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Abstract: This paper assesses the over time performance of a custom electronic nose (eNose) com-
posed of an array of commercial low-cost and single-type miniature metal-oxide (MOX) semiconduc-
tor gas sensors. The eNose uses 16 BME680 versatile sensor devices, each including an embedded
non-selective MOX gas sensor that was originally proposed to measure the total volatile organic
compounds (TVOC) in the air. This custom eNose has been used previously to detect ethanol and
acetone, obtaining initial promising classification results that worsened over time because of sensor
drift. The current paper assesses the over time performance of different classification methods applied
to process the information gathered from the eNose. The best classification results have been obtained
when applying a linear discriminant analysis (LDA) to the normalized conductance of the sensing
layer of the 16 MOX gas sensors available in the eNose. The LDA procedure by itself has reduced the
influence of drift in the classification performance of this single-type eNose during an evaluation
period of three months.

Keywords: electronic nose; array of MOX gas sensors; linear discriminant analysis; LDA

1. Introduction

An electronic nose or eNose is an electronic sensing device designed to mimic human
olfaction to detect odors or aromas by providing different fingerprints [1]. An eNose can be
considered as a portable and low-cost alternative to gas chromatography (GC). Instruments
performing GC use capillarity columns coupled to very sensitive detection systems such as
mass spectrometers (MS) or flame ionization detectors (FID). These instruments can detect
and measure many chemicals at concentrations in the order of parts per billion (ppb), but
they are bulky and require a high power supply [2]. Alternatively, an eNose is a compar-
atively smaller device based on the combination of different gas sensors with different
sensitivities and/or specificities tailored to provide a characteristic fingerprint of an odor
or aroma at concentrations in the order of parts per million (ppm) [3]. Currently, there is a
growing interest in the creation of portable GC [4] and in the integration of miniaturized
gas preconcentrators which enables a significant enhancement of the sensitivity of portable
GC to achieve similar performances to benchtop instruments [2].

The development of affordable metal oxide (MOX) gas sensors [5] has enabled the
development of compact and portable eNoses composed mainly of an array of MOX gas
sensors [6]. These compact and low-cost eNoses can be used widely for static and dynamic
gas detection in home and industrial applications [7–9], for quality validation [10], and
even for disease detection [11]. However, the application of MOX gas sensors has some
disadvantages [12], such as the poor selectivity, the drift in performance and the high
internal operating temperature that requires a medium power supply that can prevent its
continuous application in battery-powered devices.
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The specific disadvantages of low-cost MOX gas sensors used in an eNose application
are drift [6,12–14] in sensitivity and specificity of the MOX gas sensors, the influence of the
ambient and meteorological conditions in the measures [15], and the influence of aging [16].
All these disadvantages are perceived as a sensitivity and baseline drift [17]. These effects
are used to provide a time-variant fingerprint of the odor or aroma analyzed that is very
difficult to interpret correctly using pattern recognition techniques [18].

Then, the optimized implementation of an eNose using MOX gas sensors [19] can be
addressed (1) by the direct application of different signal processing techniques [20–24],
which usually offer good results after calibration that worsen over time due to sensor
drift, and/or (2) by the application of specific signal processing techniques for removal of
baseline drifts in multivariate chemical sensor arrays [25–28].

Despite the above-cited problems, several new portable eNose applications that use
MOX gas sensors are being developed. A recent example is the proposal of Burgués et al. [29],
who used a portable eNose for real-time odor monitoring in a wastewater treatment plant.
This work used a custom eNose mounted as a payload (~1.8 kg) on a DJI Matrice 600 drone
where the principal characteristics are: 6 rotors, 6 × 5.700 mAh batteries, 10 kg weight
and 15.5 kg maximum takeoff weight, 2500 m service ceiling, 38 min autonomy with
no payload and 18 min with a payload of 5.5 kg. This eNose allowed real-time odor
measurements and the development of plant operation strategies tailored to monitor the
generation of odors and to minimize their transmission outside the plant. In this special
case, the eNose used a pump and a 10 m gas-sampling tube hung with a small weight in
the tip to reduce the influence of self-generated air turbulences in the measurements. The
compact eNose carried by the drone was composed of an array of 16 MOX gas sensors of
four different types and five additional electrochemical gas sensors of two different types
that were collectively operated using a pulsed strategy [30], reducing the average power
consumption of the eNose to only 1.0 W. In this case, the power consumption of this eNose
has been a determinant factor for this drone application, just as size, weight, and power
consumption are determining factors for smartphone-operated applications [31].

New Contribution

This paper presents the assessment of different algorithms applied for volatile classifi-
cation and their performance evolution over time. The dataset used in this paper has been
obtained with a custom eNose that we firstly presented in [32]. This eNose is composed
of an array of 16 miniature single-type BME680 sensor devices that embed a temperature
sensor, a humidity sensor, a pressure sensor, and a MOX gas sensor aimed to measure
the presence of nonspecific volatile compounds (TVOC) in the air to estimate the overall
air quality. In general, eNoses using MOX gas sensors used to be composed of different
sensor-types but, as presented in [32], we demonstrated that an eNose using an array
of sixteen single-type miniature MOX gas sensors is capable of distinguishing between
evaporated ethanol and acetone, exploiting the small but inherent variability expected in
single-type MOX gas sensors to detect volatile diversity directly.

The initial classification performance [32] with this custom eNose design was very
promising. However, after two weeks of continuous usage, the drift of the sensors worsened
the average classification performance from 97% to 77%, with a slight improvement in
the third week. Unfortunately, all early efforts invested in improving the classification
performance of this new eNose prototype were unsuccessful.

This paper assesses the over time performance of different classification methods
applied to process the information gathered with this eNose. The best classification per-
formance has been obtained when applying a linear discriminant analysis (LDA) to the
normalized conductance of the sensing layer of the 16 MOX gas sensors available in the
eNose. This LDA procedure by itself has reduced the influence of baseline drift in this
single-type eNose by maintaining the classification performance during an evaluation
period of three months. These improvements allow the development of future practical
applications of this new eNose prototype design.
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2. Previous Classification Results Obtained with the eNose

The eNose used in this work was first described in [32] in an application tailored to
detect and classify two volatiles: evaporated ethanol and acetone. The volatile classification
was based on the application of the principal component analysis (PCA [33]), a technique
that has been widely applied to process eNose data [34] due to its ability to reduce data
dimensionality while preserving most of their variance. After the initial calibration, the first
average classification results obtained with this eNose were very promising, higher than
94%. The classification procedure applied in the eNose presented in [32] was based on (1) an
initial calibration of the eNose with the two target volatiles by measuring the resistance of
the sensing layers of the MOX sensors in the presence of different volatile concentrations,
(2) the application of PCA to the calibration data to obtain a reference projection matrix
to reduce the dimensionality of the data produced by the sensor from sixteen dimensions
(16D) to only two dimensions (2D), and (3) the registration of the calibration data in
this 2D projected PCA space to be used as reference clusters for the classification. Then,
the live classification procedure was based on (1) reducing the dimensionality of the
raw data gathered by the eNose from 16D to 2D by using the PCA projection obtained
during the calibration, and (2) the classification of the projected data by using a k-nearest
neighbor (k-NN [35]) and the reference clusters projected in the PCA space registered
during the calibration.

The classification results obtained with this approach were repetitive and consistent
during the first week of continuous experimentation with the eNose. However, the classifier
performance obtained during the second week of experimentation decreased to 70%. In
order to illustrate this effect, Table 1 shows the calibration and test results using the 2D PCA
projection obtained from the calibration of the eNose with ethanol and acetone. Table 1
also shows the comparative projection of additional test data obtained one and two weeks
after the calibration. The clusters of ethanol and acetone obtained in these tests were still
isolated but shifted in the PCA projection because of MOX sensor drift. Therefore, the
k-NN classification (comparing the new data samples with the calibration clusters) of the
shifted test data were usually wrong. Further attempts to analyze and correct the shift
of the clusters in the 2D PCA projected space were unsuccessful and did not yield any
remarkable improvement on the classification results.

Table 1. Projection of the calibration data of ethanol and acetone using PCA. Comparative projection
of new test data of ethanol and acetone obtained one week (left column) and two weeks (right column)
after the calibration. Unpublished results from [32].

PCA Projection of the eNose Data

calibration and test results (one week after calibration) calibration and test results (two weeks after calibration)

1 

 

1 

 

  

 

2 

 

2 
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This current paper assesses the performance over time of different classification strate-
gies applied to the raw data provided by the eNose. One of the alternatives evaluated has
shown a significant over time improvement on the classification results achieved with this
single-type eNose design.

3. Materials and Methods

The materials used in this paper are the custom eNose presented in [32] composed of
16 single-type miniature MOX gas sensors, a photoionization detector (PID), and two gas
targets: evaporated ethanol and acetone. The methods assessed for volatile classification
are self-organized maps (SOM), PCA followed by k-nearest neighbors (k-NN), and linear
discriminant analysis (LDA).

3.1. eNose

Figure 1 shows an image of the custom eNose used in this paper, which has been
technically and operationally described in [32]. This eNose is composed of an array of
16 versatile miniature micro-machined BME680 sensor devices (Bosh Sensortec, Reutlingen,
Germany) that include a temperature sensor, a humidity sensor, a pressure sensor, and a
miniature MOX gas sensor proposed to measure the total of nonspecific volatile compounds
(TVOC) in the air. This eNose uses a compact low-power microcontroller that operates as
a slave USB device using the standard USB-CDC serial (RS232) communication protocol,
providing access to the 16 BME680 sensors that are individually selected using a dedicated
chip select line. In normal operation, this device continuously measures and provides the
resistive value of the 16 embedded MOX gas sensors. The sampling time operation of the
eNose is only limited by the communication speed of the ICP serial bus used to access
the 16 BME680 sensors, with a total power consumption of 0.9 W (5.0 V and 0.18 A) while
performing continuous measurements.
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Figure 1. Detail of the custom eNose implementation composed of sixteen single-type MOX gas
sensors embedded in sixteen BME680 sensor devices.

The eNose includes a redundant power supply connector which allows it to continue
measuring after being disconnected from the USB host. Implementing a continuous opera-
tion mode and using an external power source to deliver an uninterrupted power supply
to the sensors becomes a fundamental feature to avoid the nonspecific transitory readings
provided by MOX sensors during the initial heat-up stage [36]. This ensures that the heater
element of each one of the sensing devices remains within the operating temperature range.
The BME680 sensor provides access to temperature, humidity, and pressure readings, as
well as to the resistive value of the sensing layer of a miniature MOX gas sensor. To obtain
reliable gas readings with a MOX sensor, it is required to internally enable the flow of
current to its heating resistor. Once enabled, the BME680 powers the heating resistor of
its MOX gas sensor until the target heater temperature is reached. This temperature will
be maintained during a specific amount of time (heat-up time) before producing a new
resistance reading. Both parameters: target heater temperature and heat up time, can be
dynamically adjusted before performing a new reading.
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3.2. eNose Configuration

Each one of the sixteen BME680 sensors that compose the eNose can be configured
individually, allowing the definition of specific values for the target heat up temperature
applied to the heating resistance of the MOX gas sensor (in a range from 200 to 400 ◦C) and
the duration of the heat-up stage (in a range from 1 to 4032 ms). Table 2 shows the target
heater temperature and the heat-up duration (the same for all MOX gas sensors) used in
this paper to configure the eNose.

Table 2. Configuration parameters of the 16 MOX gas sensors used in the eNose and maximum
relative variation of the normalized resistance of the sensing layer during the detection of ethanol
and acetone.

Sensor ID
Target Heater
Temperature

(◦C)

Heat Up
Duration (ms)

Relative Variation of the
Normalized Resistance:
3–150 ppm of Ethanol

Relative Variation of the
Normalized Resistance:
3–146 ppm of Acetone

1 350 150 3.15% 4.01%
2 350 150 9.51% 4.86%
3 350 150 35.02% 12.07%
4 350 150 0.00% (Min. reference) 0.00% (Min. reference)
5 350 150 11.66% 4.23%
6 350 150 1.91% 2.96%
7 350 150 17.66% 4.01%
8 350 150 2.63% 1.29%
9 350 150 28.08% 9.96%
10 350 150 6.77% 1.73%
11 350 150 6.18% 3.56%
12 350 150 10.45% 4.42%
13 350 150 0.00% (Max. reference) 0.00% (Max. reference)
14 350 150 5.14% 3.83%
15 350 150 3.72% 3.67%
16 350 150 4.40% 3.75%

This eNose configuration is different from the configuration used previously in [32].
In the scientific literature, the common strategy used to configure several units of single-
type MOX gas sensors is the application of different power values to the heating resistor
(different heating temperature) of each MOX gas sensor [29,36]. For example, in [36] four
TGS 2600 sensors were powered with a pulse width modulation (PWM) of 25%, 50%,
62.5%, and 75%, four TGS 2602 with 25%, 50%, 62.5%, and 75%, four TGS 2611 with 25%,
50%, 62.5%, and 75%, and four TGS 2620 with 25%, 50%, 62.5% and 75%. Therefore,
in [32], the eNose was configured with different target heater temperatures for each of the
sixteen MOX gas sensors used. However, the results of the first validation experiments
conducted with this eNose showed that the MOX gas sensors were more sensitive at 350 ◦C,
so this paper evaluated the use of this temperature for the sixteen MOX gas sensors to
obtain the maximum sensibility from them. The specific optimization of these individual
configuration parameters will be addressed in a future work, probably tailored to a specific
application of this custom eNose.

3.3. Target Volatiles

This paper is based on [32] and the target volatiles assessed are the same: ethanol
and acetone, which have been widely used in the scientific literature [36–38]. A future
planned application of the custom eNose assessed is the development of an early gas leak
detector carried in a mobile robot [36], and ethanol and acetone are feasible candidates for
an accidental leak as they are widely used in its liquid form in many scientific and technical
laboratories and industrial plants. Acetone is used extensively as a solvent in the manufacture
of plastics. Ethanol is used extensively as a solvent in the manufacture of varnishes and
perfumes but also as a preservative for biological specimens; in the preparation of essences
and flavorings; in medicines and drugs; as a disinfectant and in tinctures; as an engine fuel; as
a fuel additive; and as an active ingredient in many alcoholic drinks.
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3.4. Photo Ionization Detector (PID)

A photoionization detector (PID), model ppbRAE 3000 from RAE Systems, is used in
this paper as a reference device to measure the concentration of the two target volatiles
accurately. The PID is a high-precision sensing device that requires the previous selection
of the gas to be measured because it has no classification capabilities.

3.5. Methods for Volatile Classification

The methods assessed in this paper for volatile classification are self-organized maps
(SOM), PCA followed by k-nearest neighbors (k-NN), and linear discriminant analysis (LDA).

SOM. The self-organizing map (SOM), proposed by Kohonen [39], can train a net
of nodes in order to learn to cluster data based on similarity, with a preference to assign
the same number of instances to each cluster. Two in this paper: ethanol and acetone.
The net of 1 × 2 dimensions used by this SOM classifier has been created using the
Matlab implementation: selforgmap.m, and the net has been trained using the Matlab
implementation: train.m, with:

net = selforgmap([1 2]);
net = train(net, eNose_array_calibration);

(1)

and the net has been applied to classify the gas samples using:

classification = net(eNose_array_sample);
class_label = vec2ind(classification);

(2)

although the class_label result requires an additional step to match the resulting label with
the correct calibration class: ethanol or acetone.

k-NN(PCA). The second classification method assessed in this paper is the application
of the k-nearest neighbors to a dimensional reduction performed with PCA. The principal
component analysis (PCA), proposed by Pearson [33], is an unsupervised method that
computes the principal components of a dataset by computing the eigenvectors and the
covariance matrix. These principal components can be used to reduce the dimensions of
the dataset while maintaining the variability of the clusters included in the dataset [40]. The
PCA analysis has been performed using the Matlab implementation of the PCA method:
pca.m, by using:

[coeff, score, ~, ~, ~,mu] = pca(eNose_array_calibration); (3)

where eNose_array_calibration is a matrix containing the calibration data, coeff are the
coefficients of the principal components, score are the scores of the principal components,
and mu the average values of each sensor of the eNose. Then, the transformation applied to
reduce the dimension of the information gathered by the eNose from 16 dimensions (16D)
to 2 dimensions (2D) is:

eNose_array_sample_2D = (eNose_array_sample −mu) × coeff(:,2); (4)

The k-nearest neighbors algorithm (k-NN) is a nonparametric classification method
proposed by Fix and Hodges [35] that sorts the k-closest samples in a labeled reference
dataset depending on the class membership of its neighbors. This k-NN classifier has been
trained using the Matlab implementation of the k-NN method: fitcknn.m applied to the
calibration data projected in the 2D space defined by the PCA:

Mdl = fitcknn (eNose_array_calibration_2D, class_calibration_label, ‘NumNeighbors’, 5); (5)

where Mdl is a k-nearest neighbor classification model based on the calibration classes.
Then, the classification of a gas sample has been performed using the Matlab function
predict.m, by using:
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class_label = predict (Mdl, eNose_array_sample_2D); (6)

LDA. The linear discriminant analysis (LDA), proposed by Fisher [41], is a supervised
statistical method that computes the eigenvectors and the covariance matrix of a dataset,
assuming that the different data clusters are based on different Gaussian distributions.
The discriminant analysis classification model trained with LDA can be used directly to
predict the class of a sample [42]. The LDA analysis has been performed using the Matlab
implementation of the LDA method: fitcdiscr.m, by using:

Mdl = fitcdiscr (eNose_array_calibration, class_calibration_label); (7)

where eNose_array_calibration is a matrix containing the eNose calibration samples, class_
calbiration_label is a vector containing the class of each calibration sample, and Mdl is the
fitted discriminant analysis model based on the input variables that will be used to predict
the class of a sample data [42]. This classification method has been implemented using the
Matlab function predict.m (Equation (6)).

Finally, PCA and LDA have a similar application to reduce the dimensions of the
eNose data [40]. The differences are that PCA maximizes the variance of the clusters while
LDA makes the clusters as separable as possible.

4. eNose Measurement Procedure

Calibration is a fundamental procedure that will affect the performance of the array of
MOX gas sensors operating as an eNose.

This section describes the procedure followed in this paper to measure ethanol and
acetone gas samples with the eNose. This procedure was proposed to develop a simple yet
reliable systematic procedure to obtain calibration and validation data.

The design of the measurement procedure used in this paper is a simplification of the
dynamic calibration procedure presented in [32]. This new simplified proposal aims to
obtain static data points showing the relationship between the eNose data and the ground
truth gas concentration measured with the PID.

The materials used in the experiments are a polypropylene (PP) plastic box of approxi-
mately 270 mm × 140 mm × 70 mm containing a small glass plate, the custom eNose, the
PID (ppbRAE 3000) with the tip of its sampling probe located inside the plastic box, and
1 mL liquid samples of ethanol and acetone stored in small syringes. Figure 2 shows an
image of the measurement setup. The box has a sealed practicable hole to insert the syringe
carrying the liquid samples of ethanol or acetone that will be released inside the glass pate.
Some previous exposition experiments have been conducted to verify that the plastic box
does not react with the target volatiles.
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transparent box containing the eNose, and a small glass plate to deposit the volatile in liquid form.

4.1. Measurement Procedure

The development of the measurement procedure has three stages: mounting, measur-
ing, and cleaning.
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Mounting stage. The eNose is placed inside the box. The PID is placed outside the
box with the tip of its measuring probe connected to the inside of the box to draw air
and measure the gas concentration. The air drawn with the PID could be returned to the
box via a return tube, but this possibility has not been applied in this paper because the
PID is used to extract polluted air from the box. During this mounting stage, the eNose
is disconnected from the USB port, but its power supply remains uninterrupted due to
the use of the redundant power connector. This mounting stage ends plugging the eNose
to a USB host and setting its configuration to operate in forced mode [32]: continuously
reading the resistance of the sensing layer of the 16 MOX gas sensors using the last eNose
configuration.

Measurement stage. The measurement stage begins by introducing the syringe con-
taining the liquid form of the volatile substance to be analyzed into the box. This substance
is then carefully deposited over the glass plate inside the box. Once the resistive values
gathered by the BME680 of the eNose are stable, a set of measuring cycles are performed.

Each measurement cycle is performed every seven minutes to allow the gas concentra-
tion to settle uniformly inside the box. During this seven-minute period, the PID remains
paused (with its pump disconnected), preventing it from causing any air turbulence inside
the box or decreasing the number of airborne particles of the evaporated substance. After
seven minutes (time required to get stable readings from the BME680), the PID is switched
on to gather 30 samples (one sample per second) to determine the current gas concentration
inside the box. The last sample is registered as the true concentration, as it is estimated
that at least 20 s of air pumping are needed to remove any previous air samples remaining
inside the sampling probe of the PID. After 30 s, the PID is paused again until the next
measurement cycle is performed.

Figures 3 and 4 show the continuous evolution of the resistance of the sensing layers
of the 16 MOX gas sensors of the eNose and the instantaneous gas concentration measured
with the PID.
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Figure 4. Results of an eNose calibration experiment with acetone: (a) evolution of resistance of the
sensing layer of the 16 MOX gas sensors embedded in the 16 BME680 sensors, and (b) reference
acetone concentration measured with the PID (assumed as the ground truth concentration).

The sequential activation of the pump of the PID is used to extract a fixed, constant
amount of polluted air from inside the box. This extraction reduces the total amount of
polluted gas from inside the chamber and the concentration of the volatile. The activation
of the internal pump of the PID originates an instantaneous peak in the resistance of the
sensing layers of the MOX gas sensors provided by the eNose as a consequence of the
sudden reduction of the gas concentration caused by the extraction of polluted air from
inside the box. This peak disappears several seconds after the deactivation of the pump of
the PID as a consequence of the homogenization of the concentration of the volatile inside
the box.

Cleaning Stage. In this final stage, the box is kept open for at least 60 min between
experiments to facilitate the renovation of the air inside the chamber. This stage ends when
a new measurement is started. The last step of the cleaning stage is using the PID to verify
that no concentration of volatiles remains from the previous experiment, ensuring that the
plastic box has been effectively purged.

4.2. eNose Sensitivity to the Target Volatiles

The calibration results that are shown in Figures 3 and 4 evidence slight differences
between the responses of the MOX gas sensors to the target volatiles. Figure 5 shows the
evolution of the values of the normalized resistance of the sensing layer of the MOX gas
sensors (measured just before each PID activation) in relation to the concentration of the
volatiles measured by the PID. The normalization process is applied to the 16 instantaneous
resistance values of the sensing layers, Rk=1...16, of the 16 MOX gas sensors composing the
eNose relative to the upper and lower resistance values measured:

Rk=1...16 =
Rk −min(Rk=1...16)

max(Rk=1...16)−min(Rk=1...16)
(8)
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Figure 5. Representation of the normalized resistance of the sensing layer of the 16 MOX gas sensors
(labeled with different colors) presented in Figures 3 and 4, relative to the gas concentration measured
with the PID: (a) calibration with ethanol and (b) calibration with acetone. The alternative case
(c) depicts the normalized resistance obtained in 21 consecutive measurements with air (without
any volatile).

The relative representation in Figure 5 shows that some MOX gas sensors maintain
a similar relative value regardless of the gas concentration. At the same time, there are
other sensors whose relative value changes depending on the concentration of the volatile
measured. This observation agrees with the variability that can be expected in a MOX gas
sensor [12]. For completeness, Figure 5c shows the normalized resistance of the MOX gas
sensors obtained in 21 different measures with air. A closer look at the results of Figure 5
reveals that the sensors with the maximum and minimum resistance in the sensing layer are
always the same regardless of the presence of ethanol, acetone, or no volatile (air). In the
calibration results presented in Figures 3 and 4, the maximum resistance was provided by
sensor 13 and the minimum resistance by sensor 4. These reference sensors were the same
in all experiments conducted in this paper, so the normalized expression of the resistance
can be used to reduce the dimension of the data gathered from the eNose from 16D to 14D
by excluding the maximum (1.0) and minimum (0.0) normalized values.

Table 2 summarizes the maximum relative variation of the normalized resistance
of the sensing layer of the 16 MOX gas sensors of the eNose in the presence of ethanol
and acetone. This relative normalized representation highlights the small differences
between the 16 MOX gas sensors. Results show that sensor 3 has the highest relative
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variability in ethanol (35%) and the highest relative variability in the presence of acetone
(12%). Nevertheless, this variability depicts lower sensitivity (minor increase in resistance)
due to the presence of ethanol and acetone. Similarly, sensor 9 had the second-highest
variability to ethanol (28%) and the second-highest variability to acetone (9%). Sensor 7 had
the third-highest variability to ethanol (17%) but the sixth-highest variability to acetone
(4%). Sensor 5 had the fourth-highest variability to ethanol (11%) and the fourth-highest
variability to acetone (4%), etc. We assume that the most relevant variabilities that allow
volatile differentiation are caused by the crossed differences provided by sensors 7 and 5.
We also assume that the values of these relative variations also validate the selection of the
target heater temperatures used in this paper.

Figure 6 shows the evolution of the average instantaneous resistance of the 16 sens-
ing layers of the MOX gas sensors relative to the volatile concentration (from results of
Figures 3a and 4a). These relationships can be used to estimate the possible concentration
of ethanol or acetone from the average resistance of the sensing layers of the 16 MOX
gas sensors of the eNose. However, an additional classification procedure is needed to
determine which volatile (ethanol or acetone) is sampled. Finally, the measurement proce-
dure described in this section will be applied to obtain the eNose calibration dataset (with
ethanol and acetone) and all validation datasets with ethanol and acetone. The objective is
to apply the same measurement procedure in all datasets used in this paper.
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16 MOX gas sensors relative to the concentration of ethanol and acetone measured with the PID.

5. Assessment of eNose over Time Classification Performance

Inspired by the scientific literature [10,36,38,43–47], this section proposes assessing
the over time performance of different classification methods applied to the custom eNose
design: SOM, KNN(PCA), and LDA. We applied a brute-force strategy to determine the
best input data format (computed from the raw resistive data provided by the eNose) to
maximize the success rate of the classifiers: the raw resistance, the raw conductance, the
normalized resistance, and the normalized conductance. We have tested other classification
methods without obtaining remarkable results.

The assessment performed in this work is based on repeatedly conducting the same
calibration experiment. The result of the first calibration experiment is used as a reference
to calibrate the classifiers, and the rest of the calibration experiments are used to validate
the proposed classification methods. This procedure is applied to have a similar dynamic
evolution in the calibration and validation experiments.
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Before presenting the results of this assessment, we want to highlight the reason that
motivated the implementation of a classification technique based on KNN(PCA) in the
initial development of the eNose presented in [32]. Table 3 shows the experimental results
obtained in this paper using the 2D PCA projection obtained during the calibration of
the eNose with ethanol (triangle, gray) and acetone (circle, gray). This calibration data
(in gray) is plotted just as a comparative reference. Table 3 also shows the projection of
eNose test data obtained one week and one month after the calibration. The projection
of the test data of ethanol (triangle, colored) and acetone (circle, colored) also depict the
absolute concentration simultaneously measured with the PID using a color-map scale.
The common characteristic of all clusters represented in Table 3 is the radial distribution of
the concentration of the volatiles measured, with a relative origin located in the upper-right
part of the 2D PCA space and a relative maximum in the lower-left part of the 2D PCA
space. This seemingly radial distribution pointed us to the possibility of estimating the
concentration of the volatile directly from this 2D PCA space and to the possibility to
directly estimate gas mixtures. However, we have not been successful in this analysis.
Similarly to Table 1, Table 3 shows a shift in the clusters of ethanol and acetone represented
in the 2D PCA projection space obtained during the calibration, reducing the chances of
correctly distinguishing between the two volatile substances.

Table 3. Calibration data of ethanol (triangle, gray) and acetone (circle, gray) are represented using
the PCA projection obtained from this calibration data. Comparative projection of additional test
data of ethanol (triangle, colored) and acetone (circle, colored) obtained one week (left column) and
one month (right column) after the calibration. The absolute concentration of the volatiles measured
during the tests is depicted with the attached color-map scale.

2D PCA Projection of the eNose Data (Evaluated as Resistance, R)

calibration and test results (one week after calibration) calibration and test results (one month after calibration)

 

3 

 

3 

 

  

 

4 

 

4. 

 

  

Tables 4 and 5 summarize the over time performance of the eNose used in this paper.
The methods assessed have been described in the Methods section and are labeled as
SOM(X), k-NN(PCA(X)), and LDA(X), where X is the format of the data gathered from
the eNose: R is a vector composed of the 16 raw resistance values of the sensing layer of
the 16 MOX gas sensors, C is a vector composed of the 16 conductance values computed
from the 16 raw resistances of the sensing layers, R is a vector composed of the 14 normal-
ized resistance values computed from the 16 raw resistance values of the sensing layers,
and similarly C is a vector composed of the 14 normalized conductance values computed
from the 16 raw resistances of the sensing layers. In the normalized cases R and C, the
values corresponding to sensors 13 and 4 are not included in the data vectors because such
normalized values (1.0 and 0.0, respectively) do not change during the measurements. At
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this point, it is important to note that the calibration of the classifiers has been performed
by collectively analyzing all data samples obtained during the calibration. In contrast,
the validation of the classifiers has been evaluated individually (sample by sample). The
statistics of correct ethanol classification, correct acetone classification, and true positives
provided in Tables 4 and 5 have been computed individually, classifying 19–20 eNose mea-
surements obtained with ethanol and 19–20 eNose measurements obtained with acetone.
The experimental measurement procedure used in these tests is the same used during the
calibration to gather comparative information from the eNose and the PID.

Table 4. Classification results obtained with the different classification methods assessed: comparative
projection of the test data into the space defined by the two principal components obtained during
the LDA analysis of the calibration data CCALIBRATION , classification methods assessed, samples
correctly classified as ethanol (triangle) and acetone (circle), and average true positives.

CTEST → LDA (CCALIBRATION) Classification Method Ethanol Acetone True Positives
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Table 5. Classification results obtained with the different classification methods assessed: comparative
projection of the test data in the space defined by the two principal components of the LDA analysis of
the calibration data, classification methods assessed, samples correctly classified as ethanol (triangle)
and acetone (circle), and average true positives.

CTEST → LDA (CCALIBRATION) Classification Method Ethanol Acetone True Positives
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Table 4 summarizes the performance of the classifier obtained after 1, 2, and 3 weeks
of the continuous eNose test. The worst classification performances were obtained with
SOM, probably because the initial training of the nodes of the net of the SOM cannot correct
the drift of the resistance/conductance of the sensing layer of the MOX gas sensors. The
best classification results were obtained with LDA applied to the raw resistance R and
the normalized conductance C provided by the eNose. The figures in the first-column of
the table present the comparative projection of all the test data CTEST (representing the
38 normalized conductance C vector values individually tested: 19 corresponding to ethanol
and 19 to acetone) into the 2D space defined by the two principal components obtained
during the LDA analysis of the calibration data CCALIBRATION (obtained from 38 calibration
samples: 19 obtained with ethanol and 19 obtained with acetone). The color-map scale
used in Table 4 is the same as the one used in Table 3. These comparative illustrations
show that the LDA projection of the information gathered by the eNose (evaluated as
normalized conductance, C) is robust against the drift in bias, sensitivity and/or specificity
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of the MOX gas sensors, so the volatiles classification in this 2D projected space will be less
challenging and more accurate. Finally, the performance of the classifiers obtained with
the classification method k-NN(PCA(R)) is similar to those obtained in [32] with a different
measurement setup.

Similarly, Table 5 summarizes the performance of the classifiers obtained after 1, 2,
and 3 months relative to the initial calibration. The color-map scale used in Table 5 is the
same as the one used in Table 3. It can be expected to obtain worse classification results
because of MOX gas sensors drift, but the LDA applied to the normalized conductance still
provides the best classification results. The first-column image compares the projection of
the normalized conductance of the calibration and test data samples in the 2D LDA space.
These images show that the LDA projection can partially compensate for the drift in bias,
sensitivity and/or specificity of the MOX gas sensors.

Finally, Table 6 summarizes and ranks the performance of all the classifiers presented
in this paper in combination with all data formats assessed. The classification method used
previously in [32] was obtained with the application of k-NN to the PCA projection of the
eNose data (the 2D projection is defined by the two principal components obtained when
applying PCA to the calibration data), and showed an average true positive classification of
84%. Table 6 shows that this average percentage can be improved to up to 90% by evaluating
the conductance of the data gathered by the eNose. However, the best classifier performance
was obtained when applying LDA to the normalized conductance of the data gathered by
the eNose with an average true positive classification percentage of 97%. That represents
an improvement of 4% relative to the results obtained when applying LDA to the raw
resistance data provided by the eNose. The results obtained during the experimental stage
of this work were achieved in laboratory conditions; thus, applying the same classification
techniques in real application conditions could worsen the classification results.

Table 6. Summary of the classifiers performance assessed in this paper.

Classification
Method

Average True
Positives

(min)

Average True
Positives

(max)

Average True
Positives

LDA
(
C
)

93% 100% 97%
LDA (R) 60% 100% 93%

KNN (PCA (C)) 79% 98% 90%
KNN (PCA (R)) 1 76% 90% 84%

LDA
(

R
)

54% 100% 84%
SOM (R) 74% 85% 81%
SOM

(
R
)

71% 87% 77%
SOM

(
C
)

53% 87% 70%
SOM (C) 61% 71% 66%

KNN
(
PCA

(
R
))

49% 100% 63%
KNN

(
PCA

(
C
))

50% 100% 62%
LDA (C) 37% 74% 56%

1 Classification method used originally in [32].

6. Discussion

The results presented in Tables 4–6 showed the classification results obtained with
the classification methods assessed in this paper. The best classification performances
were obtained when the raw resistance data provided by the eNose was processed as
conductance, normalized (avoiding the normalized values: 1.0 and 0.0, and thus, reducing
the dimension of the eNose data from 16D to 14D), and finally classified based on the
principal components obtained by applying the LDA method with the initial calibration
data (also processed as normalized conductance). This LDA (C) method has proven to be
the most robust against drift in MOX gas sensor bias, sensitivity and/or specificity during
a three-month evaluation period. The second-best classification method, LDA (R), was
totally unexpected as it directly processes the raw resistance data from the eNose without
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any normalization. It is also noticeable that the LDA applied to the (non-normalized)
conductance of the sensing resistance of the 16 MOX gas sensors (LDA (C) method) has
also resulted in the worst method of the 12 classification methods analyzed. These different
classification results obtained with LDA pointed out the relevance of selecting the adequate
representation of the data and the adequate classification method [10]. The average classifi-
cation results described in Table 6 agree with the average results available in the scientific
literature [10,36,38,43–47].

Marco et al. [43] reported the use of SOM with a classification success of 97% when
analyzing the absolute normalized conductance of an eNose composed of 6 different
types of MOX gas sensors in time windows of minutes and decay in the classification
performances for larger evaluations. Comparatively, Table 4 reports the application of SOM
with a success of 84% when analyzing the resistance, 74% when analyzing the relative
normalized resistance, 68% when analyzing the conductance, and 53% when analyzing the
relative normalized conductance after a time window of 1 week. On average, Table 6 reports
average performances in a range from 66% (SOM (C) case, based on the classification of the
conductance of the 16 MOX gas sensors:) to 81% (SOM (R) case, based on the classification
of the resistance).

Hidayat et al. [10] evaluated the classification performances of an eNose composed
of 8 different MOX gas sensors in a practical classification application; assessing different
statistical preprocessing methods applied to the time-dynamic response of each MOX gas
sensor for improved feature extraction instead of directly classifying the data gathered
from the eNose. Hidayat et al. [10], Tiele et al. [46], and Arroyo et al. [47] used PCA as a
tool to visually interpret and discuss the clusters of the data, but no additional techniques
were applied to classify these clusters from the PCA projection directly. Instead, Hidayat
et al. [10] compared different supervised multivariable classification methods obtaining
an accuracy higher than 95% with the LDA method, although in a short time evaluation.
Comparatively, Tables 4–6 report similar LDA classification performances for a specific
preprocessing strategy applied to the data gathered from the eNose in a longer time
evaluation. Specifically, Table 6 reports very different LDA classification performances that
vary from 97% (LDA (C) case, based on the classification of the normalized conductance
of the 16 MOX gas sensors) to 56% (SOM (R) case, based on the classification of the
raw resistance).

In our previous work with this eNose [32], the volatile classification was based on
the combined use of PCA for dimension reduction and k-NN for classification (KNN(PCA
(R)) case) with an average success rate of 97% two days after the evaluation and 77% two
weeks after the calibration. This paper used a different measurement setup but with similar
classification results (Table 4): 76% after one week from the calibration and 76% after two
weeks. Unexpectedly, these classification performances increased up to 84% and higher
after three weeks of use. On average, Table 6 reports classification performances of 84%
but with a variance that precludes the practical application of this combined classification
method for this application.

Table 7 is finally provided to illustrate the differences between the dimensional reduc-
tion performed by PCA (Table 3) and LDA (Table 7). Tables 3 and 7 show the graphical
representation of the calibration data and the test data obtained one week after the cali-
bration (Table 4, 1-week case) and one month (Table 5, 1-month case) after the calibration.
Table 3 showed that the location of the test data projected in the 2D PCA space shifted
but maintained a radial distribution of volatile concentrations. This cluster shift has been
avoided in the LDA projection (Table 7), improving the classification success. Still, the LDA
projection does not show any radial distribution (or any other observable pattern) of the
volatile concentration. However, this factor is not relevant in this application focused on
volatile classification.
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Table 7. Calibration data of ethanol (triangle, gray) and acetone (circle, gray) are represented using
the LDA projection obtained from this calibration data. Comparative projection of additional test
data of ethanol (triangle, colored) and acetone (circle, colored) obtained one week (left column) and
one month (right column) after the calibration. The absolute concentration of the volatiles measured
during the tests is depicted with the attached color-map scale. The data represented is the same
previously shown in Table 3.

2D LDA Projection of the eNose Data (Evaluated as Normalized Conductance,
–
C)

calibration and test results (one week after calibration) calibration and test results (one month after calibration)
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7. Conclusions and Future Work

This paper has assessed the over time performance of an eNose composed of an
array of single-type miniature MOX gas sensors in an application tailored to classify
two volatiles. The advantages of using the eNose proposed in this paper instead of a
portable gas chromatography instrument are the reduced volume of the eNose and the
low power supply requirements, which are as low as 0.9 W in a continuous operation.
These two advantages make this eNose suitable for battery-powered applications in the
case of expecting volatile concentrations in ppm. However, the advantage of a portable gas
chromatography instrument is a lower limit of detection, which can be enhanced in the case
of using a preconcentrator that increases the concentration of the substance to be identified
before the instrumental analysis. This preconcentrator device concept is not available in an
eNose using MOX gas sensors.

The eNose used in this paper was initially evaluated in previous work, concluding
that an array of single-type MOX gas sensors can classify two volatiles. However, the
promising classification performances worsened in a three-week evaluation. This paper has
assessed the over time performance of different classification methods applied to process
the information gathered with this eNose. The best over time classification performance
has been obtained when applying a linear discrimination analysis (LDA) to the normalized
conductance of the sensing layer of the MOX gas sensors. This supervised LDA analysis
has avoided the effect of the drift of the MOX gas sensors in a three-month evaluation,
probably because of the use of independent Gaussian mixture models to describe the two
clusters of calibration data.

Future works will assess the use of this eNose in a real application as a gas leak detector.
They will also address the optimization of the individual configuration parameters of the
16 MOX gas sensors to further analyze their classification capabilities and the limit of
detection of different substances.
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