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Abstract: On-site determination of trace copper ions in natural waters is of great significance to
environmental monitoring, and how to develop accurate and specific point-of-care test methods is
one critical issue. In the study, a paper-based analytical device (PAD) being modified with a new
truncated DNAzyme (CLICK-T, which was derived from a reported DNAzyme-CLICK-17) was
developed for Cu ions detection. The detection mechanism was based on Cu(II)-catalyzed azide-
alkyne cycloaddition (Cu(II)AAC) reaction. It can directly conduct on-site analysis of Cu(II) ions based
on fluorescent signals detected using a mobile phone. In the assay, the CLICK-T was firstly modified
on the PADs. Then, water samples containing Cu ions mixed with 3-azido-7-hydroxycoumarin and
3-butyn-1-ol were instantly dripped on PADs and incubated for 20 min. Finally, the PADs were
excited at 365 nm and emitted fluorescence which could be analyzed on site using smart phones.
The Cu(II) concentration could be quantified through RGB analysis with the aid of iPhone APP
software. The limit of detection is 0.1 µM by the naked eye due to the fact that CLICK-T exhibited a
good catalytic effect on Cu(II)AAC. The Cu(II) concentration could also be directly detected without
using reductant, such as ascorbic acid, which is prone to be oxidized in air. This simplifies the PDA
detection process improves its efficiency. The PAD is convenient for the on-site analysis of Cu ions in
natural waters.

Keywords: paper-based device; mobile phone; DNAzyme; Cu(II)-catalyzed azide-alkyne cycloaddi-
tion; copper detection; natural waters

1. Introduction

Although copper is an essential trace element in living organisms, an excess amount
of copper accumulated in the body would be a threat to human health [1]. A high level
of copper could exhibit obvious toxicity to human organism, which adversely affects its
immune system and reduces its resilience for adapting to the environment [2]. Excessive Cu
accumulation can cause Wilson’s disease, Alzheimer’s disease and other neurodegenerative
diseases [3]. Therefore, the development of a sensitive Cu(II) detection method suitable for
the on-site detection of Cu ions was crucial for environmental monitoring.

Up to now, there were many kinds of analytical methods for Cu ions, including induc-
tively coupled plasma mass spectroscopy (ICP-MS) [4], atomic absorption spectroscopy
(AAS) [5] and electrochemistry [6], etc. Although many of them were sensitive, some of
them could not satisfy the demand of on-site detection due to inevitable usage of expen-
sive and cumbersome instruments, complex and long-time pre-processing procedures,
etc. Recently, Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), the representative
reaction of modern “click chemistry”, has been usually employed in organic synthesis,
bio-labeling, and surface functionalization [7,8]. CuAAC could also be employed to detect
Cu ions in environmental or biological samples [9]. Some of the colorimetric assays were

Chemosensors 2022, 10, 72. https://doi.org/10.3390/chemosensors10020072 https://www.mdpi.com/journal/chemosensors

https://doi.org/10.3390/chemosensors10020072
https://doi.org/10.3390/chemosensors10020072
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/chemosensors
https://www.mdpi.com
https://orcid.org/0000-0002-7239-8113
https://doi.org/10.3390/chemosensors10020072
https://www.mdpi.com/journal/chemosensors
https://www.mdpi.com/article/10.3390/chemosensors10020072?type=check_update&version=3


Chemosensors 2022, 10, 72 2 of 13

fabricated for on-site and specific detection of Cu ions because only Cu ions could catalyze
CuAAC [10]. Zheng et al. demonstrated a graphene oxide (GO)-based system for Cu by
mixing alkyne-functionalized alkynyl-GO and azido-Rho, where the detection limit (LOD)
can reach up to 1 µM [11]. Hua et al. described a colorimetric method for the detection of
Cu by using azide-tagged AuNPs and 1,4-diethynylbenzene (DEB) to form [1–3]-triazole-
linked aggregates with LOD of 0.5 µM [12]. However, many of these colorimetric methods
are difficult to monitor copper concentration lower than 1 µM by the naked eye; thus, they
could not meet the demands of on-field detection of trace Cu ions in natural waters [13].
Moreover, conventional CuAAC employed Cu(I) ions for the reaction; thus, the reductant
was necessary to reduce Cu(II) to Cu(I). The most available reductant was sodium ascorbic
acid (NaAsc) [14–24]. However, it could be easily oxidized in air and must be prepared
instantly before each measurement. Thus, it was not convenient for on-site detection and
limited its application in copper detection. Instead, it would save time and be more efficient
to directly determine Cu(II) by CuAAC without using reductant.

Recently, Liu et al. [15] has selected one kind of DNAzyme named CLICK-17, a long
single-stranded DNA with 76 bases (76-nt), which could catalyze Cu(II) for Cu(II)AAC
without using the reductive reagent. This meant Cu(II) could be directly determined with-
out being reduced into Cu+ [7]. All these could largely facilitate the detection procedures.
However, CLICK-17′s fabrication cost is a bit expensive due to its 76 bases. Moreover, the
long chain may easily entangle together in the biosensing interface to reduce its catalytic
effects [15]. Based on CLICK-17 DNAzyme, we found one truncated fragment of CLICK-17
which owns 18 bases (18-nt, named as CLICK-T) and also exhibited high catalytic effects of
Cu(II)AAC. Because 18-nt CLICK-T is much shorter than 76-nt CLICK-17, its fabrication
cost could be obviously reduced. Moreover, the entangle event maybe more reduced. All
these made CLICK-T liable to detect Cu(II) on site. During the past few years, paper-based
analytical devices (PADs) have attracted great attention, based on which a number of point-
of-care test (POCT) protocols have been developed [16]. Compared with conventional
materials such as glass, quartz, and polymeric substrates that are used to fabricate micro-
analytical devices, filter paper exhibited distinctive features of being light-weight, low-cost
and biodegradable [17]. In order to avoid the problem of the spot diameter too large and
uneven color distribution caused by free diffusion of solution, Zhang et al. explored the
conversion of off-the-shelf laboratory filter paper into superhydrophobic substrate via
silanization reactions [18].

Based on the above assumption, the determination of copper on two DNAzyme
(CLICK-T and CLICK-17)-modified PAD was designed for comparison of their detection
effects. In this experiment, the hydrophilic PADs were firstly modified with different
DNAzyme. Then, the water samples containing Cu(II) and 3-azido-7-hydroxycoumarin
(AHC) and 3-butyn-1-ol (BOL) in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
(HEPES) buffer, was dripped on the PADs and incubated for 20 min. Based on the fast
kinetic DNAzyme assisted CuAAC, the tri-azole product could emit a visual fluorescence
which could be observed by the naked eye and quantified using the App in a smart phone
(Figure 1). The PDA’s fabrication process including the DNAzyme modification was also
shown in Figure 1.
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Figure 1. (A) 3-azide-7-hydroxycoumarin reacts with 3-butyn-1-ol (BOL) in the presence of Cu(II) 
on CLICK-T-modified PADs to emit the fluorescence light whose intensity could be observed by the 
naked eye and quantified by the smartphone; (B) The fluorescent light development mechanism. 

2. Materials and Methods 
2.1. Materials and Instruments 

Glassy microfiber filter papers (Whatman TM grade GF/A) were purchased from 
Sigma-Aldrich (St. Louis, MO, USA). 3-azido-7-hydroxycoumarin (98%) from Zhenzhu 
Biotechnology Co., Ltd. (Shanghai, China); aminopropyltriethoxysilane (APTES, 99%) 
methyltrichlorosilane (MTS, 99%), sodium ascorbate (crystalline, 98%), CuSO4·5H2O 
(98%), HEPES (4-(2-hydroxyethyl)-1-piperazineethane-sulfonic acid, 99.5%), 3-butyn-1-ol 
(97%) and 5-Hexyn-1-ol (96%) were all from Sigma-Aldrich (St. Louis, MO, USA), Tolu-
ene, hydrochloric acid (37%), MgCl2·H2O, NaOH·H2O, NaCl and KCl (all ≥ 99%) were from 
Aladin Co., Ltd. (Shanghai, China). The DNAzyme sequence for CuAAC was as follows: 
CLICK-17: 

5′-GGA TCG TCA GTG CAT TGA GAT TTA TTA TGC AAC TCTA GGG TCC ACT 
CTG TGA ATG TGA CGG TGG TAT CCG CAA CGG GTA-C6-NH2-3′ 
Random DNA sequence (RAND-42): 

5′-ATC TAC GAA TTC ATC AGG GCT AAA GAG TGC AGA GTT ACT TAG-3′-C6-
NH2-3′. 
CLICK-T: 5′-TTA TTA TGC AAC TCTA-C6-NH2-3′ 

All reagents are of AR grade unless otherwise specified. The Pixolor App software 
for reading RGB values was downloaded from App Store from iPhone 7. 

Surface morphology observation was performed on a S-3400N scanning electron mi-
croscope (SEM) (Hitachi, Tokyo, Japan). All fluorescence measurements were obtained on 
a RF-6000 fluorescence spectrophotometer (Shimadzu, Tokyo, Japan). 

  

Figure 1. (A) 3-azide-7-hydroxycoumarin reacts with 3-butyn-1-ol (BOL) in the presence of Cu(II)
on CLICK-T-modified PADs to emit the fluorescence light whose intensity could be observed by the
naked eye and quantified by the smartphone; (B) The fluorescent light development mechanism.

2. Materials and Methods
2.1. Materials and Instruments

Glassy microfiber filter papers (Whatman TM grade GF/A) were purchased from
Sigma-Aldrich (St. Louis, MO, USA). 3-azido-7-hydroxycoumarin (98%) from Zhenzhu
Biotechnology Co., Ltd. (Shanghai, China); aminopropyltriethoxysilane (APTES, 99%)
methyltrichlorosilane (MTS, 99%), sodium ascorbate (crystalline, 98%), CuSO4·5H2O (98%),
HEPES (4-(2-hydroxyethyl)-1-piperazineethane-sulfonic acid, 99.5%), 3-butyn-1-ol (97%)
and 5-Hexyn-1-ol (96%) were all from Sigma-Aldrich (St. Louis, MO, USA), Toluene,
hydrochloric acid (37%), MgCl2·H2O, NaOH·H2O, NaCl and KCl (all ≥ 99%) were from
Aladin Co., Ltd. (Shanghai, China). The DNAzyme sequence for CuAAC was as follows:

CLICK-17:
5′- GGA TCG TCA GTG CAT TGA GAT TTA TTA TGC AAC TCTA GGG TCC ACT

CTG TGA ATG TGA CGG TGG TAT CCG CAA CGG GTA -C6-NH2-3′

Random DNA sequence (RAND-42):
5′-ATC TAC GAA TTC ATC AGG GCT AAA GAG TGC AGA GTT ACT TAG-3′-C6-

NH2-3′.
CLICK-T: 5′- TTA TTA TGC AAC TCTA -C6-NH2-3′

All reagents are of AR grade unless otherwise specified. The Pixolor App software for
reading RGB values was downloaded from App Store from iPhone 7.

Surface morphology observation was performed on a S-3400N scanning electron
microscope (SEM) (Hitachi, Tokyo, Japan). All fluorescence measurements were obtained
on a RF-6000 fluorescence spectrophotometer (Shimadzu, Tokyo, Japan).



Chemosensors 2022, 10, 72 4 of 13

2.2. The Fabrication of PAD Arrays

The detection disks of PADs with 0.7 cm diameter were made by punching the glass
fiber filter paper. Then, the PADs were soaked in 10.0 mL of toluene solution, which
contained 100 µL APTES and HCl (37%). The reaction lasted for 10 min, and the above
disks were taken out and air-dried naturally. An amount of 4.0 µM CLICK-T with amino
group [15] was modified on the disks using 2.5% glutaraldehyde in ddH2O for 2 h. The
sequence of CLICK-T DNAzyme and other DNA with random sequence were shown in
Table S1. Moreover, the glass microfiber filter, after removing disks, were soaked into
10.0 µL MTS and HCl (37%) for 30 min and washed by water then air-dried. Finally,
the disks were inserted into the holes of the filter papers to fabricate the PADs arrays.
The illustration of hydrophobic non-detection area (A) and CLICK-T modified PDA’s
hydrophilic area for detection copper ion was shown in Figure S1.

2.3. Copper Ions Detection in Natural Waters by the PADs

Before detection, the PAD disks modified with DNAzyme were firstly heated to 100 ◦C
in pH 6.5, 25 mM HEPES containing 300 mM NaCl and 20 mM MgCl2, then cooled to room
temperature with natural cooling-off process. After then, 100 µL of water samples with
different Cu(II) concentration was mixed with 100 µL the above HEPES buffer containing
100 µM 3-azido-7-hydroxycoumarin and 3-butyn-1-ol. The mixture was subsequently
dripped onto the PADs. After reacting for 20 min, the fluorescent photo images were
captured with a smartphone (e.g., iPhone 7) under a handheld UV lamp (365 nm) in a black
box (length × width × height: 20 × 20 × 30 cm3).

The lamp is placed at an angle of 45◦ above the PAD, and the straight-line distance
is 10 cm. The power is 15 W. The fluorescence could be observed directly by the naked
eye and the RGB values were analyzed using the Pixolor App installed on the iPhone
smartphone, or Color Collect App for the Android users, for quantification of Cu ions.

2.4. Cyclic Voltammetry (CV)

The buffer solution for all the CV detection was as follows: pH 7.4 20 mM HEPES
together with 20 mM MgCl2. The dissolved DNA was folded as described above. All of the
measurement system was firstly degassed to remove oxygen with nitrogen. The copper
ions were incubated for 5 min before measurements. A three-electrode system together
with a 10 mL beak were employed for detection. A CHI 660B Electrochemical Analyzer
from Chenhua Co., Ltd. (Shanghai, China) was used for detection. A platinum bar and an
Ag|AgCl electrode were used as counter electrode and reference electrode, respectively.
The glassy carbon electrode was employed as the working electrode. The scan rate for all
CV measurements was maintained at 100 mV/s.

3. Results
3.1. The Feasibility of Copper Detection by the CLICK-T Modified PADs

In the present work, the copper detection was performed based on the reaction of
Cu(II)AAC between 3-butyn-1-ol (BOL) and 3-azide-7-hydroxycoumarin (AHC), which was
catalyzed by CLICK-T DNAzyme on detection disks of PADs (Figure 1). Due to the electron
richness of the azido group on the 3-position of AHC, its fluorescence is largely quenched;
upon reacting with BOL, the fluorescence would be significantly increased by forming
the triazole ring structure [11]. The scanning electron microscopy images and contact
angles were determined to characterize the PADs’ surface (Figure 2A,B). The enlarged
contact angle and rougher surface indicated that the outer area of PAD is hydrophobic after
silanization treatment.
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Figure 2. The scanning electron microscopy (SEM) of (A) unmodified glass fiber filter paper with
contact angle of 36 ± 2◦ and (B) CLICK-T DNA modified filter paper with contact angle of 138 ±
2◦. (C) The water-soluble dye under natural light in untreated PDA, and on (D) silanized area and
DNAzyme modified area of PADs. (E) The fluorescent light of AHC-BOL solution in the presence of
Cu(II) and 4 µM DNAzyme (CLICK-T or CLICK-17).

We dripped 30 µL dye solution on the normal glass filter paper (Figure 2C) and PAD
arrays including hydrophilic (for detection) and hydrophobic (for preventing water drop
diffusion) regions (Figure 2D). When the water was dripped on the untreated (without
salinization) filter paper, it could be found that the dye drops quickly spread into a large
circle with uneven color distribution. While the dye was dripped on the hydrophobic
area outside the PAD area (Figure 2D), a round water drop without diffusion will be
formed. When the dye was dripped on the hydrophilic area in PAD disk, it would rapidly
diffuse from the center and penetrate the entire area. The blue color was more evenly
distributed on the hydrophilic area than the untreated filter paper. In order to effectively
restrict and guide the liquid flow in the design area, we tried to change the filter paper
outside the PDA detection area from hydrophilic to hydrophobic. It has been reported
that MTS can react with the hydroxyl groups on the filter paper’s surface to form a three-
dimensional structure, which increases the roughness of the paper base. As shown in
Figure S5, MTS molecules not only react with the hydroxyl groups on the surface, but
also aggregate into a 3D nanonetwork. It has been reported that on glass and silicon
surfaces, superhydrophobicity is the result of aggregated nanostructures (formed from
facile hydrolysis and condensation reactions of MTS) [18]. It could also be found that the
solution of 100 µM 3-azido-7-hydroxycoumarin and 3-butyn-1-ol (AHC-BOL) exhibited
fluorescence signal in the presence of Cu(II) and DNAzyme (CLICK-T or CLICK-17). The
fluorescence light was more intensive for CLICK-T than CLCIK-17 in the presence of same
concentration of Cu(II).
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We also used the gel electrophoresis to compared CLICK-17 and CLICK-T’s catalytic
effects for Cu(II) detection. Streptavidin labeled with azide group was employed to react
with CLICK-T and CLICK-17 labeled with alkyne group in the presence of Cu(II). In
Figure 3, it could be found that both CLICK-T and CLICK-17 exhibited a pure band in gel
electrophoresis image. While in the presence of certain concentration of Cu(II), CLICK-T
and CLICK-17 with alkyne group could react with streptavidin labeled with azide group.
The complex with large molecular weight would produce a band that appeared later. It
could be found that the complex’s peak appeared in the presence of 1 µM Cu(II) and 4 µM
CLICK-T, while the band could only appear in the presence of 20 µM Cu(II) and CLICK-17.
All these demonstrated that CLICK-T has higher catalytic effects towards Cu(II)AAC than
CLICK-17. The reasons maybe due to that CLICK-T has shorter length and could be easier
to contact and combine with the analyte [25].
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Figure 3. (A) CLICK-T- and (B) CLICK-17-assisted CuAAC reaction triggered by (1, 2, 5, 10, 20, 50,
100 µM of Cu(II)) in the presence of 4 µM CLICK-17 and CLICK-T labeled with alkyne groups and
100 µM Streptavidin with azide group in pH 6.5, 25 mM HEPES.

3.2. The Detection Effects and Mechanism of Cu(II) on CLICK-T Modified PADs

As shown of the fluorescent spectrum in Figure 4A, the solution of AHC-BOL exhib-
ited very weak fluorescence (FL) signal without Cu(II). While the FL intensity increases
dramatically after the addition of Cu(II) and CLICK-T and CLICK-17. The strong emission
light at 470 nm (Ex = 365 nm) confirmed that CLICK-T has higher catalysis effect than
CLICK-17 to trigger Cu(II)AAC. The relationship between the copper concentration and
the increased fluorescence intensity were also reflected by the normalized intensities of a
series of standard solutions containing different concentrations of Cu(II) (0–180 µM) (I/I0, I
is the signal of AHC-BOL system at certain concentration of Cu ions, I0 is the initial signal
of AHC-BOL without Cu ions). As shown in Figure 4B—blue curve—the FL signal, in the
presence of CLICK-17, increases linearly with the concentration of Cu(II) ions in the range
of 5 µM to 120 µM before saturation, while the linear range of Cu(II) using CLICK-T assisted
CuAAC was from 1 µM to 150 µM, which was wider than CLICK-17 (green curve). The FL
spectrums from CLICK-T system were exhibited in Figure 4C. All the results demonstrated
that CLICK-T can be employed to catalyze Cu(II)AAC using a fluorescent signal. Based on
the linear fit to experimental data, the detection limit of Cu(II) was calculated to be 2.0 ±
0.2 µM Cu(II) based on CLICK-17, while 0.3 ± 0.08 µM for CLICK-T.
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图六 

 

Figure 4. (A) Fluorescence spectra of the “click reaction” mixture measured before (black line) and
after adding 50 µM Cu(II) or after adding 50 µM Cu(II) and 4 µM CLICK-T (green line) or CLICK-17
(blue line). (B) The fluorescence intensity increase (I/I0) as a function of the copper concentration
with CLICK-T + Cu(II) (green line). (C) The fluorescence signal ranging from 0, 0.5, 1, 5, 10, 20, 40, 60,
80, 100, 120, 150 µM Cu(II) and CLICK-T. The insert image is the photo images from 0, 0.5, 1, 5, 10, 20,
40 µM Cu(II). (D) Cyclic voltammetry of 0.2 mM CuSO4 in 25 mM HEPES buffer (blue line); 0.2 mM
CuSO4 with 0.1 mM CLICK-T (red line); 0.2 mM CuSO4 with 0.1 mM other DNA (black line).

In order to explain the possible catalytic mechanism of DNAzyme, cyclic voltammetry
(CV) experiments were carried out in the HEPES buffer using Cu(II) together with CLICK-T
or DNA strand with random sequence (we called it RAND-42; the sequence was shown in
Section 2.1). Figure 4D showed, in the presence of DNAzyme (CLICK-T), the redox property
of the Cu(II)/Cu(I) couple could be significantly influenced. In the blue curve, there were a
pair of redox peaks corresponding to Cu(II)/Cu(I). While there are no discernible changes
of potential in either the reduction or oxidation peak after 4 µM other DNA was added
(black curve), only the peaks’ current was lowered. While CLICK-T was introduced into
the detection system, the oxidation peak of Cu(II)/Cu(I) was positively shifted by 180
mV. This meant the stability of Cu(I) was much more improved. In addition, the much
larger separation between the oxidation and reduction peaks indicated slower electron-
transfer rates between the Cu(II) and Cu(I) as well. The above results demonstrated that
Cu(I)/Cu(II) species could be stably bind to CLICK-T DNAzyme other than to DNA stands
with a random sequence. That may be why CLICK-T showed good catalytic effects to
Cu(II)AAC.

3.3. Optimization of the Assay

A series of conditions were explored to optimize the copper detection by the PADs.
The optimized amount of CLICK-T was evaluated by detecting 25 µM Cu(II). The obtained
results are presented in Figure 5A. As the concentration of CLICK-T was set from 0.5
to 4.0 µM, an increase in the fluorescence light (FL) signal was observed. When the
concentration of CLICK-T increased afterwards, the signal did not increase significantly.
Considering reducing the cost, the optimum concentration of CLICK-T (4.0 µM) as the
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lowest amount of probes modified on PADs was used for the test. To optimize the assay,
we have further investigated the effect of AHC and BOL concentration in the presence of
HEPES. As depicted in Figure 5B,C, both of them played important roles in detection. The
FL signal increased with the concentration of them and reached the highest value at the
concentration of 100 µM. This could be ascribed to the fact that the reaction reached the
equilibrium after the concentration. After then, the reagent on the paper could aggregate
and impede the subsequent click reaction at the paper surface. As displayed in Figure 5D,
the CLICK-T could also be used between pH 6.5 and 7.5 at room temperature, which
normally appeared in nature water most cases. Moreover, the incubation time was also
optimized; the largest FL signal was obtained was obtained at 20 min (Figure 5E). After
then, prolonging the reaction time would not bring obvious signal incensement. From
Figure 5F, it also could be found that the PAD could emit stable FL signal within 25 to 40
◦C, then the signal would decrease as the temperature increases. This was because the
DNAzyme would lose reactivity at higher temperature. We also optimized different buffer
solutions for the CuAAC system (Figure 6). It was found that 25 mM HEPES at pH 6.5
was the optimized buffer. According to Zhang’s work [14], we selected non-fluorescent”
3-azide-7-hydroxycoumarin to react with different alkyne alcohol in the presence of Cu(II)
and forms the fluorescent triazole product. We optimized different alkyne alcohol for
the detection. The optimized alkyne alcohol was 3-butyn-1-ol and the data was shown
in Figure S6. Indeed, many fluorescent dyes with azide group can be used for Cu ion
detection, and we will further select them in the future work.
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Figure 6. The effect of different buffer solutions (pH 6.5) on the fluorescence intensity for CLICK-T
triggered Cu(II)AAC. The detection conditions were same as that of Figure 4.

In summary, the detection of Cu(II) ions could be performed in DNAzyme-modified
PAD at pH 6.5–7.5 and room temperature within 20 min, and other optimized conditions
are 4 µM DNAzyme, 100 µM AHC and BOL. Moreover, no reductive reagents are needed.
All these made the assay suitable for the point-of-care testing for Cu ions in water samples.

In Figure 7A, the FL images of CLICK-T- and CLICK-17-modified PADs were exhibited
under a handheld UV lamp (365 nm), together with different Cu(II) concentrations. It was
clear that the disks became gradually brighter with the increase in concentrations of Cu(II)
or Cu+. According to the Pixolor App software, each color intensity (RGB value) was
obtained. It was found that the G channels correlate with the tested copper concentrations,
and showed high intensities. The G/G0 were is proportional to the copper concentration
with a lower background. It could be found in Figure 7B, where the maximum detection
concentration of Cu(II) reached 150 µM (c) for CLICK-17, while it was 100 µM (d) for
CLICK-T. While the sensitivity (slope of calibration line) of CLICK-T (0.01898) was 1.5 fold
higher than CLICK-17 (0.01225), the best linear fit of PADs yields a R2 value as high as
0.997 (CLICK-T) and 0.998 (CLICK-17). The determined detection limit, 0.1 ± 0.05 M, was
comparable to the spectrophotometry measurement (Figure 4B). All these confirmed that
DNAzyme-modified PADs could satisfy the detection requirement, in comparison with the
standard fluorescence spectrophotometric measurements in solution.

The quantitation of copper in environmental monitoring and biomedical diagnosis
were summarized in Table 1. Many different methods were listed. Among them, most
commercial copper detection kits rely on either colorimetric or fluorometric readout in
96-well plates or tubes [19], with linear response range of about 1 µM to 50 µM and 30
to 60 min. Without particular optimization, the detection limit of the PADs is obviously
lower (0.1 µM), and the measurement time was comparably shorter than commercial kits,
while the selectivity of the assay based on Cu(II)AAC was higher than the commercial
ones, which were based on colorimetric reaction. From the above results, it could be found
that the fabricated DNAzyme-based chemosensor could meet the need for a copper ion
detection limit (30 µM) in drinking water, set by the World Health Organization. It also
can be used to detect human serum copper (10–20 µM) [20]. As it was well known [19], the
free copper ion in natural water is basically Cu(II), while Cu(I) is unstable and it is difficult
for it to exist in this environment. Thus, the assay is suitable for copper ions detection in
natural waters.
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Figure 7. (A) The fluorescent photo of (a) CLICK-17- or (b) CLICK-T-modified PADs, which catalyze
different concentration of Cu(II) under UV lamp (365 nm), the diameter of test disk of PAD is 0.7 cm.
(B) Normalized green intensity (G/G0, G0 is the green light signal without Cu(II)) versus the copper
concentration on the (c) CLICK-17- or (d) CLICK-T-modified PADs. Other conditions were as same
as Figure 4.

Table 1. Comparison of the assay with other assay for copper detection.

Detection Method Reaction Time Linear Range &
Detection Limit Reference

Fluorometric detection in solution
using fluorescence spectrometer 1 h 0–20 µM, 1.0 µM [21]

Fluorometric detection in solution
using fluorescence spectrometer 2 h 0.5–10 µM, 0.29 µM [22]

Colorimetric detection in solution
using a UV/Vis spectrophotometer 1 h 1.8–200 µM, 1.8 µM [12]

Color changes monitored by the
naked eye 40 min

3 µM (visual
detection),

0.8 µM (fluorescence
spectrometer)

[20]

Fluorometric detection in solution
using a fluorescence spectrometer 30 min 5.0–50 µM, 2 µM [22]

Colorimetric detection in solution
using a UV/vis spectrophotometer 40 min 0.5–50 µM, 0.3 µM [23]

Copper and Iron Test Strip Kit (2994) 4.7–47 µM [24]
The fluorescence PADs 20 min 0.3–150 µM, 0.1 µM This work

3.4. Reproducibility, Selectivity and Stability of the Assay

Under the above conditions, the selectivity of the µPAD towards Cu ion detection
were shown in Figure 8A. It could be found that there was negligible FL signal in the matrix
samples. The presence of 50 µM Cu(II) and some common metal ions (500µM Fe3+, Mg2+,
Pb2+, Zn+, Ca2+, Na+) in natural waters were detected by the DNAzyme-based sensor. In
Figure 8A, it can easily be found that only the solution containing Cu ions showed more
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intensive FL signals, while negligible signals were observed for other metals. According
to these experiments, the interference of other common metal ions in waters could be
ignorable.
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Furthermore, we investigated the sensor’s precision using 5 and 50 µM Cu(II). The RSD
% is 4.7% and 5.4% for ten successive assays, respectively. The stability was furthermore
studied in Figure 8B. The signals for 50 µM Cu(II) hardly changed. All these demonstrated
the DNAzyme-based sensor exhibited satisfied reproducibility and stability for being used
in real water samples.

3.5. Detection of Copper Ions in Real Water Samples

Furthermore, the PADs were employed to detect the Cu ions in real natural samples.
The results were compared with standard ICP-AES method and listed in Table 2. It could be
found that the assay has the same accuracy for copper detection comparing with ICP-AES,
and acceptable recoveries between 89–102% were obtained. Additionally, the RSD% was
between 1.3 and 5.8%. All these meant the assay could be employed for detecting Cu ions
in real waters.

Table 2. Detection of copper ions in water samples by the assay and ICP-AES (n = 5).

Sample Spiked (µM) Measured (µM) Recovery of the
Assay (%) ICP-AES (µM)

Fenghua river 0 0.18 ± 0.03 — 0.21 ± 0.04
0.5 0.67 ± 0.03 94.4 ± 4.5 0.78 ± 0.03

Yuyao river-1 0 ND — 0.07 ± 0.02
0.5 0.48 ± 0.02 96.0 ± 4.2 0.58 ± 0.04

Yong river-2 0 2.2 ± 0.07 — 1.91 ± 0.08
2.0 3.96 ± 0.05 89.0 ± 1.3 4.01 ± 0.05

Ningbo
university

0 1.32 ± 0.05 — 1.40 ± 0.10
2.0 3.21 ± 0.06 91.6 ± 1.9 3.41 ± 0.09

Baixi reservoir
0 ND — 0.05 ± 0.02

0.5 0.51 ± 0.03 102 ± 5.8 0.60 ± 0.03

4. Conclusions

In the study, a kind of paper-based fluorescent device-modified DNAzyme (CLICK-T
and CLICK-17) was designed to analyze Cu ions via point-of-care test with high sensitivity
and specificity. We found a new truncated DNAzyme—CLICK-T—exhibited higher cat-
alytic effects comparing with the reported CLICK-17 DNAzyme. More importantly, the
sample was only needed to be dripped on the surface of DNAzyme modified PADs, which
can generate visual fluorescence after 20 min, and the data in the PAD in the black box can
be read by mobile phone for quantification. The employment of black box and G/G0 ratio
detection strategy meant the signal was not interfered with by environmental light. This
method is very simple and portable, and can realize real-time online analysis of copper ions.
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Compared with laboratory testing, it greatly simplifies the detection steps and shortens the
time, and exhibits good practical application effect.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/chemosensors10020072/s1, Figures S1–S4: The detection of copper
ion by the CLICK-T-modified PDA, Figure S5: Schematic diagram of paper-based hydrophobization
reaction, Figure S6: (A) Cu+ catalyzed the click reaction of coumarin-hexynol. (B) Cu+ catalyzed the
click reaction of coumarin-butynol. The concentration of AHC was 100 µM in pH 6.5 25 mM HEPES
buffer and reacted for 20 min, Table S1: The sequence of CLICK-T DNAzyme and other DNA with
random sequence, Table S2: Sequence and dissociation constants (Kd) for the studied DNAzyme.
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