.8, 2.4 Hz, 0.54 H), 3.28 (dd, J = 8.6, 2.8 Hz, 0.42H), 3.21–3.15 (m, 1H), 0.99 (2d, J = 6.0,
4.8 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ: 144.3, 144.2, 141.83, 141.76, 135.23, 135.20,
130.57, 130.55, 130.2, 130.1, 129.35, 129.32, 127.41, 127.40, 126.71, 126.70, 124.79, 124.72,
117.46, 117.41, 96.9, 96.8, 82.9, 82.8, 74.3, 74.1, 66.14, 66.10, 55.9, 21.43, 21.41, 18.41, 18.38;
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2.4. Synthesis of 7 and 3

A mixture of 5 and 6 (113.2 mg, 0.30 mmol, 5:6 = 1:1.9) was dissolved in AcOEt/MeCN
(3/1, 2.4 mL, 0.125 M). To this solution, we added BF3•Et2O (0.19 mL, 1.5 mmol) and the
mixture was stirred at room temperature for 6 h. After addition of H2O, the mixture was
extracted with AcOEt (3 × 10 mL) and washed with saturated NaHCO3 (10 mL). The
organic layer was dried over MgSO4 and concentrated in vacuo. The residue was purified
by silica gel column chromatography (AcOEt/hexane = 1/5–1/1) to generate a mixture of
7 and 3 (7:3 = 1:1.1). 52.1 mg, 50% yield; Yellow oil.
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2.4.2. Synthesis of 1-(1-Tosyl-1H-indol-3-yloxy)propan-2-ol (7) 

 

To a solution of TBS-7 (415.2 mg, 1.1 mmol) in THF (7.0 mL, 0.15 M), we added TBAF 

in THF (2.1 mL, 2.1 mmol). The mixture was stirred at room temperature for 1 h. The 

reaction mixture was quenched with saturated NH4Cl (10 mL) and extracted with AcOEt 

(3 × 10 mL). The organic extract was washed with brine (10 mL), dried over Na2SO4, and 

concentrated in vacuo. The residue was purified by silica gel column chromatography 

Analytical sample 7 was obtained by TBS protection and separated by silica gel column
chromatography.

2.4.1. Synthesis of 3-((1-tert-Butyldimethylsilyloxy)propan-2-yloxy)-1-tosyl-1H-indole
(TBS-7)

To a solution of a mixture of 7 and 3 (965.5 mg, 2.8 mmol, 7:3 = 1:1.5) and imidazole
(81.7 mg, 1.2 mmol) in DCM (19 mL, 0.15 M), we added TBSCl (168.8 mg, 1.1 mmol).
The mixture was stirred at room temperature for 16 h. After filtration, the mixture was
concentrated in vacuo. The residue was purified by silica gel column chromatography
(AcOEt/hexane = 1/5–1/1) to generate TBS-7. 415.2 mg, 37% yield; Orange oil; IR (KBr):
1367, 1215, 1174, 1103 cm−1; 1H NMR (400 MHz, CDCl3) δ: 7.99 (ddd, J = 8.0, 0.8, 0.8 Hz,
1H), 7.68 (d, J = 8.4 Hz, 2H), 7.50 (ddd, J = 7.8, 1.2, 0.8 Hz, 1H), 7.32 (ddd, J = 8.4, 7.2, 1.2 Hz,
1H), 7.20 (ddd, J = 8.0, 7.2, 0.8 Hz, 1H), 7.16 (d, J = 8.0 Hz, 2H), 6.92 (s, 1H), 4.26 (tq, J = 6.0,
2.8 Hz, 1H), 3.82 (dd, J =11.0, 5.6 Hz, 1H), 3.71 (dd, J = 10.6, 4.8 Hz, 1H), 2.32 (s, 3H), 1.34 (d,
J = 6.0 Hz, 3H), 0.88 (s, 9H), 0.06, 0.02, 0.00 (3s, 6H); 13C NMR (101 MHz, CDCl3) δ:144.7,
144.5, 134.3, 129.8, 126.9, 125.7, 123.3, 118.9, 114.3, 105.6, 78.1, 66.1, 26.0, 21.7, 16.3, 0.14,
−5.13, −5.20; HRMS (ESI) m/z: 482.1797 (Calcd for C24H33NNaO4SSi [M + Na]+: 482.1797).
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2.4.2. Synthesis of 1-(1-Tosyl-1H-indol-3-yloxy)propan-2-ol (7)

To a solution of TBS-7 (415.2 mg, 1.1 mmol) in THF (7.0 mL, 0.15 M), we added TBAF
in THF (2.1 mL, 2.1 mmol). The mixture was stirred at room temperature for 1 h. The
reaction mixture was quenched with saturated NH4Cl (10 mL) and extracted with AcOEt
(3 × 10 mL). The organic extract was washed with brine (10 mL), dried over Na2SO4, and
concentrated in vacuo. The residue was purified by silica gel column chromatography
(AcOEt/hexane = 1/5–1/1) to generate 7. 279.4 mg, 77% yield; Yellow oil; IR (KBr): 1363,
1213, 1173, 1101 cm−1; 1H NMR (400 MHz, CDCl3) δ: 8.00 (ddd, J = 8.4, 0.8, 0.8 Hz, 1H),
7.69 (d, J = 8.0 Hz, 2H), 7.51 (ddd, J = 8.0, 1.2, 0.8 Hz, 1H), 7.33 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H),
7.21 (ddd, J = 8.0, 7.2, 0.8 Hz, 1H), 7.17 (d, J = 8.0 Hz, 2H), 6.97 (s, 1H), 4.36 (tq, J = 6.0, 3.6
Hz, 1H), 3.79 (dd, J = 12.0, 3.6 Hz, 1H), 3.75 (dd, J = 12.0, 6.8 Hz, 1H), 2.31 (s, 3H), 1.32 (d,
J = 6.0 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ:144.5, 143.6, 134.4, 133.8, 129.5, 126.5, 125.6,
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125.1, 123.0, 118.3, 114.0, 105.8, 77.8, 65.8, 21.3, 15.2; HRMS (ESI) m/z: 368.0933 (Calcd for
C18H19NNaO4S [M + Na]+: 368.0933).
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2.5. Synthesis of 2-(1-Tosyl-1H-indol-3-yloxy)propan-1-ol (3)

To a solution of a mixture of 7 and 3 (521.0 mg, 1.5 mmol, 7:3 = 1:1.1) and imidazole
(52.9 mg, 0.77 mmol) in DCM (10 mL, 0.15 M), we added TBSCl (111.9 mg, 0.74 mmol).
The mixture was stirred at room temperature for 18 h. After filtration, the mixture was
concentrated in vacuo. The residue was purified by silica gel column chromatography
(AcOEt/hexane = 1/5–1/1) to generate 3. 188.1 mg, 36% yield; Yellow oil; IR (KBr): 1362,
1215, 1173, 1120 cm−1; 1H NMR (400 MHz, CDCl3) δ: 8.00 (ddd, J = 8.4, 0.8, 0.8 Hz, 1H),
7.69 (d, J = 8.4 Hz, 2H), 7.52 (ddd, J = 7.8, 1.6, 0.8 Hz, 1H), 7.34 (ddd, J = 8.4, 7.2, 1.2 Hz,
1H), 7.22 (ddd, J = 7.8, 7.2,1.2 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 6.92 (s, 1H), 4.26 (tq, J = 3.6,
3.2 Hz, 1H), 3.97 (dd, J = 9.4, 3.2 Hz, 1H), 3.84 (dd, J = 9.4, 8.0 Hz, 1H), 2.32 (s, 3H), 1.31
(d, J = 6.8, 3H); 13C NMR (101 MHz, CDCl3) δ:145.7, 145.2, 135.1, 134.5, 130.2, 127.2, 126.3,
124.9, 123.7, 118.9, 114.7, 105.1, 76.3, 66.6, 22.0, 19.2; HRMS (ESI) m/z: 368.0933 (Calcd for
C18H19NNaO4S [M + Na]+: 368.0933).
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2.6. Synthesis of 1-(1H-Indol-3-yloxy)propan-2-ol (1)

To solution 3 (283.2 mg, 0.82 mmol) in DMSO (8.2 mL, 0.1 M), we added tBuOK
(276.0 mg, 3.0 equiv.). The mixture was stirred at room temperature until the complete
disappearance of starting material, as indicated by TLC. The reaction mixture was quenched
with saturated NH4Cl (10 mL) and extracted with AcOEt (3 × 10 mL). The organic extract
was washed with brine (10 mL), dried over Na2SO4, and concentrated in vacuo. The
residue was purified by silica gel column chromatography (AcOEt/hexane = 1/5–1/1) to
generate 1. 40.2 mg, 26% yield. yellow oil. IR (KBr): 3419, 1558, 1234, 1101 cm−1; 1H NMR
(600 MHz, Methanol-d4) δ: 7.57 (ddd, J = 7.8, 1.2, 1.2 Hz, 1H), 7.25 (ddd, J = 8.4, 0.6, 0.6 Hz,
1H), 7.08 (ddd, J = 8.1, 7.2, 1.2 Hz, 1H), 6.95 (ddd, J = 8.0, 7.2, 1.2 Hz, 1H), 6.80 (s, 1H), 4.17
(tq, J = 6.0, 5.4 Hz, 1H), 3.90 (dd, J = 5.7, 0.6 Hz, 2H), 1.30 (d, J = 6.0 Hz, 3H); 13C NMR (151
MHz, Methanol-d4) δ: 140.1, 134.5, 121.6, 119.4, 117.7, 117.1, 110.9, 105.5, 76.2, 65.9, 18.4;
HRMS (ESI) m/z: 214.0844 (Calcd for C11H13NNaO2 [M + Na]+: 214.0844).
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3. Results and Discussion

Our retrosynthesis of 1 was based on a convergent process involving the Lewis acid-
mediation of 3-alkoxyindoles 5 and 6 isomerization through an indolenium intermediate 4
as a key step (Scheme 1). Thus, the hydroxy group serves as a handle to direct isomerization
reactions in a regioselective manner. The isomerization precursors 5 and 6 are obtained
from 3-bromo-2-methoxyindole (ROBIN: 2-RO-3-bromoindoline) through silver-mediated
alkoxylation. ROBIN is synthesized through the bromoetherification of a commercially
available N-tosylindole (2) using NBS (N-bromosuccinimide) in MeOH [52].
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Scheme 1. Our retrosynthetic analysis for 1.

Synthesis commenced from N-tosylindole (2) (Scheme 2). According to our previously
developed protocol [48], ROBIN (2-RO-3-bromoindoline) was obtained in high yields.
Next, silver-mediated alkoxylation of ROBIN with 1,2-propandiol as a nucleophile was con-
ducted, generating desired alkoxyindoles 5 and 6 as a regioisomeric mixture (1.0:1.9) at an
80% yield. We observed that the regioisomeric ratio (5:6) ranged from 1.0:1.9 to 1.0:1.7 (See,
Sections 2, 2.3.1 and 2.3.3). This result suggested that the alkoxylation might be a reversible
reaction, probably through possible intermediates such as a spiroketal intermediate [53,54]
or an indolenium ion [55]. From the regioisomeric ratio (5:6), it was assumed that the
isomerization step preferred a less-steric hindered nucleophilic attack by the 1◦ alcohol to
steric-hindered nucleophilic attack by the 2◦ alcohol. To our knowledge, the isomerization
of 3-alkoxyindoles has not been previously reported. Unfortunately, alkoxyindoles 5 and
6 could not be directly separated by preparative TLC and silica gel column chromatog-
raphy. Thus, analytical samples of 5 and 6 were obtained after tert-butyldimethylsilyl
(TBS) protection/separation by silica gel column chromatography (See, Section 2). The
mixture of 5 and 6 was evaluated in a demethoxylative aromatization reaction without
further purification. An initial screen of Brønsted acids resulted in decomposition, probably
due to the presence of free alcohol. After intensive screening of Brønsted and Lewis acids
(BF3•OEt2, AlCl3, ZnCl2, FeCl2, InCl3, InBr3, In(OTf)3, and Yb(OTf)3), we observed that
BF3•OEt2 in AcOEt/MeCN generated the desired alkoxyindole 7 and 3 as a regioisomeric
mixture (1.0:1.1) at a 50% yield [50]. The change in the diastereomeric ratio from 1.0:1.9
(5:6) to 1.0:1.1 (7:3) suggested that the demethoxylative aromatization of 5 and 6 occurred
through cyclic intermediates such as a spiroketal intermediate 4′, which permitted the
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reaction through a stabilized oxonium ion. If the reaction proceeded as an acyclic inter-
mediate [54], a less-steric hindered alkoxy exchange would be preferred. The undesired
regioisomer 7 became separable after performing TBS protection/separation by silica gel
column chromatography using 0.49 equiv. of TBSCl and 0.51 equiv. of imidazole to generate
the secondary alcohol 3.
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Next, we performed the detosylation of 3 to obtain N–H compound 1. Using NaOH-
mediated detosylation, a trace amount of the desired N–H compound 1 was obtained due
to its instability. In general, 1 displayed valuable stability to reaction conditions, which
allowed us to determine more mild conditions. After intensive investigations, we found
that tert-BuOK, which is a known steric hindered base, generated acceptable yields of the
proposed structure 1 [56]. It was noteworthy that this detosylation tolerated the presence
of free OH in 3.

The plausible mechanism of the isomerization of the mixture 5 and 6 is shown in
Scheme 3. First, BF3•OEt2 promoted the elimination of an alcohol moiety (1,2-propandiol)
which generated the common intermediate 4. Then, alkoxylation/demethoxylative aroma-
tization occurred in the presence of 5 equivalents of BF3•OEt2 to generate the mixture 7
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and 3 with the ratio of 1.0:1.1. This reaction proceeded through the intermediate 4′ due to
an increase in the formation of sterically hindered 5.
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Scheme 3. Plausible isomerization mechanism.

The structure of 1-(1H-Indol-3-yloxy)propan-2-ol isolated from the Red Sea sponge
Haliclona sp. was determined using NMR and HRMS data (Supplementary Material). A
comparison of synthetic sample 1 1H and 13C NMR spectra with the literature revealed
significant differences [49].

The largest 1H chemical shift differences were found for H2 (Table 1, synthetic 1:
6.80 ppm vs. reported 1: 7.95 ppm). The aromatic benzene region of the 1H chemical shift
of our synthetic 1 was also different from reported 1 (synthetic 1: 6.95, 7.08, 7.25, and
7.57 ppm vs. reported 1: 7.16, 7.20, 7.45, and 8.13 ppm). Large 13C chemical shift differences
were also observed for C2, C3, and C3a positions (Table 2, synthetic 1 (C2): 105.5 ppm vs.
reported 1 (C2): 133.6 ppm; synthetic 1 (C3): 119.4 ppm vs. reported 1 (C3): 110.0 ppm;
synthetic 1 (C3a): 140.1 ppm vs. reported 1 (C3a): 128.0 ppm). These key discrepancies
in 1H and 13C NMR data potentially suggested an incorrectly determined indole ring
system [6,57]. Unsurprisingly, misinterpretation of 1H and 13C NMR data is the most
common reason for the misassignment of natural products [58–64]. To our surprise, we
found that High-Resolution Mass Spectrometer (HRMS) data were also different (synthetic
1 vs. reported 1). In the isolation paper of 1, authors commented “Its high-resolution
electron impact mass spectrometry (HREI-MS) showed an odd molecular ion peak at m/z
191.0946”. Molecular formula assignment is one of the critical steps in assigning a structure
to an isolated natural product, and is based on matching isotopic composition to detected
m/z values [65]. However, assignment can be interfered with by the complicated nature of
peaks containing heteroatoms along with peaks containing heavy isotopes. Based on HRMS
data differences between synthetic 1 [HRMS (ESI) m/z: 214.0844 (Calcd for C11H13NNaO2
[M + Na]+)] and reported 1 [HRMS (ESI) m/z: 191.0946 (Calcd for C11H13NO2 [M]+], a
wrong heteroatom assignment might also occur [66]. Therefore, we suggest that the indolyl
1,2-propanediol alkaloid may be another heterocyclic compound.
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Table 1. 1H-NMR data comparisons between synthetic and natural 1 samples.
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2 105.5 133.6
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3a 140.1 128.0
4 117.1 122.2
5 117.7 122.1
6 121.6 123.4
7 110.9 112.8
7a 134.5 138.2
8 76.2 68.5
9 65.9 69.2
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4. Conclusions

We accomplished the first total synthesis of the proposed structure of an unprece-
dented indolyl saccharide alkaloid 1 bearing a 1,2-propandiol moiety. Isomerization of
3-alkoxyindolines through indolenium intermediates were key steps in the total synthesis.
Our synthetic route was concise, requiring only five steps from N-Ts indole and yielding
the target 1 at a 3% overall yield. 1H, 13C-NMR, IR, and HRMS spectra of the synthetic
compound drastically differed to originally reported structure spectra. In the organic
chemistry field, structural misassignments are problematic [66] and may be avoided using
NMR chemical shift calculations [67] or machine learning [68,69]. A difficult task is to find
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the correct revision in the first place. Further synthetic studies to revise the natural product
are ongoing in our laboratory.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/chemistry5040177/s1. The Supplementary Materials contain analytical
data including Figures S1–S14: 1H- and 13C-NMR spectra.
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