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Abstract: A simple, rapid, and environmentally-friendly spectrophotometric method for nitrite
detection was developed. Detection was based on a redox reaction with iodide ions in an acidic
condition. The reaction was evaluated by detecting the increase in absorbance of the colored product
of iodine at 362 nm wavelength. To obtain a good spectrophotometric performance, the iodide
ions concentration, hydrochloric acid concentration, and reaction time were optimized. In the
optimal condition, the developed spectrophotometric method provided a linear range of 0.0625 to
4.00 mg L−1 (r = 0.9985), reaction time for 10 min, a limit of detection of 25 µg L−1, and a limit of
quantitation of 85 µg L−1. This method showed good repeatability (RSD < 9.21%), high sample
throughput (9 samples min−1), and good accuracy (recovery = 88 ± 2 to 99.5 ± 0.4%). The method
has the potential to be used in crime scene investigations as a rapid screening test for gunshot residue
detection via nitrite detection.

Keywords: nitrite; spectrophotometric method; 96 well microplate

1. Introduction

The gunshot residue (GSR) is the product of primer detonation, gunpowder combus-
tion, and emitted particles of cartridge, projectile, and gun barrel. Deposition of GSR on
surfaces in the vicinity of a shooting [1–3] made it useful forensic evidence in investiga-
tions of criminal use of firearms, aiding suspect identification, predicting firing distance,
differentiating between suicide and homicide, and also indicating a bullet hole [4,5]. In
routine forensic analysis, GSR is identified through morphological and elemental analysis
using scanning electron microscopy coupled with energy dispersive X-ray analysis [6].
Additionally, inductively coupled plasma-mass spectrometry [7] and atomic absorption
spectroscopy [8] were also reported in analyzing GSR. These techniques had demonstrated
good accuracy and high sensitivity; however, these techniques could also be limited by
their respective cost, time, availability, and accessibility of instrumentation, as well as the
need for well-trained operators [9,10]. Therefore, a fast, inexpensive, and simple screening
technique for determining GSR could benefit the forensic science community prior to the
application of specific confirmatory techniques.
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Nitrite ion is one of the most common inorganic compounds upon primer detonation
and gunpowder combustion [11,12]. Detection of nitrite ions can provide valuable forensic
information in the preliminary analysis of GSR on any related evidence, including the
shooter, cartridge case, firearm, and surfaces nearby a shooting activity. The detection
and measurement of nitrite could be employed as a screening method for the presence
of GSR. Literatures reported various techniques for determination of nitrite, including
electrochemical methods [13,14], ion chromatography [15,16], electrophoresis [17,18], and
spectrophotometry [19,20]. Among these techniques, the spectrophotometry technique
received increasing attention due to its simplicity, convenience, low cost, and good detection
limit [21–23]. During the forensic investigation of firearms-related cases, suspects are
frequently approached, and suspected GSR samples are collected, commonly from the
hands, face, or clothing. In such cases, the forensic evidence is not limited to one sample, but
several samples recovered from various sites of collection. Apart from that, the numbers
of suspected GSR samples would be greatly increased if more suspects are identified.
Given this, a fast screening procedure to determine the presence of GSR via the detection
of nitrite would be needed, prior to the application of confirmatory SEM-EDX analysis.
Spectrophotometric analysis in 96-well microplate read mode could be utilized, in which
it enabled multi-sample analyses and low consumption of chemical reagent. Moreover,
the interpretation of the absorbance values captured by the instrumentation through a
microplate reader and directly stored in the computer would also provide quick and
accurate data [20].

Most spectrophotometric techniques for the detection of nitrite were based on dye
formation via a diazo-coupling reaction to produce the end product allowable for deter-
mination, and typically an aromatic amine was used. Aromatic amines employed for
this purpose included p-rosaniline [24], 3-nitroaniline [25], p-nitroaniline [26], 1-amino-
4-naphtalenesulfonic acid [27], p-aminobenzoic acid [28], 4-aminobenzotrifluoride [29],
4-aminophenylmercaptoacetic acid [30], safranin [31], and sulfanilamide [32]. However,
these substances often possess some drawbacks, including the diazotization temperature,
coupling time, and pH dependence. Furthermore, these techniques frequently employ
large volumes of amines, and sometimes they are carcinogenic and toxic [22,33].

This present work reports a simple, inexpensive, and environmentally-friendly spec-
trophotometric method for the determination of nitrite based on a redox reaction with
iodide ions in an acidic condition. The method was optimized utilizing a UV/Vis 96-
well microplate spectrophotometer and its analytical performance was evaluated in terms
of its linearity, limit of detection (LOD), the limit of quantification (LOQ), repeatability,
accuracy, and interference-effect. Finally, as a proof-of-concept for the application, we
investigated the performance of the developed spectrophotometric method by applying
sodium nitrite powder to various substrate surfaces, such as hands, clothes, tables, phones,
notebook computers, and tiled floors. It is hoped that the developed method can be used to
screen large numbers of suspected GSR samples, serving as a useful determination method
complementing the SEM-EDX analysis in forensic laboratories.

2. Materials and Methods
2.1. Reagents and Apparatus

Sodium nitrite (NaNO2) was purchased from Ajax Chemical Finechem Pty Ltd. (New
South Wales, Australia). Potassium iodide (KI) and hydrochloric acid (HCl, 37%) were
obtained from Merck KGaA (Darmstadt, Germany). Deionized water (18.2 MΩ cm) (Barn-
steadTM Easy PureTM II water purification system, Thermo ScientificTM, Waltham, MA,
USA) was employed for the preparation of all solutions. Stock nitrite standard solutions
were prepared at a concentration level of 1000 mg L−1. Working solutions were prepared
through dilution of a pre-determined volume of the stock nitrite standard solution with
distilled water. A UV/Vis microplate spectrophotometer (Thermo Fisher Scientific, Multi-
skan TM, GO, USA) was utilized in this study and the analytical procedure was controlled
by Skanlt software 3.2.
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2.2. Analytical Procedure

A few milliliters of nitrite ions solution were transferred into a microtube which
contained 0.020 mol L−1 of hydrochloric acid and 0.050 mol L−1 of iodide ion solution.
When a color change was observed by the naked eye, the mixture solution was dropped
into wells of a 96-well microplate and mixed for 10 min. The absorbances detected by
UV/Vis microplate spectrophotometer at a wavelength of 362 nm against a blank solution
were recorded for each analysis. Note that the blank solution was prepared in a similar
procedure but without nitrite ions. Figure 1 illustrates the scheme for the detection of
nitrate, comprising the preparation, incubation, and measurement steps.

Figure 1. The scheme for the detection of nitrite.

2.3. Optimization

In order to obtain good performance of the developed spectrophotometric method for
nitrite detection, three operational conditions were optimized, including the iodide ions
concentrations (0.040, 0.050, 0.060, 0.070, 0.080, 0.090, and 0.10 mol L−1), the concentrations
of hydrochloric acid (0.010, 0.020, 0.030, 0.040, 0.050, 0.060, and 0.070 mol L−1), and the
reaction time (2, 4, 6, 8, 10, 12, 14, and 16 min).

2.4. Analytical Performance

The linearity, LOD, LOQ, interference effect, precision, and accuracy of the developed
spectrophotometric method were investigated. The linear range was investigated from 0 to
4.00 mg L−1. The LOD and LOQ were calculated based on 3 and 10 standard deviations
of the intercept divided by the slope of the calibration curve, respectively. The precision
of analytical methods was defined in terms of repeatability, which was expressed as a
percentage of the relative standard deviation (%RSD) from the three replicate analyses.
The intra-day and inter-day assays were studied with standard nitrite ions solutions at
seven different concentrations (0.0625, 0.125, 0.250, 0.500, 1.00, 2.00, and 4.00 mg L−1). The
accuracy was expressed as percent recovery, which was evaluated by analyzing the known
standard nitrite ions solution concentrations against the established calibration curve.

2.5. Interference Effect

To check the selectivity of the developed spectrophotometric method for the determi-
nation of nitrite, including urea, Zn2+, Ni2+, Mg2+, Ba2+, Pb2+, Fe2+, NO3

−, SO4
2−, and Cl−

were used to investigate potential interferences found in gunshot residue. Tolerance limits
were defined as the maximum concentration that resulted in less than ±5% variation and
determined by adding different concentrations of these interfering substances to a testing
solution containing 2 mg L−1 of nitrite ions concentration under the optimal conditions.
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2.6. Application for Nitrite Sensing

To simulate the real case situations, nitrite samples were generated by putting sodium
nitrite powder onto different substrate surfaces, namely hands, clothes, tables, telephones,
notebook computers, and tiled floors. Samples were collected from substrates by carefully
wiping with a cotton swab (15 cm size L, United Medicine Instruments Co., Ltd., Bangkok,
Thailand). Each cotton swab was inserted into a microtube containing hydrochloric acid
and iodide ions solution. The obtained solution was then incubated for 10 min and detected
at 362 nm by UV/Vis microplate spectrophotometer, as demonstrated in Figure 1. The
absorbance values generated for each analysis were recorded and compared.

3. Results and Discussion
3.1. Absorption Spectra

In an acidic condition, the iodide ion (I−) and nitrite ion (NO2
−) functioned as a reduc-

ing and oxidizing agent, respectively. Iodide ion (I−) was oxidized to iodine (I2) by nitrite
ion (NO2

−), meanwhile nitrite ion (NO2
−) was reduced to nitric oxide by iodide ion (I−)

(2NaNO2 + 2KI + 4HCl→ I2 + 2NO + 2NaCl + 2KCl + 2H2O). Upon the chemical reaction,
the color of the mixture solution was changed from colorless to yellow, as observed by the
naked eye. Such change was due to the oxidation of iodide ion (I−) to iodine (I2) [34–36]. To
obtain a good absorption by iodine, the incident wavelength of the spectrophotometer was
adjusted from 300 to 500 nm, and Figure 2 shows the absorption spectra with and without
the presence of nitrite. It was found that the maximum absorbance was at a wavelength of
362 nm [23], and therefore this wavelength was selected for further experiments.

Figure 2. Absorption spectra of the proposed method (a) in the absence and (b) in the presence of
0.600 mg L−1 nitrite.

3.2. Optimal Conditions
3.2.1. Concentration of Iodide Ions

The effect of the concentration levels of iodide ions on the absorbance of iodine was
studied from 0.040 to 0.10 mol L−1 (Figure 3A). The absorbance increased with an increase
in the iodide ion concentration from 0.040 to 0.050 mol L−1. At concentration levels greater
than 0.050 mol L−1 up to 0.10 mol L−1, changes in absorbance were nearly negligible.
Therefore, for subsequent experiments, a concentration of 0.050 mol L−1 of iodide ion
was selected.
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Figure 3. Absorbance (0.600 mg L−1 nitrite) of the developed spectrophotometric method with
(A) different iodide ions concentration (HCl concentration, 50 mmol L−1; reaction time, 10 min) and
(B) different HCl concentration (iodide ions concentration, 50 mmol L−1; reaction time, 10 min).
(C) Effect of reaction time on absorbance at nitrite ions concentrations of (a) 0.200, (b) 0.400, and
(c) 0.600 mg L−1 (iodide ions concentration, 50 mmol L−1; HCl concentration, 20 mmol L−1).

3.2.2. Concentration of Hydrochloric Acid

The acidic condition is an important factor affecting the redox reaction of iodide ions
with nitrite ions. The effect of concentration levels of hydrochloric acid on the signal
was evaluated between 0.010 to 0.070 mol L−1 (Figure 3B). The absorbance was found to
increase from 0.010 to 0.020 mol L−1, and no significant changes in their absorbance values
with further increase in the concentration. Therefore, 0.020 mol L−1 hydrochloric acid was
chosen as the optimum condition for further nitrite ions determination.

3.2.3. Reaction Time

To obtain a short analysis time with good absorption performance, the influence of
dynamic reaction time was investigated by plotting the reaction time versus absorbance for
different nitrite ions concentrations (Figure 3C). Absorbance increased with reaction time
and reached saturation at 10 min, and remained constant after that. The nitrite ions were
no longer available for conversion leading to the completion of the reaction [23]. Therefore,
the reaction time of 10 min was chosen as the optimal condition.
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3.3. Analytical Performance
3.3.1. Linearity, Limit of Detection, and Limit of Quantification

The analytical performance of the spectrophotometric method for nitrite ions detection
was studied under optimal conditions. The results showed that the absorbance was increased
linearly with the increasing concentration of nitrite ions from 0.0625 mg L−1 to 4.00 mg L−1

(Figure 4A). The linear regression equation was determined as y = (0.353 ± 0.009)x −
(0.037 ± 0.003) at a correlation coefficient of 0.9985, where y and x are the absorbance
values at 362 nm and the concentration level of nitrite ions at the unit of mg L−1, re-
spectively. The detection and quantitation limits were respectively determined at 25 and
85 µg L−1, calculated based on 3 and 10 standard deviations of the intercept divided by
the slope of the calibration curve. The spectrophotometric method was compared with pre-
viously reported methods [23,28,37–44] for the detection of nitrite ions in Table 1. Different
reagents had been utilized to detect the presence of nitrite ions. Although some works
are wide linear range and low LOD, they require fluorescent material and complicated
procedure and can only analyze one sample at a time. Our spectrophotometric method
allowed the detection in short duration which can be detected in 9 nitrite samples in 1 min.
Furthermore, the developed method was simple, and more environment-friendly without
involving the use of organic solvents.

Table 1. Comparison of the analytical performance of previously reported methods and the developed spectrophotometric
method for the determination of nitrite ions.

Reagent λmax
Linear Range

(mg L−1)
LOD

(µg L−1)
Reaction

Time (min) References

4-(1-Methyl-1-mesitylcyclobutan-3-yl)-2-aminothiazole
+ N,N-dimethyl aniline 482 0.0500–2.00 12 15 [37]

p-Nitroaniline + diphenylamine 500 0.050–0.80 10 11 [38]
Phosphomolybdenum blue complex 814 0.200–3.60 200 30 [39]
Sulphanilic acid + 1-naphthol 418 0.020–0.87 14 20 [40]
p-Aminobenzoic + phloroglucinol 434 0.0500–1.00 24 24 [28]
Iodide ion (0.070 mol L−1) 363 0.300–4.00 30 6 [41]
Iodide ion (0.1 mol L−1) 365 0.008–0.120 6 30 [23]
Iodide ion (0.1 mol L−1) 410 0.0053–1.0 1.6 20 [44]
Iodide ion (0.050 mol L−1) 362 0.0625–4.00 25 10 This work

Fluorescent method λem
Water-dispersible graphite-like carbon nitride 435 0–4.04 0.011 10 [42]
1,2-Diaminoanthraquinone (probe P-N) 639 0–1.10 3.7 8 [43]

3.3.2. Repeatability

To evaluate the precision of the method, the repeatability of intra-day and inter-day
assays was studied with standard nitrite ions solutions at concentrations of 0.0625, 0.125,
0.250, 0.500, 1.00, 2.00, and 4.00 mg L−1. For the intra-day assay, the relative standard
deviations (RSDs) of all concentration levels were reported in the range of 0.28% to 7.27%
(six sets of measurements were investigated for each concentration (n = 3), giving 18 mea-
surements for each concentration) (Figure 4B). For the inter-day assay, the measurements
were repeated on six consecutive days, yielding relative standard deviations between 0.39%
to 9.21% (Figure 4C). The repeatability of intra-day and inter-day assays were acceptable
where respective RSD of 15%, 11%, and 7.3% were suggested for the concentration levels
of 0.1 mg L−1, 1 mg L−1, and 10 mg L−1 according to the AOAC guidelines [45]. These
results demonstrated the good precision of the spectrophotometric method.
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Figure 4. (A) The calibration plot between absorbance and concentration of nitrite ions. The repeata-
bility of (B) intra-day and (C) inter-day assays.

3.3.3. Interference Study

To investigate the interference effect of common interfering substances in gunshot
residue, including trinitrotoluene (TNT), dinitrobenzene (DNB), dinitrotoluene (DNT), urea,
Zn2+, Ni2+, Mg2+, Ba2+, Pb2+, Fe2+, NO3

−, SO4
2−, and Cl− were tested. The tolerance

limit and %relative error for each interference were calculated and determined. The
tolerance limit is defined as the ratio of the highest concentration in a mixture of nitrite
that causes a relative error below ±5% change in the absorbance signal in relation to the
concentration of nitrite ions at 2 mg L−1 under the optimal conditions. Table 2 demonstrates
the experimental results, and it showed that 5000-fold concentration of urea, Zn2+, Ni2+,
Mg2+, Ba2+, SO4

2−, and Cl−, 150-fold of Fe2+ and 50-fold of NO3
−, TNT, DNB, DNT, and

Pb2+ did not interfere with nitrite determination. These results suggested the applicability
of the method in the determination of nitrite, particularly in suspected GSR samples.
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Table 2. Tolerance ratio of interferences on the determination of 2 mg L−1 nitrite.

Interference Species Interference
(mg L−1)

Tolerance Ratio
Interference/Nitrite 2 mg L−1 %Relative Error

TNT 100 50 −4.31
DNB 100 50 −3.75
DNT 100 50 −1.31
Urea 10,000 5000 +3.24
Zn2+ 10,000 5000 +3.50
Ni2+ 10,000 5000 −1.31
Mg2+ 10,000 5000 −1.50
Ba2+ 10,000 5000 +1.85

SO4
2− 10,000 5000 −1.31

Cl− 10,000 5000 +1.85
Fe2+ 300 150 −4.95
Pb2+ 100 50 −4.61

NO3
− 100 50 −4.61

3.4. Application for Nitrite Sensing

The developed spectrophotometric method was employed to detect the presence
of nitrite on different substrate surfaces (hands, clothes, tables, telephones, notebook
computers, and tiled floors), and their respective recovery percentages were determined.
The recoveries of nitrite detection were ranged from 88 ± 2 to 99.5 ± 0.4% for all samples
(Table 3), which were acceptable according to AOAC guidelines [45]. Furthermore, the
developed method can be employed to detect up to 96 nitrite samples within 10 min,
allowing rapid analysis for more effective forensic investigation and identification.

Table 3. Recovery analysis of nitrite samples on different surfaces (n = 3).

Surfaces Nitrite Added (g) Nitrite Measurement (g) %RSD %Recovery

Hands 0.153 0.142 ± 0.004 2.82 93 ± 3
0.261 0.24 ± 0.02 6.67 90 ± 4
0.329 0.325 ± 0.001 0.31 98.8 ± 0.3
0.595 0.552 ± 0.008 1.45 93 ± 1
0.760 0.64 ± 0.01 1.56 97 ± 2
0.991 0.952 ± 0.005 0.53 96.1 ± 0.5

Clothing 0.153 0.147 ± 0.003 2.04 96 ± 2
0.261 0.241 ± 0.009 3.73 92 ± 3
0.329 0.308 ± 0.004 1.30 94 ± 1
0.594 0.523 ± 0.007 1.34 97 ± 1
0.760 0.619 ± 0.004 0.65 98.6 ± 0.5
0.990 0.970 ± 0.007 0.72 98.0 ± 0.7

Table 0.152 0.149 ± 0.003 2.01 98 ± 2
0.262 0.238 ± 0.008 3.36 91 ± 3
0.329 0.311 ± 0.004 1.29 95 ± 1
0.595 0.51 ± 0.01 1.96 97 ± 2
0.760 0.640 ± 0.008 1.25 97 ± 1
0.991 0.96 ± 0.02 2.08 96 ± 2

Telephone 0.152 0.147 ± 0.001 0.68 96.7 ± 0.7
0.261 0.244 ± 0.003 1.23 94 ± 1
0.329 0.310 ± 0.008 2.58 94 ± 2
0.594 0.540 ± 0.006 1.11 91 ± 1
0.760 0.739 ± 0.006 0.81 97.2 ± 0.8
0.991 0.96 ± 0.01 1.04 97 ± 1

Notebook computer 0.152 0.138 ± 0.002 1.45 91 ± 1
0.262 0.257 ± 0.003 1.17 98 ± 1
0.329 0.305 ± 0.008 2.62 93 ± 2
0.598 0.549 ± 0.008 1.46 92 ± 1
0.760 0.628 ± 0.003 0.48 82.6 ± 0.4
0.990 0.985 ± 0.004 0.41 99.5 ± 0.4

Tiled floor 0.152 0.134 ± 0.003 2.24 88 ± 2
0.261 0.231 ± 0.007 3.03 96 ± 3
0.329 0.305 ± 0.006 1.97 92 ± 2
0.595 0.477 ± 0.004 0.84 97.0 ± 0.7
0.761 0.610 ± 0.008 1.31 93 ± 1
0.991 0.880 ± 0.004 0.45 98.9 ± 0.4
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4. Conclusions

A spectrophotometric method for nitrite detection was successfully demonstrated
based on a redox reaction with iodide ions in an acidic condition. The developed method
incorporates a microtiter plate assay, enabling rapid, and multi-sample analyses, as well
as low and environmentally friendly reagent consumption. Under the optimal conditions
established in this study, the proposed method exhibited a wide linear range from 0.0625 to
4.00 mg L−1 (r = 0.9985), rapid analysis (9 sample min−1), low detection limit (25 µg L−1),
low quantitation limit (85 µg L−1), good repeatability (RSD < 9.21%), good recovery
(88 ± 2 to 99.5 ± 0.4%), and good anti-interference performance. Future development
of this simple and rapid spectrophotometric method for detecting nitrite in real gunshot
residue samples could be useful for forensic investigators screening a large number of
suspected GSR samples.
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