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Abstract: This paper assesses the over time performance of a custom electronic nose (eNose) com-

posed of an array of commercial low-cost and single-type miniature metal-oxide (MOX) semicon-

ductor gas sensors. The eNose uses 16 BME680 versatile sensor devices, each including an embed-

ded non-selective MOX gas sensor that was originally proposed to measure the total volatile organic 

compounds (TVOC) in the air. This custom eNose has been used previously to detect ethanol and 

acetone, obtaining initial promising classification results that worsened over time because of sensor 

drift. The current paper assesses the over time performance of different classification methods ap-

plied to process the information gathered from the eNose. The best classification results have been 

obtained when applying a linear discriminant analysis (LDA) to the normalized conductance of the 

sensing layer of the 16 MOX gas sensors available in the eNose. The LDA procedure by itself has 

reduced the influence of drift in the classification performance of this single-type eNose during an 

evaluation period of three months. 
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1. Introduction 

An electronic nose or eNose is an electronic sensing device designed to mimic human 

olfaction to detect odors or aromas by providing different fingerprints [1]. An eNose can 

be considered as a portable and low-cost alternative to gas chromatography (GC). Instru-

ments performing GC use capillarity columns coupled to very sensitive detection systems 

such as mass spectrometers (MS) or flame ionization detectors (FID). These instruments 

can detect and measure many chemicals at concentrations in the order of parts per billion 

(ppb), but they are bulky and require a high power supply [2]. Alternatively, an eNose is 

a comparatively smaller device based on the combination of different gas sensors with 

different sensitivities and/or specificities tailored to provide a characteristic fingerprint of 

an odor or aroma at concentrations in the order of parts per million (ppm) [3]. Currently, 

there is a growing interest in the creation of portable GC [4] and in the integration of 

miniaturized gas preconcentrators which enables a significant enhancement of the sensi-

tivity of portable GC to achieve similar performances to benchtop instruments [2]. 

The development of affordable metal oxide (MOX) gas sensors [5] has enabled the 

development of compact and portable eNoses composed mainly of an array of MOX gas 

sensors [6]. These compact and low-cost eNoses can be used widely for static and dynamic 

gas detection in home and industrial applications [7–9], for quality validation [10], and 

even for disease detection [11]. However, the application of MOX gas sensors has some 

disadvantages [12], such as the poor selectivity, the drift in performance and the high 

internal operating temperature that requires a medium power supply that can prevent its 

continuous application in battery-powered devices.  
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The specific disadvantages of low-cost MOX gas sensors used in an eNose applica-

tion are drift [6,12–14] in sensitivity and specificity of the MOX gas sensors, the influence 

of the ambient and meteorological conditions in the measures [15], and the influence of 

aging [16]. All these disadvantages are perceived as a sensitivity and baseline drift [17]. 

These effects are used to provide a time-variant fingerprint of the odor or aroma analyzed 

that is very difficult to interpret correctly using pattern recognition techniques [18].  

Then, the optimized implementation of an eNose using MOX gas sensors [19] can be 

addressed (1) by the direct application of different signal processing techniques [20–24], 

which usually offer good results after calibration that worsen over time due to sensor drift, 

and/or (2) by the application of specific signal processing techniques for removal of base-

line drifts in multivariate chemical sensor arrays [25–28]. 

Despite the above-cited problems, several new portable eNose applications that use 

MOX gas sensors are being developed. A recent example is the proposal of Burgués et al. 

[29], who used a portable eNose for real-time odor monitoring in a wastewater treatment 

plant. This work used a custom eNose mounted as a payload (~1.8 kg) on a DJI Matrice 

600 drone where the principal characteristics are: 6 rotors, 6 × 5.700 mAh batteries, 10 kg 

weight and 15.5 kg maximum takeoff weight, 2500 m service ceiling, 38 min autonomy 

with no payload and 18 min with a payload of 5.5 kg. This eNose allowed real-time odor 

measurements and the development of plant operation strategies tailored to monitor the 

generation of odors and to minimize their transmission outside the plant. In this special 

case, the eNose used a pump and a 10 m gas-sampling tube hung with a small weight in 

the tip to reduce the influence of self-generated air turbulences in the measurements. The 

compact eNose carried by the drone was composed of an array of 16 MOX gas sensors of 

four different types and five additional electrochemical gas sensors of two different types 

that were collectively operated using a pulsed strategy [30], reducing the average power 

consumption of the eNose to only 1.0 W. In this case, the power consumption of this eNose 

has been a determinant factor for this drone application, just as size, weight, and power 

consumption are determining factors for smartphone-operated applications [31]. 

New Contribution 

This paper presents the assessment of different algorithms applied for volatile clas-

sification and their performance evolution over time. The dataset used in this paper has 

been obtained with a custom eNose that we firstly presented in [32]. This eNose is com-

posed of an array of 16 miniature single-type BME680 sensor devices that embed a tem-

perature sensor, a humidity sensor, a pressure sensor, and a MOX gas sensor aimed to 

measure the presence of nonspecific volatile compounds (TVOC) in the air to estimate the 

overall air quality. In general, eNoses using MOX gas sensors used to be composed of 

different sensor-types but, as presented in [32], we demonstrated that an eNose using an 

array of sixteen single-type miniature MOX gas sensors is capable of distinguishing be-

tween evaporated ethanol and acetone, exploiting the small but inherent variability ex-

pected in single-type MOX gas sensors to detect volatile diversity directly. 

The initial classification performance [32] with this custom eNose design was very 

promising. However, after two weeks of continuous usage, the drift of the sensors wors-

ened the average classification performance from 97% to 77%, with a slight improvement 

in the third week. Unfortunately, all early efforts invested in improving the classification 

performance of this new eNose prototype were unsuccessful. 

This paper assesses the over time performance of different classification methods ap-

plied to process the information gathered with this eNose. The best classification perfor-

mance has been obtained when applying a linear discriminant analysis (LDA) to the nor-

malized conductance of the sensing layer of the 16 MOX gas sensors available in the 

eNose. This LDA procedure by itself has reduced the influence of baseline drift in this 

single-type eNose by maintaining the classification performance during an evaluation pe-

riod of three months. These improvements allow the development of future practical ap-

plications of this new eNose prototype design. 
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2. Previous Classification Results Obtained with the eNose 

The eNose used in this work was first described in [32] in an application tailored to 

detect and classify two volatiles: evaporated ethanol and acetone. The volatile classifica-

tion was based on the application of the principal component analysis (PCA [33]), a tech-

nique that has been widely applied to process eNose data [34] due to its ability to reduce 

data dimensionality while preserving most of their variance. After the initial calibration, 

the first average classification results obtained with this eNose were very promising, 

higher than 94%. The classification procedure applied in the eNose presented in [32] was 

based on (1) an initial calibration of the eNose with the two target volatiles by measuring 

the resistance of the sensing layers of the MOX sensors in the presence of different volatile 

concentrations, (2) the application of PCA to the calibration data to obtain a reference pro-

jection matrix to reduce the dimensionality of the data produced by the sensor from six-

teen dimensions (16D) to only two dimensions (2D), and (3) the registration of the calibra-

tion data in this 2D projected PCA space to be used as reference clusters for the classifica-

tion. Then, the live classification procedure was based on (1) reducing the dimensionality 

of the raw data gathered by the eNose from 16D to 2D by using the PCA projection ob-

tained during the calibration, and (2) the classification of the projected data by using a k-

nearest neighbor (k-NN [35]) and the reference clusters projected in the PCA space regis-

tered during the calibration. 

The classification results obtained with this approach were repetitive and consistent 

during the first week of continuous experimentation with the eNose. However, the clas-

sifier performance obtained during the second week of experimentation decreased to 70%. 

In order to illustrate this effect, Table 1 shows the calibration and test results using the 2D 

PCA projection obtained from the calibration of the eNose with ethanol and acetone. Table 

1 also shows the comparative projection of additional test data obtained one and two 

weeks after the calibration. The clusters of ethanol and acetone obtained in these tests 

were still isolated but shifted in the PCA projection because of MOX sensor drift. There-

fore, the k-NN classification (comparing the new data samples with the calibration clus-

ters) of the shifted test data were usually wrong. Further attempts to analyze and correct 

the shift of the clusters in the 2D PCA projected space were unsuccessful and did not yield 

any remarkable improvement on the classification results. 

Table 1. Projection of the calibration data of ethanol and acetone using PCA. Comparative projection 

of new test data of ethanol and acetone obtained one week (left column) and two weeks (right col-

umn) after the calibration. Unpublished results from [32]. 

PCA Projection of the eNose Data 

calibration and test results (one week after calibration) calibration and test results (two weeks after calibration) 
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This current paper assesses the performance over time of different classification strat-

egies applied to the raw data provided by the eNose. One of the alternatives evaluated 

has shown a significant over time improvement on the classification results achieved with 

this single-type eNose design. 

3. Materials and Methods 

The materials used in this paper are the custom eNose presented in [32] composed of 

16 single-type miniature MOX gas sensors, a photoionization detector (PID), and two gas 

targets: evaporated ethanol and acetone. The methods assessed for volatile classification 

are self-organized maps (SOM), PCA followed by k-nearest neighbors (k-NN), and linear 

discriminant analysis (LDA). 

3.1. eNose 

Figure 1 shows an image of the custom eNose used in this paper, which has been 

technically and operationally described in [32]. This eNose is composed of an array of 16 

versatile miniature micro-machined BME680 sensor devices (Bosh Sensortec, Reutlingen, 

Germany) that include a temperature sensor, a humidity sensor, a pressure sensor, and a 

miniature MOX gas sensor proposed to measure the total of nonspecific volatile com-

pounds (TVOC) in the air. This eNose uses a compact low-power microcontroller that 

operates as a slave USB device using the standard USB-CDC serial (RS232) communica-

tion protocol, providing access to the 16 BME680 sensors that are individually selected 

using a dedicated chip select line. In normal operation, this device continuously measures 

and provides the resistive value of the 16 embedded MOX gas sensors. The sampling time 

operation of the eNose is only limited by the communication speed of the ICP serial bus 

used to access the 16 BME680 sensors, with a total power consumption of 0.9 W (5.0 V and 

0.18 A) while performing continuous measurements.  

 

Figure 1. Detail of the custom eNose implementation composed of sixteen single-type MOX gas 

sensors embedded in sixteen BME680 sensor devices. 

The eNose includes a redundant power supply connector which allows it to continue 

measuring after being disconnected from the USB host. Implementing a continuous oper-

ation mode and using an external power source to deliver an uninterrupted power supply 

to the sensors becomes a fundamental feature to avoid the nonspecific transitory readings 

provided by MOX sensors during the initial heat-up stage [36]. This ensures that the 

heater element of each one of the sensing devices remains within the operating tempera-

ture range. The BME680 sensor provides access to temperature, humidity, and pressure 

readings, as well as to the resistive value of the sensing layer of a miniature MOX gas 

sensor. To obtain reliable gas readings with a MOX sensor, it is required to internally en-

able the flow of current to its heating resistor. Once enabled, the BME680 powers the heat-

ing resistor of its MOX gas sensor until the target heater temperature is reached. This tem-

perature will be maintained during a specific amount of time (heat-up time) before pro-

ducing a new resistance reading. Both parameters: target heater temperature and heat up 

time, can be dynamically adjusted before performing a new reading. 
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3.2. eNose Configuration 

Each one of the sixteen BME680 sensors that compose the eNose can be configured 

individually, allowing the definition of specific values for the target heat up temperature 

applied to the heating resistance of the MOX gas sensor (in a range from 200 to 400 °C) 

and the duration of the heat-up stage (in a range from 1 to 4032 ms). Table 2 shows the 

target heater temperature and the heat-up duration (the same for all MOX gas sensors) 

used in this paper to configure the eNose. 

Table 2. Configuration parameters of the 16 MOX gas sensors used in the eNose and maximum 

relative variation of the normalized resistance of the sensing layer during the detection of ethanol 

and acetone. 

Sensor ID 
Target Heater 

Temperature (°C) 

Heat Up Duration 

(ms) 

Relative Variation of the  

Normalized Resistance: 

3–150 ppm of Ethanol 

Relative Variation of the  

Normalized Resistance: 

3–146 ppm of Acetone 

1 350 150 3.15% 4.01% 

2 350 150 9.51% 4.86% 

3 350 150 35.02% 12.07% 

4 350 150 0.00% (Min. reference) 0.00% (Min. reference) 

5 350 150 11.66% 4.23% 

6 350 150 1.91% 2.96% 

7 350 150 17.66% 4.01% 

8 350 150 2.63% 1.29% 

9 350 150 28.08% 9.96% 

10 350 150 6.77% 1.73% 

11 350 150 6.18% 3.56% 

12 350 150 10.45% 4.42% 

13 350 150 0.00% (Max. reference) 0.00% (Max. reference) 

14 350 150 5.14% 3.83% 

15 350 150 3.72% 3.67% 

16 350 150 4.40% 3.75% 

 

This eNose configuration is different from the configuration used previously in [32]. 

In the scientific literature, the common strategy used to configure several units of single-

type MOX gas sensors is the application of different power values to the heating resistor 

(different heating temperature) of each MOX gas sensor [29,36]. For example, in [36] four 

TGS 2600 sensors were powered with a pulse width modulation (PWM) of 25%, 50%, 

62.5%, and 75%, four TGS 2602 with 25%, 50%, 62.5%, and 75%, four TGS 2611 with 25%, 

50%, 62.5%, and 75%, and four TGS 2620 with 25%, 50%, 62.5% and 75%. Therefore, in 

[32], the eNose was configured with different target heater temperatures for each of the 

sixteen MOX gas sensors used. However, the results of the first validation experiments 

conducted with this eNose showed that the MOX gas sensors were more sensitive at 350 

°C, so this paper evaluated the use of this temperature for the sixteen MOX gas sensors to 

obtain the maximum sensibility from them. The specific optimization of these individual 

configuration parameters will be addressed in a future work, probably tailored to a spe-

cific application of this custom eNose. 

3.3. Target Volatiles 

This paper is based on [32] and the target volatiles assessed are the same: ethanol and 

acetone, which have been widely used in the scientific literature [36–38]. A future planned 

application of the custom eNose assessed is the development of an early gas leak detector 

carried in a mobile robot [36], and ethanol and acetone are feasible candidates for an acci-
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dental leak as they are widely used in its liquid form in many scientific and technical la-

boratories and industrial plants. Acetone is used extensively as a solvent in the manufac-

ture of plastics. Ethanol is used extensively as a solvent in the manufacture of varnishes 

and perfumes but also as a preservative for biological specimens; in the preparation of 

essences and flavorings; in medicines and drugs; as a disinfectant and in tinctures; as an 

engine fuel; as a fuel additive; and as an active ingredient in many alcoholic drinks. 

3.4. Photo Ionization Detector (PID) 

A photoionization detector (PID), model ppbRAE 3000 from RAE Systems, is used in 

this paper as a reference device to measure the concentration of the two target volatiles 

accurately. The PID is a high-precision sensing device that requires the previous selection 

of the gas to be measured because it has no classification capabilities. 

3.5. Methods for Volatile Classification 

The methods assessed in this paper for volatile classification are self-organized maps 

(SOM), PCA followed by k-nearest neighbors (k-NN), and linear discriminant analysis 

(LDA). 

SOM. The self-organizing map (SOM), proposed by Kohonen [39], can train a net of 

nodes in order to learn to cluster data based on similarity, with a preference to assign the 

same number of instances to each cluster. Two in this paper: ethanol and acetone. The net 

of 1 × 2 dimensions used by this SOM classifier has been created using the Matlab imple-

mentation: selforgmap.m, and the net has been trained using the Matlab implementation: 

train.m, with: 

net = selforgmap([1 2]); 

net = train(net, eNose_array_calibration); 
(1) 

and the net has been applied to classify the gas samples using: 

classification = net(eNose_array_sample); 

class_label = vec2ind(classification); 
(2) 

although the class_label result requires an additional step to match the resulting label with 

the correct calibration class: ethanol or acetone. 

k-NN(PCA). The second classification method assessed in this paper is the applica-

tion of the k-nearest neighbors to a dimensional reduction performed with PCA. The prin-

cipal component analysis (PCA), proposed by Pearson [33], is an unsupervised method 

that computes the principal components of a dataset by computing the eigenvectors and 

the covariance matrix. These principal components can be used to reduce the dimensions 

of the dataset while maintaining the variability of the clusters included in the dataset [40]. 

The PCA analysis has been performed using the Matlab implementation of the PCA 

method: pca.m, by using: 

[ coeff, score, ~, ~, ~,mu] = pca(eNose_array_calibration); (3) 

where eNose_array_calibration is a matrix containing the calibration data, coeff are the coef-

ficients of the principal components, score are the scores of the principal components, and 

mu the average values of each sensor of the eNose. Then, the transformation applied to 

reduce the dimension of the information gathered by the eNose from 16 dimensions (16D) 

to 2 dimensions (2D) is: 

eNose_array_sample_2D = (eNose_array_sample - mu) * coeff(:,2); (4) 

The k-nearest neighbors algorithm (k-NN) is a nonparametric classification method 

proposed by Fix and Hodges [35] that sorts the k-closest samples in a labeled reference 

dataset depending on the class membership of its neighbors. This k-NN classifier has been 



Chemosensors 2022, 10, 118 7 of 20 
 

 

trained using the Matlab implementation of the k-NN method: fitcknn.m applied to the 

calibration data projected in the 2D space defined by the PCA: 

Mdl = fitcknn (eNose_array_calibration_2D, class_calibration_label, ‘NumNeighbors’, 5); (5) 

where Mdl is a k-nearest neighbor classification model based on the calibration classes. 

Then, the classification of a gas sample has been performed using the Matlab function 

predict.m, by using: 

class_label = predict (Mdl, eNose_array_sample_2D); (6) 

LDA. The linear discriminant analysis (LDA), proposed by Fisher [41], is a super-

vised statistical method that computes the eigenvectors and the covariance matrix of a 

dataset, assuming that the different data clusters are based on different Gaussian distri-

butions. The discriminant analysis classification model trained with LDA can be used di-

rectly to predict the class of a sample [42]. The LDA analysis has been performed using 

the Matlab implementation of the LDA method: fitcdiscr.m, by using: 

Mdl = fitcdiscr (eNose_array_calibration, class_calibration_label); (7) 

where eNose_array_calibration is a matrix containing the eNose calibration samples, 

class_calbiration_label is a vector containing the class of each calibration sample, and Mdl is 

the fitted discriminant analysis model based on the input variables that will be used to 

predict the class of a sample data [42]. This classification method has been implemented 

using the Matlab function predict.m (Equation (6)). 

Finally, PCA and LDA have a similar application to reduce the dimensions of the 

eNose data [40]. The differences are that PCA maximizes the variance of the clusters while 

LDA makes the clusters as separable as possible.  

4. eNose Measurement Procedure 

Calibration is a fundamental procedure that will affect the performance of the array 

of MOX gas sensors operating as an eNose.  

This section describes the procedure followed in this paper to measure ethanol and 

acetone gas samples with the eNose. This procedure was proposed to develop a simple 

yet reliable systematic procedure to obtain calibration and validation data. 

The design of the measurement procedure used in this paper is a simplification of the 

dynamic calibration procedure presented in [32]. This new simplified proposal aims to 

obtain static data points showing the relationship between the eNose data and the ground 

truth gas concentration measured with the PID. 

The materials used in the experiments are a polypropylene (PP) plastic box of ap-

proximately 270 mm × 140 mm × 70 mm containing a small glass plate, the custom eNose, 

the PID (ppbRAE 3000) with the tip of its sampling probe located inside the plastic box, 

and 1 mL liquid samples of ethanol and acetone stored in small syringes. Figure 2 shows 

an image of the measurement setup. The box has a sealed practicable hole to insert the 

syringe carrying the liquid samples of ethanol or acetone that will be released inside the 

glass pate. Some previous exposition experiments have been conducted to verify that the 

plastic box does not react with the target volatiles.  
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Figure 2. Measurement setup composed of a PID, the redundant power supply for the eNose, a 

transparent box containing the eNose, and a small glass plate to deposit the volatile in liquid form. 

4.1. Measurement Procedure 

The development of the measurement procedure has three stages: mounting, meas-

uring, and cleaning. 

Mounting stage. The eNose is placed inside the box. The PID is placed outside the 

box with the tip of its measuring probe connected to the inside of the box to draw air and 

measure the gas concentration. The air drawn with the PID could be returned to the box 

via a return tube, but this possibility has not been applied in this paper because the PID is 

used to extract polluted air from the box. During this mounting stage, the eNose is dis-

connected from the USB port, but its power supply remains uninterrupted due to the use 

of the redundant power connector. This mounting stage ends plugging the eNose to a USB 

host and setting its configuration to operate in forced mode [32]: continuously reading the 

resistance of the sensing layer of the 16 MOX gas sensors using the last eNose configura-

tion. 

Measurement stage. The measurement stage begins by introducing the syringe con-

taining the liquid form of the volatile substance to be analyzed into the box. This substance 

is then carefully deposited over the glass plate inside the box. Once the resistive values 

gathered by the BME680 of the eNose are stable, a set of measuring cycles are performed. 

Each measurement cycle is performed every seven minutes to allow the gas concen-

tration to settle uniformly inside the box. During this seven-minute period, the PID re-

mains paused (with its pump disconnected), preventing it from causing any air turbulence 

inside the box or decreasing the number of airborne particles of the evaporated substance. 

After seven minutes (time required to get stable readings from the BME680), the PID is 

switched on to gather 30 samples (one sample per second) to determine the current gas 

concentration inside the box. The last sample is registered as the true concentration, as it 

is estimated that at least 20 s of air pumping are needed to remove any previous air sam-

ples remaining inside the sampling probe of the PID. After 30 s, the PID is paused again 

until the next measurement cycle is performed.  

Figures 3 and 4 show the continuous evolution of the resistance of the sensing layers 

of the 16 MOX gas sensors of the eNose and the instantaneous gas concentration measured 

with the PID. 
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(a) 

 

(b) 

 

Figure 3. Result of an eNose calibration experiment with ethanol: (a) evolution of resistance of the 

sensing layer of 16 MOX gas sensors embedded in the 16 BME680 sensors, and (b) reference ethanol 

concentration measured with the PID (assumed as the ground truth concentration). 

The sequential activation of the pump of the PID is used to extract a fixed, constant 

amount of polluted air from inside the box. This extraction reduces the total amount of 

polluted gas from inside the chamber and the concentration of the volatile. The activation 

of the internal pump of the PID originates an instantaneous peak in the resistance of the 

sensing layers of the MOX gas sensors provided by the eNose as a consequence of the 

sudden reduction of the gas concentration caused by the extraction of polluted air from 

inside the box. This peak disappears several seconds after the deactivation of the pump of 

the PID as a consequence of the homogenization of the concentration of the volatile inside 

the box. 

Cleaning Stage. In this final stage, the box is kept open for at least 60 min between 

experiments to facilitate the renovation of the air inside the chamber. This stage ends 

when a new measurement is started. The last step of the cleaning stage is using the PID to 

verify that no concentration of volatiles remains from the previous experiment, ensuring 

that the plastic box has been effectively purged.  

(a) 

 



Chemosensors 2022, 10, 118 10 of 20 
 

 

(b) 

 

Figure 4. Results of an eNose calibration experiment with acetone: (a) evolution of resistance of the 

sensing layer of the 16 MOX gas sensors embedded in the 16 BME680 sensors, and (b) reference 

acetone concentration measured with the PID (assumed as the ground truth concentration). 

4.2. eNose Sensitivity to the Target Volatiles 

The calibration results that are shown in Figures 3 and 4 evidence slight differences 

between the responses of the MOX gas sensors to the target volatiles. Figure 5 shows the 

evolution of the values of the normalized resistance of the sensing layer of the MOX gas 

sensors (measured just before each PID activation) in relation to the concentration of the 

volatiles measured by the PID. The normalization process is applied to the 16 instantane-

ous resistance values of the sensing layers, 𝑅𝑘=1..16, of the 16 MOX gas sensors composing 

the eNose relative to the upper and lower resistance values measured: 

𝑅𝑘=1..16 =
𝑅𝑘–min⁡(𝑅𝑘=1..16)

max⁡(𝑅𝑘=1..16)–min⁡(𝑅𝑘=1..16)
 (8) 

The relative representation in Figure 5 shows that some MOX gas sensors maintain a 

similar relative value regardless of the gas concentration. At the same time, there are other 

sensors whose relative value changes depending on the concentration of the volatile meas-

ured. This observation agrees with the variability that can be expected in a MOX gas sen-

sor [12]. For completeness, Figure 5c shows the normalized resistance of the MOX gas 

sensors obtained in 21 different measures with air. A closer look at the results of Figure 5 

reveals that the sensors with the maximum and minimum resistance in the sensing layer 

are always the same regardless of the presence of ethanol, acetone, or no volatile (air). In 

the calibration results presented in Figures 3 and 4, the maximum resistance was provided 

by sensor 13 and the minimum resistance by sensor 4. These reference sensors were the 

same in all experiments conducted in this paper, so the normalized expression of the re-

sistance can be used to reduce the dimension of the data gathered from the eNose from 

16D to 14D by excluding the maximum (1.0) and minimum (0.0) normalized values. 

(a) 
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(b) 

 

(c) 

 

Figure 5. Representation of the normalized resistance of the sensing layer of the 16 MOX gas sensors 

(labeled with different colors) presented in Figures 3 and 4, relative to the gas concentration meas-

ured with the PID: (a) calibration with ethanol and (b) calibration with acetone. The alternative case 

(c) depicts the normalized resistance obtained in 21 consecutive measurements with air (without 

any volatile). 

Table 2 summarizes the maximum relative variation of the normalized resistance of 

the sensing layer of the 16 MOX gas sensors of the eNose in the presence of ethanol and 

acetone. This relative normalized representation highlights the small differences between 

the 16 MOX gas sensors. Results show that sensor 3 has the highest relative variability in 

ethanol (35%) and the highest relative variability in the presence of acetone (12%). Never-

theless, this variability depicts lower sensitivity (minor increase in resistance) due to the 

presence of ethanol and acetone. Similarly, sensor 9 had the second-highest variability to 

ethanol (28%) and the second-highest variability to acetone (9%). Sensor 7 had the third-

highest variability to ethanol (17%) but the sixth-highest variability to acetone (4%). Sen-

sor 5 had the fourth-highest variability to ethanol (11%) and the fourth-highest variability 

to acetone (4%), etc. We assume that the most relevant variabilities that allow volatile dif-

ferentiation are caused by the crossed differences provided by sensors 7 and 5. We also 

assume that the values of these relative variations also validate the selection of the target 

heater temperatures used in this paper. 

Figure 6 shows the evolution of the average instantaneous resistance of the 16 sensing 

layers of the MOX gas sensors relative to the volatile concentration (from results of Figure 

3a and Figure 4a). These relationships can be used to estimate the possible concentration 

of ethanol or acetone from the average resistance of the sensing layers of the 16 MOX gas 

sensors of the eNose. However, an additional classification procedure is needed to deter-

mine which volatile (ethanol or acetone) is sampled. Finally, the measurement procedure 

described in this section will be applied to obtain the eNose calibration dataset (with eth-

anol and acetone) and all validation datasets with ethanol and acetone. The objective is to 

apply the same measurement procedure in all datasets used in this paper.  
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Figure 6. Representation of the volatile calibration results: mean resistance of the sensing layer of 

the 16 MOX gas sensors relative to the concentration of ethanol and acetone measured with the PID. 

5. Assessment of eNose over Time Classification Performance  

Inspired by the scientific literature [10,36,38,43–47], this section proposes assessing 

the over time performance of different classification methods applied to the custom eNose 

design: SOM, KNN(PCA), and LDA. We applied a brute-force strategy to determine the 

best input data format (computed from the raw resistive data provided by the eNose) to 

maximize the success rate of the classifiers: the raw resistance, the raw conductance, the 

normalized resistance, and the normalized conductance. We have tested other classifica-

tion methods without obtaining remarkable results. 

The assessment performed in this work is based on repeatedly conducting the same 

calibration experiment. The result of the first calibration experiment is used as a reference 

to calibrate the classifiers, and the rest of the calibration experiments are used to validate 

the proposed classification methods. This procedure is applied to have a similar dynamic 

evolution in the calibration and validation experiments. 

Before presenting the results of this assessment, we want to highlight the reason that 

motivated the implementation of a classification technique based on KNN(PCA) in the 

initial development of the eNose presented in [32]. Table 3 shows the experimental results 

obtained in this paper using the 2D PCA projection obtained during the calibration of the 

eNose with ethanol (triangle, gray) and acetone (circle, gray). This calibration data (in 

gray) is plotted just as a comparative reference. Table 3 also shows the projection of eNose 

test data obtained one week and one month after the calibration. The projection of the test 

data of ethanol (triangle, colored) and acetone (circle, colored) also depict the absolute 

concentration simultaneously measured with the PID using a color-map scale. The com-

mon characteristic of all clusters represented in Table 3 is the radial distribution of the 

concentration of the volatiles measured, with a relative origin located in the upper-right 

part of the 2D PCA space and a relative maximum in the lower-left part of the 2D PCA 

space. This seemingly radial distribution pointed us to the possibility of estimating the 

concentration of the volatile directly from this 2D PCA space and to the possibility to di-

rectly estimate gas mixtures. However, we have not been successful in this analysis. Sim-

ilarly to Table 1, Table 3 shows a shift in the clusters of ethanol and acetone represented 

in the 2D PCA projection space obtained during the calibration, reducing the chances of 

correctly distinguishing between the two volatile substances. 
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Table 3. Calibration data of ethanol (triangle, gray) and acetone (circle, gray) are represented using 

the PCA projection obtained from this calibration data. Comparative projection of additional test 

data of ethanol (triangle, colored) and acetone (circle, colored) obtained one week (left column) and 

one month (right column) after the calibration. The absolute concentration of the volatiles measured 

during the tests is depicted with the attached color-map scale. 

2D PCA Projection of the eNose Data (Evaluated as Resistance, 𝑹) 

calibration and test results (one week after calibration) calibration and test results (one month after calibration) 

  

Tables 4 and 5 summarize the over time performance of the eNose used in this paper. 

The methods assessed have been described in the Methods section and are labeled as 

SOM(X), k-NN(PCA(X)), and LDA(X), where X is the format of the data gathered from the 

eNose: 𝑅 is a vector composed of the 16 raw resistance values of the sensing layer of the 

16 MOX gas sensors, 𝐶 is a vector composed of the 16 conductance values computed from 

the 16 raw resistances of the sensing layers, �̅� is a vector composed of the 14 normalized 

resistance values computed from the 16 raw resistance values of the sensing layers, and 

similarly 𝐶̅ is a vector composed of the 14 normalized conductance values computed 

from the 16 raw resistances of the sensing layers. In the normalized cases �̅� and 𝐶̅, the 

values corresponding to sensors 13 and 4 are not included in the data vectors because such 

normalized values (1.0 and 0.0, respectively) do not change during the measurements. At 

this point, it is important to note that the calibration of the classifiers has been performed 

by collectively analyzing all data samples obtained during the calibration. In contrast, the 

validation of the classifiers has been evaluated individually (sample by sample). The sta-

tistics of correct ethanol classification, correct acetone classification, and true positives 

provided in Tables 4 and 5 have been computed individually, classifying 19–20 eNose 

measurements obtained with ethanol and 19–20 eNose measurements obtained with ace-

tone. The experimental measurement procedure used in these tests is the same used dur-

ing the calibration to gather comparative information from the eNose and the PID.  

Table 4 summarizes the performance of the classifier obtained after 1, 2, and 3 weeks 

of the continuous eNose test. The worst classification performances were obtained with 

SOM, probably because the initial training of the nodes of the net of the SOM cannot cor-

rect the drift of the resistance/conductance of the sensing layer of the MOX gas sensors. 

The best classification results were obtained with LDA applied to the raw resistance 𝑅 

and the normalized conductance 𝐶̅ provided by the eNose. The figures in the first-col-

umn of the table present the comparative projection of all the test data 𝐶𝑇𝐸𝑆𝑇̅̅ ̅̅ ̅̅ ̅ (represent-

ing the 38 normalized conductance 𝐶̅ vector values individually tested: 19 corresponding 

to ethanol and 19 to acetone) into the 2D space defined by the two principal components 

obtained during the LDA analysis of the calibration data 𝐶𝐶𝐴𝐿𝐼𝐵𝑅𝐴𝑇𝐼𝑂𝑁̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (obtained from 38 

calibration samples: 19 obtained with ethanol and 19 obtained with acetone). The color-
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map scale used in Table 4 is the same as the one used in Table 3. These comparative illus-

trations show that the LDA projection of the information gathered by the eNose (evalu-

ated as normalized conductance, 𝐶̅) is robust against the drift in bias, sensitivity and/or 

specificity of the MOX gas sensors, so the volatiles classification in this 2D projected space 

will be less challenging and more accurate. Finally, the performance of the classifiers ob-

tained with the classification method k-NN(PCA(R)) is similar to those obtained in [32] 

with a different measurement setup. 

Similarly, Table 5 summarizes the performance of the classifiers obtained after 1, 2, 

and 3 months relative to the initial calibration. The color-map scale used in Table 5 is the 

same as the one used in Table 3. It can be expected to obtain worse classification results 

because of MOX gas sensors drift, but the LDA applied to the normalized conductance 

still provides the best classification results. The first-column image compares the projec-

tion of the normalized conductance of the calibration and test data samples in the 2D LDA 

space. These images show that the LDA projection can partially compensate for the drift 

in bias, sensitivity and/or specificity of the MOX gas sensors. 

Finally, Table 6 summarizes and ranks the performance of all the classifiers presented 

in this paper in combination with all data formats assessed. The classification method 

used previously in [32] was obtained with the application of k-NN to the PCA projection 

of the eNose data (the 2D projection is defined by the two principal components obtained 

when applying PCA to the calibration data), and showed an average true positive classi-

fication of 84%. Table 6 shows that this average percentage can be improved to up to 90% 

by evaluating the conductance of the data gathered by the eNose. However, the best clas-

sifier performance was obtained when applying LDA to the normalized conductance of 

the data gathered by the eNose with an average true positive classification percentage of 

97%. That represents an improvement of 4% relative to the results obtained when apply-

ing LDA to the raw resistance data provided by the eNose. The results obtained during 

the experimental stage of this work were achieved in laboratory conditions; thus, applying 

the same classification techniques in real application conditions could worsen the classi-

fication results.  

Table 4. Classification results obtained with the different classification methods assessed: compar-

ative projection of the test data into the space defined by the two principal components obtained 

during the LDA analysis of the calibration data 𝐶𝐶𝐴𝐿𝐼𝐵𝑅𝐴𝑇𝐼𝑂𝑁̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , classification methods assessed, sam-

ples correctly classified as ethanol (triangle) and acetone (circle), and average true positives. 

𝑪𝑻𝑬𝑺𝑻̅̅ ̅̅ ̅̅ ̅ ⁡→ LDA (𝑪𝑪𝑨𝑳𝑰𝑩𝑹𝑨𝑻𝑰𝑶𝑵̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) Classification Method Ethanol Acetone True Positives 

 

SOM (𝑅) 68% 100% 84% 

SOM (𝐶) 37% 100% 68% 

SOM (�̅�) 100% 47% 74% 

SOM (𝐶̅) 100% 5% 53% 

KNN (PCA (𝑅)) 100% 53% 76% 

KNN (PCA (𝐶)) 100% 79% 89% 

KNN (PCA (�̅�)) 100% 0% 50% 

KNN (PCA (𝐶̅)) 100% 0% 50% 

LDA (𝑅) 100% 100% 100% 

LDA (𝐶) 100% 0% 50% 

LDA (�̅�) 95% 100% 97% 

LDA (𝐶̅) 95% 100% 97% 

SOM (𝑅) 63% 100% 82% 

SOM (𝐶) 32% 100% 66% 

SOM (�̅�) 95% 53% 74% 

SOM (𝐶̅) 95% 47% 71% 

KNN (PCA (𝑅)) 100% 53% 76% 
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KNN (PCA (𝐶)) 89% 68% 79% 

KNN (PCA (�̅�)) 100% 0% 50% 

KNN (PCA (𝐶̅)) 100% 0% 50% 

LDA (𝑅) 100% 100% 100% 

LDA (𝐶) 100% 47% 74% 

LDA (�̅�) 79% 100% 89% 

LDA (𝐶̅) 95% 100% 97% 

 

SOM (𝑅) 63% 100% 82% 

SOM (𝐶) 32% 100% 66% 

SOM (�̅�) 47% 95% 71% 

SOM (𝐶̅) 53% 89% 71% 

KNN (PCA (𝑅)) 84% 84% 84% 

KNN (PCA (𝐶)) 89% 95% 92% 

KNN (PCA (�̅�)) 74% 79% 76% 

KNN (PCA (𝐶̅)) 74% 63% 68% 

LDA (𝑅) 100% 100% 100% 

LDA (𝐶) 0% 74% 37% 

LDA (�̅�) 95% 79% 87% 

LDA (𝐶̅) 89% 100% 95% 

Table 5. Classification results obtained with the different classification methods assessed: compar-

ative projection of the test data in the space defined by the two principal components of the LDA 

analysis of the calibration data, classification methods assessed, samples correctly classified as eth-

anol (triangle) and acetone (circle), and average true positives. 

𝑪𝑻𝑬𝑺𝑻̅̅ ̅̅ ̅̅ ̅ ⁡→ LDA (𝑪𝑪𝑨𝑳𝑰𝑩𝑹𝑨𝑻𝑰𝑶𝑵̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) Classification Method Ethanol Acetone True Positives 

 

SOM (𝑅) 47% 100% 74% 

SOM (𝐶) 21% 100% 61% 

SOM (�̅�) 74% 100% 87% 

SOM (𝐶̅) 74% 100% 87% 

KNN (PCA (𝑅)) 79% 100% 89% 

KNN (PCA (𝐶)) 74% 100% 87% 

KNN (PCA (�̅�)) 100% 100% 100% 

KNN (PCA (𝐶̅)) 100% 100% 100% 

LDA (𝑅) 100% 100% 100% 

LDA (𝐶) 42% 95% 68% 

LDA (�̅�) 100% 100% 100% 

LDA (𝐶̅) 100% 100% 100% 

SOM (𝑅) 65% 100% 83% 

SOM (𝐶) 35% 100% 68% 

SOM (�̅�) 100% 45% 73% 

SOM (𝐶̅) 100% 10% 55% 

KNN (PCA (𝑅)) 100% 80% 90% 

KNN (PCA (𝐶)) 100% 95% 98% 

KNN (PCA (�̅�)) 100% 0% 50% 

KNN (PCA (𝐶̅)) 100% 0% 50% 

LDA (𝑅) 100% 20% 60% 
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LDA (𝐶) 100% 0% 50% 

LDA (�̅�) 100% 50% 75% 

LDA (𝐶̅) 100% 100% 100% 

 

SOM (𝑅) 70% 100% 85% 

SOM (𝐶) 40% 100% 71% 

SOM (�̅�) 100% 71% 85% 

SOM (𝐶̅) 100% 67% 83% 

KNN (PCA (𝑅)) 100% 81% 90% 

KNN (PCA (𝐶)) 100% 86% 93% 

KNN (PCA (�̅�)) 100% 0% 49% 

KNN (PCA (𝐶̅)) 100% 10% 54% 

LDA (𝑅) 100% 100% 100% 

LDA (𝐶) 100% 14% 56% 

LDA (�̅�) 100% 10% 54% 

LDA (𝐶̅) 85% 100% 93% 

Table 6. Summary of the classifiers performance assessed in this paper. 

1 Classification method used originally in [32]. 

6. Discussion 

The results presented in Tables 4–6 showed the classification results obtained with 

the classification methods assessed in this paper. The best classification performances 

were obtained when the raw resistance data provided by the eNose was processed as con-

ductance, normalized (avoiding the normalized values: 1.0 and 0.0, and thus, reducing the 

dimension of the eNose data from 16D to 14D), and finally classified based on the princi-

pal components obtained by applying the LDA method with the initial calibration data 

(also processed as normalized conductance). This LDA (𝐶̅) method has proven to be the 

most robust against drift in MOX gas sensor bias, sensitivity and/or specificity during a 

Classification Method 
Average True Positives 

(min) 

Average True Positives 

(max) 
Average True Positives 

LDA (𝐶̅) 93% 100% 97% 

LDA (𝑅) 60% 100% 93% 

KNN (PCA (𝐶)) 79% 98% 90% 

KNN (PCA (𝑅)) 1 76% 90% 84% 

LDA (�̅�) 54% 100% 84% 

SOM (𝑅) 74% 85% 81% 

SOM (�̅�) 71% 87% 77% 

SOM (𝐶̅) 53% 87% 70% 

SOM (𝐶) 61% 71% 66% 

KNN (PCA (�̅�)) 49% 100% 63% 

KNN (PCA (𝐶̅)) 50% 100% 62% 

LDA (𝐶) 37% 74% 56% 
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three-month evaluation period. The second-best classification method, LDA (𝑅), was to-

tally unexpected as it directly processes the raw resistance data from the eNose without 

any normalization. It is also noticeable that the LDA applied to the (non-normalized) con-

ductance of the sensing resistance of the 16 MOX gas sensors (LDA (𝐶) method) has also 

resulted in the worst method of the 12 classification methods analyzed. These different 

classification results obtained with LDA pointed out the relevance of selecting the ade-

quate representation of the data and the adequate classification method [10]. The average 

classification results described in Table 6 agree with the average results available in the 

scientific literature [10,36,38,43–47]. 

Marco et al. [43] reported the use of SOM with a classification success of 97% when 

analyzing the absolute normalized conductance of an eNose composed of 6 different types 

of MOX gas sensors in time windows of minutes and decay in the classification perfor-

mances for larger evaluations. Comparatively, Table 4 reports the application of SOM 

with a success of 84% when analyzing the resistance, 74% when analyzing the relative 

normalized resistance, 68% when analyzing the conductance, and 53% when analyzing 

the relative normalized conductance after a time window of 1 week. On average, Table 6 

reports average performances in a range from 66% (SOM (𝐶) case, based on the classifica-

tion of the conductance of the 16 MOX gas sensors:) to 81% (SOM (𝑅) case, based on the 

classification of the resistance). 

Hidayat et al. [10] evaluated the classification performances of an eNose composed 

of 8 different MOX gas sensors in a practical classification application; assessing different 

statistical preprocessing methods applied to the time-dynamic response of each MOX gas 

sensor for improved feature extraction instead of directly classifying the data gathered 

from the eNose. Hidayat et al. [10], Tiele et al. [46], and Arroyo et al. [47] used PCA as a 

tool to visually interpret and discuss the clusters of the data, but no additional techniques 

were applied to classify these clusters from the PCA projection directly. Instead, Hidayat 

et al. [10] compared different supervised multivariable classification methods obtaining 

an accuracy higher than 95% with the LDA method, although in a short time evaluation. 

Comparatively, Tables 4–6 report similar LDA classification performances for a specific 

preprocessing strategy applied to the data gathered from the eNose in a longer time eval-

uation. Specifically, Table 6 reports very different LDA classification performances that 

vary from 97% (LDA (𝐶̅) case, based on the classification of the normalized conductance 

of the 16 MOX gas sensors) to 56% (SOM (𝑅) case, based on the classification of the raw 

resistance). 

In our previous work with this eNose [32], the volatile classification was based on the 

combined use of PCA for dimension reduction and k-NN for classification (KNN(PCA 

(𝑅)) case) with an average success rate of 97% two days after the evaluation and 77% two 

weeks after the calibration. This paper used a different measurement setup but with sim-

ilar classification results (Table 4): 76% after one week from the calibration and 76% after 

two weeks. Unexpectedly, these classification performances increased up to 84% and 

higher after three weeks of use. On average, Table 6 reports classification performances of 

84% but with a variance that precludes the practical application of this combined classifi-

cation method for this application. 

Table 7 is finally provided to illustrate the differences between the dimensional re-

duction performed by PCA (Table 3) and LDA (Table 7). Tables 3 and 7 show the graphical 

representation of the calibration data and the test data obtained one week after the cali-

bration (Table 4, 1-week case) and one month (Table 5, 1-month case) after the calibration. 

Table 3 showed that the location of the test data projected in the 2D PCA space shifted but 

maintained a radial distribution of volatile concentrations. This cluster shift has been 

avoided in the LDA projection (Table 7), improving the classification success. Still, the 

LDA projection does not show any radial distribution (or any other observable pattern) of 

the volatile concentration. However, this factor is not relevant in this application focused 

on volatile classification. 
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Table 7. Calibration data of ethanol (triangle, gray) and acetone (circle, gray) are represented using 

the LDA projection obtained from this calibration data. Comparative projection of additional test 

data of ethanol (triangle, colored) and acetone (circle, colored) obtained one week (left column) and 

one month (right column) after the calibration. The absolute concentration of the volatiles measured 

during the tests is depicted with the attached color-map scale. The data represented is the same 

previously shown in Table 3. 

2D LDA Projection of the eNose Data (Evaluated as Normalized Conductance, �̅�) 

calibration and test results (one week after calibration) calibration and test results (one month after calibration) 

  

7. Conclusions and Future Work 

This paper has assessed the over time performance of an eNose composed of an array 

of single-type miniature MOX gas sensors in an application tailored to classify two vola-

tiles. The advantages of using the eNose proposed in this paper instead of a portable gas 

chromatography instrument are the reduced volume of the eNose and the low power sup-

ply requirements, which are as low as 0.9 W in a continuous operation. These two ad-

vantages make this eNose suitable for battery-powered applications in the case of expect-

ing volatile concentrations in ppm. However, the advantage of a portable gas chromatog-

raphy instrument is a lower limit of detection, which can be enhanced in the case of using 

a preconcentrator that increases the concentration of the substance to be identified before 

the instrumental analysis. This preconcentrator device concept is not available in an eNose 

using MOX gas sensors. 

The eNose used in this paper was initially evaluated in previous work, concluding 

that an array of single-type MOX gas sensors can classify two volatiles. However, the 

promising classification performances worsened in a three-week evaluation. This paper 

has assessed the over time performance of different classification methods applied to pro-

cess the information gathered with this eNose. The best over time classification perfor-

mance has been obtained when applying a linear discrimination analysis (LDA) to the 

normalized conductance of the sensing layer of the MOX gas sensors. This supervised 

LDA analysis has avoided the effect of the drift of the MOX gas sensors in a three-month 

evaluation, probably because of the use of independent Gaussian mixture models to de-

scribe the two clusters of calibration data.  

Future works will assess the use of this eNose in a real application as a gas leak de-

tector. They will also address the optimization of the individual configuration parameters 

of the 16 MOX gas sensors to further analyze their classification capabilities and the limit 

of detection of different substances. 
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