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Abstract: Thiocyanates form an important class of organic compounds commonly found in natural
products that exhibit excellent antimicrobial activity. The electrophilic thiocyanation is one of the
most effective methods of introducing a -SCN functional group to the parent organic molecule. In
this work, we explored an eco-friendly and highly efficient method for thiocyanation of anilines and
1-(substituted benzylidene)-2-phenylhydrazines using commercially available N-bromoscuccinimide
(NBS) and potassium thiocyanate (KSCN). The optimized protocol afforded thiocyanates with good
regioselectivity and excellent yields in comparison to the available methods.
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1. Introduction

The thiocyanation of both aromatic and heteroaromatic compounds represents a cru-
cial transformation with implications for both organic synthesis and pharmaceuticals [1,2].
In recent years, there has been a significant attraction to sulphur-containing aromatic com-
pounds due to their diverse biological activities. Among these compounds, thiocyanates
are a prominent class, serving as key building blocks in the synthesis of pharmacologically
active compounds. Thiocyanates exhibit versatile reactivity, leading to the formation of
thiols [3], sulfonyl chlorides [4], sulphides [5], trifluoromethyl (or difluoromethyl) sul-
phides [6,7], disulphides [8], phosphonothioates [9], and other sulphur-containing hetero-
cycles [10,11]. This functional group is well-established in numerous biologically active
natural products [12-17] and synthetic compounds featuring them as potential enzyme
inhibitors (Figure 1), with applications ranging from treating Chagas disease [18,19] and
cancer [20,21] to the more recent considerations for COVID-19 [22].

Various methods have been employed for the thiocyanation of aromatic systems using
different reagents. For instance, thiocyanation of indoles and carbazoles was achieved
using ammonium thiocyanate by montmorillonite K 10 clay-mediated reactions [23]. Thio-
cyanation of alcohols, trimethyl silyl, and tetrahydropyranyl ethers was carried out using a
diphenyl phosphinite ionic liquid [24]. Peroxydisulfate-Cu(Il), as an oxidant, was employed
for the a-thiocyanation of carbonyl and 3-dicarbonyl compounds [25]. Thiocyanation of
aromatic compounds was carried out by anodic oxidation of thiocyanate anion to SCN
radical [26]. Indoles and pyrrole undergo a reaction with ammonium thiocyanate in the
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presence of o-iodoxy benzoic acid [27]. Indoles were converted to corresponding thio-
cyanato derivatives on treatment with ammonium thiocyanate in the presence of p-toluene
sulfonic acid [28]. An NBS-mediated procedure was developed for the thiocyanation of
cyclohexene-fused isoxazoline N-oxides under mild conditions [29].
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Figure 1. (A) Representative conversions of thiocyanate into different functional moieties [3,5,6,10];
A few thiocyanates as (B) natural products and (C) enzyme inhibitors.

Several methods have been tried for the synthesis of thiocyanatoaniline. Reaction with
ammonium thiocyanate, trichloroisocyanuric acid, and wet SiO, yielded the product by in
situ generation of hypochlorous acid in a heterogeneous system and subsequent oxidation
of the thiocyanate anion in dichloromethane solvent [30]. Among the other oxidants em-
ployed with ammonium thiocyanate, cerium (IV) ammonium nitrate in methanol afforded
unsatisfactory yield of the product [31]. A significant improvement could be observed
when the reaction was performed with iodine [32]. Sodium perborate also facilitates the
transformation but under acidic conditions employing glacial acetic acid [33]. A free radical
process for the transformation could be invoked using oxone in a methanol medium [34] or
manganese acetate in acetic acid [35] with modest yields. The conversion was also achieved
using diethyl azodicarboxylate in an acetonitrile medium [36]. A milder condition was
attempted using anhydrous ferric chloride in dichloromethane but took a longer time to
achieve an appreciable yield [37]. Microwave irradiation was explored on a solid surface by
employing acidic alumina [38]. DDQ mediation thiocyanation of the substrates depends on
the electron donor ability of the aromatic nucleus [39]. Attempts to obtain the product with
iodine pentoxide were not encouraging [40]. Thiocyanation in iodic acid afforded good
yields, but chloroform was used as the solvent [41]. With hydrogen peroxide or periodic
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acid, the reaction was performed in aqueous medium [42]. Dichloroidodo benzene pro-
motes the reaction at 0 °C in a dichloromethane medium [43]. Despite these advancements,
the methods employed have one or more limitations, such as poor yield, narrow substrate
scope, halogenated or toxic solvent, need for an excessive amount of strong oxidizing
reagent, acidic conditions, heterogeneous reaction phase, poor performance, anhydrous
medium, long reaction time, inert atmosphere, and stringent reaction conditions with
difficultly in scalability. Therefore, there is an unmet need to develop an efficient process
for synthesizing thiocyanate derivatives of anilines. A simple procedure for thiocyana-
tion was demonstrated on arene substrates using N-thiocyanatosuccinimide (NTS) [44].
However, the scope of this strategy was not widely explored for aniline derivatives and
1-(substituted benzylidene)-2-phenylhydrazines. We, therefore, decided to investigate the
electrophilic thiocyanation reactions of these substrates under eco-friendly conditions by
using N-bromosuccinimide and potassium thiocyanate in an ethanol medium.

2. Experimental Section
2.1. Materials and Methods

All the chemicals were obtained from commercial suppliers and used without further
purification. The reactions were conducted in oven-dried glassware and maintained under
the appropriate atmospheric conditions. To monitor the progress of the reactions, thin-layer
chromatography (TLC) was employed, specifically, 0.25 mm Merck Silica gel 60 F254 plates
were used, and visualization was achieved using UV light. In column chromatography,
60-120 mesh silica gel was used as the stationary phase. Elution was carried out using
a mixture of hexane and ethyl acetate as the mobile phase. Nuclear magnetic resonance
(NMR) spectra were recorded using a Jeol ECZ 400R spectrometer operating at 400 MHz for
'H NMR and 100 MHz for 13C NMR. CDCl3 was used as the solvent, and tetramethyl silane
(TMS) served as the internal standard. Chemical shifts (8) were reported relative to residual
solvent signals, specifically 7.25 ppm for 'H NMR and a triplet centred at 77.00 ppm for 13C
NMR. Mass spectrometry analysis was conducted using an ESI (electrospray ionization)
quadrupole time-of-flight Agilent mass spectrometer. IR spectra were recorded on a Bruker
Alpha II FTIR spectrophotometer.

(i)  General procedure for the synthesis of thiocyanatoaniline analogues

To a solution of N-bromosuccinimide (1.0 mmol) in EtOH (10 mL), KSCN (2.1 mmol)
was added and stirred at room temperature (27 °C) for 5 min. To this solution, substituted
aniline (1.0 mmol) was added and the reaction mixture was stirred at room temperature
(27 °C) for 20 min. The reaction mixture was concentrated, diluted with water, and extracted
thrice with EtOAc. The combined organic extracts were concentrated under vacuum, and
the resultant crude was subjected to purification by column chromatography on silica gel
(60-120 mesh) using a hexane-ethyl acetate mixture (10:1) as the mobile phase to obtain the
desired product.

4-thiocyanatoaniline (1a) [30]: Pale brown solid; Yield 98%; m.p. = 52-53 °C; IR (Vmax, em ™)
3374.27,2152.01, 1707.83 1625.05, 1594.80, 1495.78, 1428.12, 1361.05, 1301.37, 1221.64, 1179.07,
1129.30, 1085.54, 824.74, 676.97; '"H NMR (400 MHz, CDCl3) § ppm: 7.31-7.34 (m, 2H, Ar),
6.63-6.66 (m, 2H, Ar), 3.97 (s, 2H, NH,); '3C NMR (100 MHz, CDCl3) § ppm: 148.9, 134.6, 116.2,
112.5, 109.6; HRMS (ESI): m/z caled. for C;HgN,S [M + H]*: 151.0252; found: 151.0486.

2-chloro-4-thiocyanatoaniline (1b) [39]: White solid; Yield 96%; m.p. = 64-66 °C; IR (Vmax,
cm™1): 3474.59, 3372.59, 3233.14, 2925.76, 2154.54, 2054.68, 1623.93, 1591.81, 1476.32, 1420.75,
1315.22, 1239.46, 1123.23, 1020.23, 902.03, 849.96, 813.39; 'H NMR (400 MHz, CDCl3) &
ppm: 7.48 (d, 1H, Ar), 7.25-7.28 (m, 1H, Ar), 6.75 (d, 1H, Ar), 4.38 (s, 2H, NH,); 3C NMR
(100 MHz, CDCl3) b ppm: 145.4, 133.9, 132.7, 119.8, 116.5, 111.7, 110.1;, HRMS (ESI): m/z
caled. for CyH5CIN,S [M + H]*: 184.9864; found: 184.9975.
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2-methyl-4-thiocyanatoaniline (1c) [42]: Creamy white solid; Yield 96%; m.p. = 68-70 °C;
IR (Vmax, cm™1): 3449.59, 3368.62, 3246.89, 2924.89, 2150.60, 1628.89, 1592.12, 1568.60,
1491.02, 1454.53, 1402.63, 1296.51, 1153.92, 1091.96, 1032.18, 995.58, 885.14, 814.70, 719.01;
'H NMR (400 MHz, CDCl3) § ppm: 7.24-7.26 (m, 1H, Ar), 7.20-7.23 (m, 1H, Ar), 6.59-6.68
(m, 1H, Ar), 3.90 (s, 2H, NHj), 2.13 (s, 3H, CH3); '3C NMR (100 MHz, CDCl3) § ppm: 147.2,
135.1,132.2,124.0, 115.8, 112.7, 109.3, 17.3; HRMS (ESI): m/z calcd. for CgHgN,S [M + H]*:
165.0408; found: 165.0509.

4-methyl-2-thiocyanatoaniline (1d): White solid; Yield 97%; m.p. = 80-82 °C; '"H NMR
(400 MHz, CDCl3) b ppm: 7.34 (d, 1H, Ar), 6.56-6.58 (m, 1H, Ar), 6.46-6.50 (m, 1H, Ar),
3.91 (s, 2H, NHj), 2.43 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) 5 ppm: 149.5, 143.1, 136.4,
117.4,113.8, 112.2, 109.1, 21.0; HRMS (ESI): m/z calcd. for CsHgN,S [M + H]*: 165.0408;
found: 165.641.

2,3-dichloro-4-thiocyanatoaniline (1e): Yellow solid; Yield 96%; m.p. = 75-77 °C; IR (Vmax,
cm™1): 3333.01, 3226.89, 2925.74, 2161.17, 1708.24, 1629.63, 1577.77, 1539.59, 1466.44, 1393.56,
1359.26, 1323.83, 1294.70, 1220.32, 1181.86, 1109.75, 1056.51, 919.81, 813.47, 773.60; 'H NMR
(400 MHz, CDCl3) § ppm: 7.39 (d, 1H, Ar), 6.70 (d, 1H, Ar), 4.50 (s, 2H, NH,); 3C NMR
(100 MHz, CDCl3) b ppm: 146.5, 135.5, 132.0, 118.9, 114.1, 110.6, 110.5; HRMS (ESI): m/z
caled. for C;H4Cl,NLS [M + H]*: 217.9472; found: 217.0195.

2-fluoro-4-thiocyanatoaniline (1f): Pale yellow solid; Yield 95%; m.p. = 61-63 °C; IR
(Vmax, cm ™ 1): 3474.59, 3372.59, 3233.14, 2925.76, 2154.54, 2054.68, 1623.93, 1591.81, 1476.32,
1420.75, 1315.22, 1239.46, 1123.23, 1020.23, 902.03, 849.96, 813.39; 'H NMR (400 MHz,
CDCl3) 6 ppm: 7.19-7.23 (m, 1H, Ar), 7.12-7.16 (m, 1H, Ar), 6.73-6.78 (m, 1H, Ar), 4.09 (s,
2H, NH,); 13C NMR (100 MHz, CDCl3) & ppm: 152.2, 149.8, 137.6, 129.9, 120.0, 117.4, 111.8;
HRMS (ESI): m/z caled. for C;H5FN,S [M + H]*: 169.0157; found: 169.0281.

4-fluoro-2-thiocyanatoaniline (1g): Pale yellow solid; Yield 96%; m.p. = 76-78 °C; 'H NMR
(400 MHz, CDCl3) 6 ppm: 7.44-7.48 (m, 1H, Ar), 7.26-7.30 (m, 1H, Ar), 6.99-7.05 (m, 1H, Ar),
5.42 (s, 2H, NH,); '3C NMR (100 MHz, CDCl3) § ppm: 160.0, 119.8, 119.7, 114.0, 113.7, 107.9,
107.6; HRMS (ESI): m/z calcd. for C;HsFN,LS [M + HJ*: 169.0157; found: 169.0281.

3-chloro-4-thiocyanatoaniline (1h): Yellow solid; Yield 97%; m.p. = 70-72 °C; IR (Vmax,
cm~1): 3474.59, 3372.59, 3233.14, 2925.76, 2154.54, 2054.68, 1623.93, 1591.81, 1476.32, 1420.75,
1315.22, 1239.46, 1123.23, 1020.23, 902.03, 849.96, 813.39; 'H NMR (400 MHz, CDCl3) & ppm:
7.39-7.40 (m, 1H, Ar), 6.75-6.77 (m, 1H, Ar), 6.54-6.57 (m, 1H, Ar), 4.08 (s, 2H, NH,); 13C
NMR (100 MHz, CDCls) & ppm: 150.0, 137.8, 135.4, 116.2, 114.6, 111.2, 108.7; HRMS (ESI):
m/z caled. for C;H5CIN,S [M + H]*: 184.9862; found: 184.9978.

3,5-dichloro-4-thiocyanatoaniline (1i): Creamy white solid; Yield 96%; m.p. = 65-67 °C; IR
(Vmax, cm~1): 3408.88, 3333.01, 3226.89, 2925.74, 2161.17, 1708.24, 1629.63, 1577.77, 1539.59,
1466.44, 1393.56, 1359.26, 1323.83, 1294.70, 1220.32, 1181.86, 1109.75, 1056.51, 919.81, 813.47,
773.60; '"H NMR (400 MHz, CDCl3) § ppm: 6.71-6.73 (m, 2H, Ar), 4.15 (s, 2H, NH,); 13C
NMR (100 MHz, CDCl3) 5 ppm: 150.4, 141.7, 114.9, 110.0, 107.9; HRMS (ESI): m/z calcd. for
C;H,4CI;N,S [M + HJ*: 218.9472; found: 218.9472.

3-methyl-4-thiocyanatoaniline (1j) [42]: Yellow solid; Yield 96%; m.p. = 81-83 °C; IR
(Vmax, cm ™ 1): 3427.48, 3339.89, 3213.03, 2920.65, 2146.96, 1708.08, 1625.62, 1592.74, 1481.86,
1453.57,1360.12, 1325.91, 1254.65, 1221.13, 1139.17, 1034.00, 858.95, 817.13, 739.36, 671.84;
'H NMR (400 MHz, CDCl3) § ppm: 7.34 (d, 1H, Ar), 6.56-6.59 (m, 1H, Ar), 6.46-6.50 (m,
1H, Ar), 3.91 (s, 2H, NH,), 2.44 (s, 3H, CH3); '*C NMR (100 MHz, CDCl3) § ppm: 149.5,
143.1,136.4, 117.4, 113.8, 112.2, 109.1, 21.0; HRMS (ESI): m/z calcd. for CsHgN,S [M + HJ*:
165.0408; found: 165.0754.

2-methoxy-4-thiocyanatoaniline (1k): White solid; Yield 96%; m.p. = 52-54 °C; IR (Vmax,
cm™1): 344959, 3368.62, 3246.89, 2924.89, 2150.60, 1628.89, 1592.12, 1568.60, 1491.02, 1454.53,
1402.63, 1296.51, 1153.92, 1091.96, 1032.18, 995.58, 885.14, 814.70, 719.01; 'H NMR (400 MHz,
CDCls) 6 ppm: 6.99-7.02 (m, 1H, Ar), 6.94 (d, 1H, Ar), 6.64-6.68 (m, 1H, Ar), 4.08 (s, 2H, NH,),
3.86 (s, 3H, OCHj3); 13C NMR (100 MHz, CDCl3) § ppm: 147.7, 139.1, 126.9, 115.0, 114.6, 112.5,
109.0, 55.8; HRMS (ESI): m/z caled. for CgHgN,OS [M + H]*: 181.0352; found: 181.0760.
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2,6-dimethyl-4-thiocyanatoaniline (11) [30]: White solid; Yield 97%; m.p. = 85-87 °C; IR
(Vmax, cm~1): 3412.21, 3343.82, 2971.60, 2151.47, 1709.41, 1636.90, 1582.66, 1465.66, 1438.27,
1360.04, 1284.95, 1221.05, 1113.24, 1027.29, 867.69, 746.19, 731.58; 'H NMR (400 MHz,
CDCl3) § ppm: 7.15-7.16 (m, 2H, Ar), 3.82 (s, 2H, NH>), 2.15 (m, 6H, 2 x CH3); 1*C NMR
(100 MHz, CDCls) 6 ppm: 145.3,132.9, 123.2, 112.8, 108.6, 17.5; HRMS (ESI): m/z calcd. for
CyoHoN»S [M + HJ*: 179.0565; found: 179.095.

4-bromo-2-thiocyanatoaniline (1m): Yellow solid; Yield 98%; m.p. = 73-75 °C; IR (Vmax,
cm~1): 3474.59, 3372.59, 3233.14, 2925.76, 2154.54, 2054.68, 1623.93, 1591.81, 1476.32, 1420.75,
1315.22, 1239.46, 1123.23, 1020.23, 902.03, 849.96, 813.39; 'H NMR (400 MHz, CDCl3) § ppm:
7.44-7.48 (m, 1H, Ar), 7.26-7.30 (m, 1H, Ar), 6.99-7.05 (m, 1H, Ar), 5.49 (s, 2H, NH,); 13C
NMR (100 MHz, CDCl3) 6 ppm: 160.0, 119.8,119.7, 114.0, 113.7, 107.9, 107.6; HRMS (ESI):
m/z caled. for C;H5BrN,S [M + H]*: 230.9357; found: 230.9581.

4-methoxy-2-thiocyanatoaniline (1n): Pale yellow solid; Yield 96%; m.p. = 100-102 °C;
'H NMR (400 MHz, CDCl3) § ppm: 6.99-7.02 (m, 1H, Ar), 6.94 (d, 1H, Ar), 6.65-6.67 (m, 1H,
Ar), 4.08 (s, 2H, NHj), 3.86 (s, 3H, OCH3); 13C NMR (100 MHz, CDCl3) § ppm: 147.7,139.1,
126.9, 115.0, 114.6, 112.5, 109.0, 55.8; HRMS (ESI): m/z calcd. for CgHgN,OS [M + H]*:
181.0357; found: 181.0557.

2,4-dimethyl-6-thiocyanatoaniline (1o): White solid; Yield 96%; m.p. = 75-76 °C; 'H
NMR (400 MHz, CDCl3) 6 ppm: 7.21-7.23 (m, 1H, Ar), 6.92-6.94 (m, 1H, Ar), 5.65 (s, 2H,
NHy), 2.50 (s, 3H, CH3), 2.35 (s, 3H, CHj3); 3C NMR (100 MHz, CDCl3) § ppm: 164.8, 148.9,
132.0, 131.3, 128.4, 128.3, 118.5, 21.3, 18.5; HRMS (ESI): m/z calcd. for CoH9N,S [M + H]*:
179.0565; found: 179.0882.

4-chloro-2-thiocyanatoaniline (1p): Yellow solid; Yield 98%; m.p. = 69-71 °C; 'H NMR
(400 MHz, CDCl3) 6 ppm: 7.44-7.48 (m, 1H, Ar), 7.26-7.30 (m, 1H, Ar), 6.99-7.05 (m, 1H,
Ar), 5.40 (s, 2H, NH); 1*C NMR (100 MHz, CDCl3) § ppm: 160.0, 119.8, 119.7, 114.0, 113.7,
107.9, 107.6; HRMS (ESI): m/z calcd. for C;H5CIN,S [M + H]*: 184.9862; found: 185.0111.

(ii)  General procedure for the synthesis of substituted (E)-1-benzylidene-2-(4-thiocyanatophenyl)
hydrazine analogues.

To a solution of N-bromosuccinimide (1.0 mmol) in EtOH (10 mL), KSCN (2.1 mmol)
was added and stirred at room temperature (27 °C) for 5 min. To this solution, 1-(substituted
benzylidene)-2-phenylhydrazine (1.0 mmol) was added and the reaction mixture was
stirred at room temperature (27 °C) for 20 min. The reaction mixture was concentrated,
diluted with water, and extracted thrice with EtOAc. The combined organic extracts were
concentrated under vacuum, and the resultant crude was subjected to purification by
column chromatography on silica gel (60-120 mesh) using a hexane-ethyl acetate mixture
(10:1) as the mobile phase to obtain the desired product.

1-benzylidene-2-(4-thiocyanatophenyl)hydrazine (2a): Yellow solid; Yield 95%; m.p. = 112-
114 °G; IR (Vmax, cm™1): 3479.12, 3373.20, 2155.30, 1707.64, 1625.34, 1589.70, 1544.17, 1494.36,
1444.08, 1422.36, 1358.39, 1304.85, 1259.80, 1220.69, 1191.30, 1138.59, 1067.28, 1026.73, 953.13,
928.58, 842.48, 802.17, 755.39; 'H NMR (400 MHz, CDCl3) § ppm: 7.80 (s, 1H, NH), 7.71
(s, 1H, CH), 7.64-7.66 (m, 2H, Ar), 7.44-7.47 (m, 2H, Ar), 7.31-7.40 (m, 3H, Ar), 7.11-7.14
(m, 2H, Ar); 13C NMR (100 MHz, CDCl3) § ppm: 146.6, 139.4, 134.7, 134.2, 129.2, 128.8,
126.6, 114.2, 112.2, 111.6; HRMS (ESI): m/z caled. for C14H11N3S [M + HJ*: 254.0674;
found: 254.0794.

1-(2-bromobenzylidene)-2-(4-thiocyanatophenyl)hydrazine (2b): White solid; Yield 80%;
m.p. = 146-148 °C; IR (Vmax, cm ™~ 1): 3477.89, 3372.94, 2926.24, 2155.71, 1708.75, 1625.84,
1590.34, 1544.08, 1494.31, 1443.82, 1422.32, 1358.46, 1304.64, 1259.70, 1220.31, 1191.54,
1133.84, 1092.93, 1067.24, 1026.65, 928.31, 842.62, 802.07, 755.02, 693.91; 'H NMR (400 MHz,
CDCl3) 6 ppm: 8.11 (s, 1H, NH), 8.03 (s, 1H, CH), 8.01 (s, 1H, Ar), 7.52-7.56 (m, 1H, Ar),
7.46-7.48 (m, 2H, Ar), 7.31-7.34 (m, 1H, Ar), 7.13-7.18 (m, 3H, Ar), 3C NMR (100 MHz,
CDCl3) & ppm: 146.2,138.1, 134.1, 133.6, 133.1, 130.2, 127.7, 127.2, 123.16, 114.3, 112.3, 112.0;
HRMS (ESI): m/z caled. for C14H1¢BrN3S [M + H]*: 333.9779; found: 333.9846.
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1-(2-chlorobenzylidene)-2-(4-thiocyanatophenylhydrazine (2c): Pale brown solid; Yield
90%; m.p. = 113-114 °C; IR (Vmax, cm~1): 3480.27, 3374.88, 2926.24, 2155.25, 1707.39,
1625.72, 1590.60, 1544.19, 1494.22, 1444.23, 1422.36, 1358.23, 1303.22, 1259.94, 1221.15,
1191.24, 1135.16, 1067.31, 1026.67, 928.27, 842.70, 802.17, 754.81; 'H NMR (400 MHz, CDCl;)
d ppm: 8.14 (s, 1H, NH), 8.05 (s, 1H, CH), 8.01-8.03 (m, 1H, Ar), 7.47-7.48 (m, 1H, Ar),
7.45-7.46 (m, 1H, Ar), 7.34-7.36 (m, 1H, Ar), 7.25-7.29 (m, 2H, Ar), 7.13-7.15 (m, 2H, Ar);
13C NMR (100 MHz, CDCl3) § ppm: 146.2, 135.8, 135.7, 134.1, 133.1, 132.1, 129.9, 127.1,
126.8, 114.3, 112.2, 112.1; HRMS (ESI): m/z caled. for C14H;9CIN3S [M + H]*: 288.0284;
found: 288.0384.

1-(3-bromobenzylidene)-2-(4-thiocyanatophenyl)hydrazine (2d): White solid; Yield 83%;
m.p. = 119-121 °C; IR (Vmax, cm ™~ 1): 3474.59, 3372.59, 3233.14, 2925.76, 2154.54, 2054.68,
1623.93,1591.81, 1476.32, 1420.75, 1315.22, 1239.46, 1123.23, 1020.23, 902.03, 849.96, 813.39;
I'H NMR (400 MHz, CDCl3) 6 ppm: 7.86 (s, 1H, NH), 7.81 (s, 1H, CH), 7.63 (s, 1H, Ar), 7.53
(d, 1H, Ar), 7.41-7.50 (m, 3H, Ar), 7.25 (s, 1H, Ar), 7.12 (m, 2H, Ar); 3C NMR (100 MHz,
CDCl;) 6 ppm: 146.1, 137.4, 136.8, 134.1, 131.9, 130.3, 129.1, 125.2, 123.0, 114.3, 112.3, 112.0;
HRMS (ESI): m/z caled. for C14H;9BrN3S [M + H]*: 333.9779; found: 333.9831.

1-(4-chlorobenzylidene)-2-(4-thiocyanatophenyl)hydrazine (2e): Pale yellow solid; Yield
90%; m.p. = 120-122 °C; IR (Vmax, cm ™ 1): 3449.59, 3368.62, 3246.89, 2924.89, 2150.60, 1628.89,
1592.12, 1568.60, 1491.02, 1454.53, 1402.63, 1296.51, 1153.92, 1091.96, 1032.18, 995.58, 885.14,
814.70, 719.01, 671.25; 'H NMR (400 MHz, CDCl3) 5 ppm: 7.81 (s, 1H, NH), 7.67 (s, 1H,
CH), 7.56-7.59 (m, 2H, Ar), 7.45-7.48 (m, 2H, Ar), 7.33-7.36 (m, 2H, Ar), 7.11-7.14 (m, 2H,
Ar); ¥C NMR (100 MHz, CDCl3) § ppm: 146.3, 138.0, 134.9, 134.1, 133.2, 129.0, 127.6, 114.2,
112.1, 112.0; HRMS (ESI): m/z calcd. for C14H19CIN3S [M + H]*: 288.0284; found: 288.0461.

1-(4-fluorobenzylidene)-2-(4-thiocyanatophenyl)hydrazine (2f): White solid; Yield 87%;
m.p. = 125-127 °C; IR (Vmax, cm™1): 3477.89, 3372.94, 2926.24, 2155.71, 1708.75, 1625.84,
1590.34, 1544.08, 1494.31, 1443.82, 1422.32, 1358.46, 1304.64, 1259.70, 1220.31, 1191.54,
1133.84, 1092.93, 1067.24, 1026.65, 928.31, 842.62, 802.07, 755.02, 693.91; 'H NMR (400 MHz,
CDCl3) 6 ppm: 7.78 (s, 1H, NH), 7.69 (s, 1H, CH), 7.61-7.65 (m, 2H, Ar), 7.44-7.47 (m, 2H,
Ar), 7.05-7.13 (m, 4H, Ar); '*C NMR (100 MHz, CDCl3) § ppm: 146.5, 138.2, 134.2, 128.3,
128.2,116.0,115.8, 114.1, 112.1, 111.7, HRMS (ESI): m/z caled. for C14H;9FN3S [M + H]*:
272.0579; found: 272.0639.

1-(4-nitrobenzylidene)-2-(4-thiocyanatophenyl)hydrazine (2g): Orange solid; Yield 93%;
m.p. = 143-145 °C; 'H NMR (400 MHz, CDCl3) & ppm: 8.25 (s, 1H, NH), 8.23 (s, 1H, CH),
8.09 (s, 1H, Ar), 7.74-7.81 (m, 3H, Ar), 7.50 (d, 2H, Ar), 7.18 (d, 2H, Ar); '3C NMR (100 MHz,
CDCl;) 6 ppm: 146.3,138.0, 134.9, 134.1, 133.2, 129.0, 127.6, 114.2, 112.1, 112.0; HRMS (ESI):
m/z caled. for C14H1oN4O5S [M + H]*: 299.0524; found: 299.0602.

1-(4-bromobenzylidene)-2-(4-thiocyanatophenyl)hydrazine (2h): Yellow solid; Yield 83%;
m.p. = 111-113 °C; IR (Vmax, cm™~1): 3427.48, 3339.89, 3213.03, 2920.65, 2146.96, 1708.08,
1625.62,1592.74, 1481.86, 1453.57, 1360.12, 1325.91, 1254.65, 1221.13, 1139.17, 1034.00, 858.95,
817.13, 739.36, 671.84; 'H NMR (400 MHz, CDCl3) & ppm: 7.80 (s, 1H, NH), 7.66 (s, 1H, CH),
7.51 (m, 4H, Ar), 7.45-7.48 (m, 2H, Ar), 7.11-7.14 (m, 2H, Ar); '3C NMR (100 MHz, CDCl3)
b ppm: 146.2, 138.0, 134.1, 133.7, 132.0, 127.9, 123.1, 114.2, 112.2, 112.1; HRMS (ESI): m/z
caled. for C14H19BrN3S [M + H]*: 333.9844; found: 333.9779.

2.2. X-ray Diffraction Analysis

A good quality single crystal of compound 11 was obtained by slow evaporation from
a solution using ethanol solvent. The crystal was mounted along its largest dimension
and used for data collection. The intensity data were collected on a Bruker Smart CCD
Area Detector System using MoK« (0.71073 A) radiation in w—¢ scan mode. The data
were reduced using SAINT-Plus [45]. The structure was solved by Direct Methods and
refined on F? using the SHELX-97 [46] package. All the non-hydrogen atoms were refined
anisotropically. As the hydrogens were not readily revealed from difference Fourier maps,
they were included in the ideal positions with fixed isotropic U values, and they were riding
with their respective non-hydrogen atoms. The difference Fourier map, after the refinement,
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was essentially featureless in all cases. The mean plane calculations were conducted
using the program PARST [47]. Diagrams and publication material were generated using
ORTEP-3 [48] PLATON [49], CAMERON [50] and DIAMOND [51]. The CIF files are
deposited at the Cambridge Crystallographic Data Centre, the deposition number for
compound 11 is CCDC-2251369. This data can be obtained free of charge at https://www.
ccde.cam.ac.uk/ (accessed on 8 January 2024) [or from the Cambridge Crystallographic
Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0)1223-336033;
email: deposit@ccdc.cam.ac.uk].

3. Results and Discussion

Attempts to thiocyanate the aromatic nucleus have been tried under several condi-
tions. An examination of the numerous reagents employed indicates that the strategies
for thiocyanation can be generalised mechanistically. The more common approach is to
generate an SCN* electrophile from the thiocyanate anion, followed by the addition of
the electrophile to the aryl ring and a proton abstraction [32,36,44]. The second approach
involves the oxidation of substrate to form a radical cation that will facilitate a direct
attack by SCN™ anion. This resulting species can undergo hydrogen radical abstraction
to form the product [34]. Yet another approach would be the oxidation of thiocyanate
anion to the SCN radical and the addition of the radical on the substrate to generate a
thiocyanated carbon radical. Transfer of an electron from the carbon radical would result
in the formation of a carbocation that undergoes a proton loss [35]. The -complex or ion
pair formed between substrate and oxidant can undergo attack by the SCN™ anion to form
a thiocyanated carbon radical and subsequent transfer of an electron transfer generates
a carbocation that forms the product by a proton loss [39]. Among these strategies, the
formation and reaction of electrophilic SCN* would be a simpler and more convenient
process that can take advantage of the nucleophilic character of the substrates such as
anilines. With this background, we decided to investigate the electrophilic thiocyanation of
aniline using the SCN* electrophile.

In our pursuit of a milder and more convenient procedure for thiocyanation, we have
explored various reaction conditions involving the interaction of NBS with an alkali metal
thiocyanate. Our findings indicate that NBS, in conjunction with potassium thiocyanate in
ethanol as solvent, yields optimal results. To study the efficiency of this reaction, aniline
was chosen as the model substrate, and various experiments were conducted to assess
reagent concentration and potential solvent. The results summarized in Table 1 indicate
that ethanol would be the most effective solvent. Considering the attributes of green
chemistry and environmental friendliness, ethanol was selected as the solvent for the
thiocyanation reactions. Through optimization studies, we determined that a 1:2:1 mole
ratio of aniline/KSCN/NBS in ethanol at room temperature (27 °C) provided the best
condition for complete conversion in a short reaction time, resulting in the highest yield
of 4-thiocyanatoaniline product. Based on this, the thiocyanation of substituted anilines
and 1-(substituted benzylidene)-2-phenylhydrazine derivatives was achieved using the in
situ-generated N-thiocyanatosuccinimide (NTS).
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Table 1. Optimization of the reaction conditions for thiocyanation of aniline.

NH,
KSCN/NBS
EtOH
27 °C
SCN
Entry Solvent KSCN NBS Time Yield 2
(Eq) (Eq) h/min (%)
1 DMSO 2 1 2h 60
2 DCE 2 1 15h 50
3 DCM 2 1 1.5h 70
4 DMF 2 1 2h 50
5 THF 2 1 1h 60
6 Dioxane 2 1 15h 40
7 Acetonitrile 2 1 1h 80
8 MeOH 2 1 45 min 85
9 EtOH 2 0.25 1h 70
10 EtOH 2 0.50 1h 85
11 EtOH 2 0.75 1h 90
12 EtOH 2 1 20 min 98

Aniline (1.0 mmol), N-bromosuccinimide (1.0 mmol), KSCN (2.1 mmol); ? Isolated yields.

The reaction mechanism involves the initial reaction of N-bromosuccinimide with
potassium thiocyanate to produce N-thiocyanatosuccinimide. This intermediate serves as
an electrophilic thiocyanate precursor in the reaction. The amino nitrogen facilitates the
donation of a lone pair of electrons to the aromatic ring, resulting in the formation of a nu-
cleophile at the para position, and concurrently a positive charge develops on the nitrogen.
The nucleophile attacks N-thiocyanatosuccinimide, leading to thiocyanate substitution at
the para position while eliminating the succinimide ion. Subsequently, the succinimide
ion abstracts the proton at the para position, culminating in the formation of the desired
product (Figure 2). To extend the scope of this methodology, we employed substituted
aniline derivatives for the reaction with the in situ-generated N-thiocyanatosuccinimide in
ethanol at room temperature (27 °C). Interestingly, both electron-donating and electron-
withdrawing compounds gave satisfactory results in terms of good yields and a short
reaction time. An intriguing observation was made regarding the regioselectivity of
the thiocyanation reactions. For ortho- and meta-substituted aromatic compounds, the
reaction exclusively occurred at the para position. Conversely, para-substituted com-
pounds resulted in ortho-thiocyanated products (Figure 3). Subsequently, we investigated
the reactions of 1-benzylidene-2-phenylhydrazine and its analogues. Thiocyanation of
1-benzylidene-2-phenylhydrazine under the described conditions afforded the desired
product, 1-benzylidene-2-(4-thiocyanatophenyl)hydrazine, with an impressive yield of
95%. Various 1-(substituted benzylidene)-2-phenylhydrazine derivatives bearing electron-
withdrawing substituents such as bromo, chloro, fluoro, and nitro groups exhibited good
yields with high regioselectivity. However, the investigated electron-donating groups
did not yield the thiocyanated products (Figure 4). The synthesized compounds were
characterized by IR, NMR, and Mass spectrometric techniques, and finally, the structure
was convincingly established by single crystal X-ray diffraction analysis of 11 (Figure 5 and
Figures 51-591, Supplementary Materials).
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Figure 2. Suggested reaction mechanism for thiocyanation. Arrows denote the movement of the
electrons, and also the transformation of the substrate to the intermediate or product.
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Figure 3. Synthesized substituted thiocyanatoanilines.



Chemistry 2024, 6

485

I L
R—- KSCN/NBS R-T __
EtOH
Xy 27 °C, 20 min SN
|
U
O SCN
2a-h
Br
(?\Br cl
S , S
N N ! N
SCN SCN SCN SCN
2a, 95% 2b, 80% 2¢, 90% 2d, 83%
cl F NO, Br
S , S
N N N N
SCN SCN SCN SCN
2e, 90% 2f, 87% 2g, 93% 2h, 83%

Figure 4. Synthesized 1-(substituted benzylidene)-2-(thiocyanatophenyl)hydrazines.

%ik\y

LN
Qe /Nt N
s | ¢

G

Figure 5. ORTEP view of the molecule 11 with atomic labelling (thermal ellipsoids drawn at 50%
probability).

Based on the thiocyanation experiments on 1-(substituted benzylidene)-2-(phenyl)
hydrazines (Ar-CH=N-NH-Ph), it was obvious that though the substrate has two aryl rings
that could undergo thiocyanation, the reaction happens only on the phenyl ring attached to
the -NH group. The reason could be attributed to the electron-donating ability of the -NH
group, which increases the electron density on the phenyl ring and therefore makes it highly
nucleophilic to undergo an electrophilic substitution reaction. In comparison, the aryl ring
of the imine is a poorer nucleophile and therefore hesitant to attack the electrophile.

4. Conclusions

In conclusion, we report an efficient, eco-friendly, and experimentally simple method
for the selective thiocyanation of substituted anilines and 1-(substituted benzylidene)-2-
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phenylhydrazines. The protocol, employing NBS and KSCN at room temperature (27 °C),
has demonstrated excellent yields across all derivatives, highlighting its practicality and
effectiveness. The environment-friendly nature of the protocol for thiocyanation opens up
avenues for diverse applications in medicinal chemistry and related fields. The present
findings would not only advance the methodology of selective thiocyanation but also pave
the way for the development of novel compounds, offering exciting prospects for future
research and practical applications.

Supplementary Materials: The following supporting information can be downloaded at: https:/ /www.
mdpi.com/article/10.3390 /chemistry6030027/s1, Figures $1-S91: 'H and '3C NMR spectra, high-
resolution mass spectra of all the synthesized compounds along with IR Spectra of representative
compounds, and X-ray diffraction analysis of compound 11 can be found in the Electronic Supple-
mentary Content of this article. Table S1: Crystal data and refinement parameters for compound 11.
Table S2: Non-bonded interactions and possible hydrogen bonds (A, °) for compound 1 (D-donor;
A-acceptor; H-hydrogen).
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