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Abstract: Despite their advantages regarding production costs and flexibility, chemiresistive gas
sensors often show drawbacks in reproducibility, signal drift and ageing. As pattern recognition
algorithms, such as neural networks, are operating on top of raw sensor signals, assessing the impact
of these technological drawbacks on the prediction performance is essential for ensuring a suitable
measuring accuracy. In this work, we propose a characterization scheme to analyze the robustness
of different machine learning models for a chemiresistive gas sensor based on a sensor simulation
model. Our investigations are structured into four separate studies: in three studies, the impact
of different sensor instabilities on the concentration prediction performance of the algorithms is
investigated, including sensor-to-sensor variations, sensor drift and sensor ageing. In a further study,
the explainability of the machine learning models is analyzed by applying a state-of-the-art feature
ranking method called SHAP. Our results show the feasibility of model-based algorithm testing and
substantiate the need for the thorough characterization of chemiresistive sensor algorithms before
sensor deployment in order to ensure robust measurement performance.

Keywords: gas sensors; graphene; neural networks; modeling; algorithm robustness; simulation;
model explainability; sensor ageing; sensor variations

1. Introduction

Chemiresistive gas sensors are important technologies for environmental monitoring
and other application fields since they combine advantages in their cost of production
with their flexibility [1]. In its basic form, such a sensor device consists of a sensing layer,
which molecules in the air can adsorb onto or desorb from. Adsorption and desorption
processes have a direct impact on the electrical properties of the sensing layer, such as its
resistivity /conductance [2]. These properties are measured and combined with suitable
pattern recognition algorithms in order to translate them into either a classification guess
or a concentration estimate [3].

The development process of such sensors typically involves the thorough character-
ization of the sensor material and the analysis of its hardware components. The charac-
terization of the functional materials can involve spectroscopic techniques [4,5], such as
X-Ray Diffraction, as demonstrated for a tin-oxide material by Kim et al. [6], or Raman
spectroscopy, such as that investigated for a graphene-based material by Travan et al. [7].
Apart from the material properties themselves, other components of the sensor are also
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analyzed. As chemiresistive gas sensors mostly include microheaters [8], there has been a
large effort in characterizing the heating properties, such as the temperature distribution on
the material, by means of FEM, for example [9,10]. The results obtained by the described
characterization procedures can help to develop models for the studied sensor. This is
usually achieved by fitting experimental measurements to the model equations, taking the
material-specific effects derived from the characterization into consideration [11-14].

Despite the availability of a number of techniques for the characterization of hardware
components, only a few studies on such techniques have been proposed regarding focusing
on the characterization of the algorithms responsible for gas prediction. Moreover, the
available studies that provide an analysis of algorithm characteristics, such as their robust-
ness to different sensor instabilities, tend to focus on standardized techniques, such as
Principal Component Analysis (PCA) or Linear Discriminant Analysis (LDA) [15,16]. The
above-mentioned methods are the standard choice when it comes to proving and assessing
the separability performance of new sensing materials [17-20]. Nevertheless, algorithms
for chemiresistive gas sensors have progressed over the years and neural networks have
become more common in the field of environmental monitoring [21-24]. As a consequence,
a literature gap has arisen on techniques to assess and explain the validity of these more
complex and less transparent models in terms of their robustness.

In this work, we aim at characterizing smart chemiresistive gas sensors from a new
perspective. Instead of analyzing the sensor material or its hardware, we thoroughly charac-
terize the algorithms operating on top of the sensors. The main focus of our investigations
lies on the explainability of these algorithms, as well as their robustness to the different
instabilities that prototypical technologies typically entail. The goal is to provide a full
evaluation scheme for different algorithm types and for chemiresistive gas sensors by
adopting a system-level simulator previously developed for the investigated sensor device.
Our main contributions are:

¢  The investigation of a state-of-the-art feature ranking method and its usefulness to
make neural network algorithms for chemiresistive gas sensors explainable.

*  The study and the quantification of the impact of sensor-to-sensor variations at the
production stage on the performance of a set of different machine learning algorithms.

*  An analysis of the performance degradation of different prediction algorithms in the
presence of multiplicative and additive baseline drift.

* Anexamination of the effect of chemiresistive sensor ageing and its impact on algo-
rithm accuracy.

The experimental evidence of our contributions is structured into four different studies.
Each of the studies contains an additional overview of the related work in the specific area in
the Materials and Methods section. The studies share the same data configuration in terms
of concentration profiles, which is provided by a simulation model of a graphene-based
chemiresistive gas sensor that we developed in previous research [14,25]. Furthermore,
the techniques that we present throughout this paper are designed to be model-agnostic,
which means that they are also applicable for other pattern recognition algorithms, which
are not part of our study setup.

The structure of our paper is as follows: In Section 2, we introduce the methodology
of our investigations, which includes the choice of the machine learning models, the
simulation data setup and the evaluation metrics. Moreover, the feature ranking method,
SHAP, for the explainable Al study is introduced, as well as the simulation methods for
the sensor instability experiments for the three remaining studies, as illustrated in Figure 1.
Section 3 presents the results and discussion of the conducted studies. The conclusions are
then provided in Section 4.
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Figure 1. Overview of different types of instabilities happening during the lifetime of a chemiresistive
gas sensor. During sensor production, sensor-specific variations can occur, such as the general
variability of sensitivities between sensors. After deployment, low-cost devices tend to show a
drifting behavior of the measurement baseline in the scope of weeks and months. Over long time
scales, sensor ageing can occur, which has a direct impact on the sensitivity of the sensing devices.

2. Materials and Methods

This section aims to provide an overview of the methodology of the different studies.
First, the general data setup, the machine learning models and the error metrics are pre-
sented. Subsequently, SHAPD, a feature ranking technique used for machine learning model
explainability, is introduced. Afterwards, the different instability scenarios simulated for
the robustness evaluation are described.

2.1. Regression Models Based on Sensor Simulations
2.1.1. Machine Learning Models

The prediction of concentration levels or gas types based on chemiresistive sensor
measurements relies on regression algorithms. Throughout the last few decades, a va-
riety of different machine learning techniques have been studied and applied for such
a prediction task [26]. Frequently used techniques include k-NN Regression, Support
Vector Machines/Regression and (Artificial) Neural Network models. The latter methods
describe a class of algorithmic structures, which consist of neurons and edges, intended
to approximate decision/regression functions. This is achieved by fitting the numerous
parameters of the neural networks to the regression task by means of the backpropagation
algorithm.

The simplest implementation of a neural network is a feed-forward neural network
or multilayer perceptron (MLP), which has been extensively used for gas sensing pur-
poses [21,22,27]. It consists of an input layer, a varying number of hidden layers and an
output layer. Each layer consists of a varying number of neurons, which are intercon-
nected with edges from layer-to-layer with different weights. The input data are forwarded
through the network structure and the regression or classification output is generated in
the output layer. For gas sensing applications, the output describes a gas classification or a
concentration estimate.

Other frequently used neural network architectures for gas sensing are the so-called
recurrent neural networks (RNNs) [28,29]. RNNs are designed to process time-series data
by introducing neuron connections between time steps. To avoid unwanted effects, such as
the vanishing gradient problem, Long-Short-Term Memory (LSTM) cells or Gated Recurrent
Units (GRUs) are attractive alternatives for the neurons’ implementation.
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In this work, four different regression algorithms have been considered for the regres-
sion task and compared throughout the proposed studies:

*  SVR: Support Vector Regression
¢  MLP: Multilayer Perceptron

*  GRU: RNN using GRU cells

e LSTM: RNN using LSTM cells

In the literature, all four model types appear to be effective for the task of gas con-
centration estimation and vary in different characteristics, such as the complexity and
input data configuration. SVR and MLP only take the current data sample as input data,
whereas the GRU and LSTM approaches process a temporal history of 25 data samples
for one prediction. Moreover, the SVR approach is considerably more compact in terms
of computing complexity and memory footprint than the MLP and even more so than the
GRU or LSTM models. The three neural network approaches all have one hidden layer
containing 50 neurons. During training, early stopping and a learning rate scheduler have
been used as callbacks. The root mean square error was used as training loss.

2.1.2. Data Configuration

In this part, an overview of the different datasets that have been used for the model
training and the performance evaluation is given. The data were generated by using
a stochastic sensor model that was developed for a graphene-based chemiresistive gas
sensor in prior research [14,25]. The simulation technique requires the concentration
profile and the temperature modulation as an input and generates the response for three
different sensor functionalizations as an output. Additional parameters that influence the
measurement properties of the sensor array can additionally be altered from the calibrated
parameters in order to simulate deviations from the normal sensor behavior, such as
the sensitivity.

Throughout our studies, three different ozone concentration profiles were simulated
for training, validation and testing. These concentration profiles are divided into differently
shaped subprofiles. In order to create the dataset, several sequences of these subprofiles
have been created and simulated. The different subprofiles for the training, validation and
test dataset are shown in Figure 2. The reason for generating several permutations of these
subprofiles is to prevent models from overfitting and to decrease drift-related effects due to
slow recovery as well.

In terms of feature engineering, different types of input data have been used. The raw
signals from three different simulated sensor materials with different functionalization and
pulsed temperature modulation between two temperatures (Tjq,, = 65 °C, Ty, = 135 °C)
have been preprocessed by removing the high-temperature signals and averaging the
remaining signal over a certain time scale. Each data point represents 20 s of measurements.
Furthermore, the three derivatives of the sensor signals have been calculated and used as
an input. Additionally, so-called energy vectors have been calculated and used as an input
as well [30,31]. These data points represent the energy between every combinatorial subset
of two sensor signals. One sample of the energy vector E;; between the i-th and j-th sensor
signal is defined by the following equation:

Ej= /totl s1(t)s2(t)dt 1

Here, s1(t) and s,(t) describe the two sensor resistance signals. In our measurements, the
energy vectors are calculated as a discrete sum over several measurement samples. As a
feature, energy vectors can additionally stabilize the input data, since they take the history
of the measurements, to some degree, into account. This information is especially useful
for non-recurrent approaches, such as the MLP or the SVR algorithm.

Overall, the dataset, which was used for the robustness evaluation, contained
11,391 samples for the training set, 3444 samples for the validation set and 3444 samples
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for the test set. Examples for the data that were used in the different studies are depicted
in the supplementary material.
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Figure 2. The figure shows the different concentration profiles used for the training, validation and
test dataset. The different colors represent the subprofiles that were permuted in several simulation
runs in order to augment the data and to stabilize the pattern recognition algorithms.

2.1.3. Performance Metrics

Another substantial point in the evaluation process of machine learning models is the
choice of metrics to compare the performance of a regression algorithm. These metrics
usually map different aspects of the algorithm performance on a scalar value and are more
sensitive to certain aspects of the performance than to others. Therefore, we decided to
calculate an array of different metrics in order to obtain a detailed picture of the machine
learning model performance.

Two metrics that are very commonly used for such purposes are the mean absolute
error (MAE) and the root mean square error (RMSE).

1 N )
MAE = <) |y — 7 2)
N i=1

®)

These metrics penalize deviations from the ground truth without additional weights. The
RMSE metric, however, is more sensitive to larger deviations and therefore also to outliers.
Furthermore, the R? score, also known as the coefficient of determination, was used as
a metric. N 5
YizoWi — ¥i)
N 2
Lizo(yi =)
As a fourth performance indicator, a relative error metric was used. Specifically, the mean
absolute percentage error has been implemented.

RZ=1-— (4)

100 & [y; — 9
NZ= v

Due to its definition, the MAPE metric places an emphasis on the errors in the low-

concentration domain, since the denominator has a higher impact on the overall error

value for small gas concentrations.
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2.2. Shapley Value-Based Feature Ranking for Environmental Sensor Algorithms

Machine learning models, especially neural networks, are capable of combining differ-
ent types of features in a nonlinear manner to form a classification guess or a prediction.
However, the inner reasoning inside of such algorithms is often not comprehensible for
the user and the algorithm is perceived as a “black box” [32,33] (as illustrated in Figure 3),
which makes technologies relying on such algorithms prone to undesired effects that cannot
be determined in the algorithm production stage.

Therefore, explainability methods are necessary to be able to analyze the working
principle of the algorithms. For environmental sensors, these considerations apply as well,
especially when instabilities in the sensor behavior are likely to occur and are not covered
in the training data set.

Sensor 1

Resistances Sensor 2

Sensor 3

Sensor 1
Sensor 2

Sensor 3

Sensor 1

Sensor 2

Concentration
Estimation

Sensor 3

Figure 3. Illustration of a neural network as a “black box”. The input features are fed to the neural
network, which then connects the different variables into a concentration estimate.

As far as algorithms for chemiresistive gas sensors are concerned, there have been
only few studies trying to tackle the problem of missing explainability. We observe that
feature ranking techniques are often used for choosing, enhancing or engineering features.
Hayasaka et al. developed a graphene field-effect transistor sensor, which runs a feed-
forward neural network architecture for the classification of different vapors. In their
work, they used an ANOVA F-test to rank the different sensor features with regard to
their importance. They concluded that the electron field-effect mobility was the feature
providing the most important information [34]. A second method involving a statistical
test for feature ranking was used by Leggieri et al., performing a x? statistical test on their
electronic nose input features [35]. Liu et al. used a feature ranking method for filtering
out redundancies in the sensor features [36]. Zhan et al. used a signal-to-noise ratio (SNR)
method for feature selection for the classification of herbal medicines [37].

In this paper, we resort to a state-of-the-art method to derive the importance of different
features on the prediction of gas sensor algorithms. The method that we used for our feature
ranking investigations is called SHAP, which was developed by Lundberg et al. [38] and is
derived from game theory. Differently from ANOVA, this technique attempts to interpret
locally and on an algorithm level how each input feature of a machine learning model
contributes to the algorithm’s prediction. In order to quantify the contribution of a feature
to the overall prediction, SHAP values need to be calculated by combining features of
LIME [39] and the general Shapley values [40]. In order to explain a complex model, SHAP
aims to approximate the model locally for an input feature by a linear explanation model g,
which describes a linear function with respect to the presence of different subsets of the M
features summarized by a so-called coalition vector z’ € {0,1}M [41]. The feature-specific



Chemosensors 2022, 10, 152

7 of 21

weights of the linear explanation model ¢; describe the impact of the j-th feature on the
local prediction.

M
8(z') =¢o+ ) ¢z ©6)
j=1

The calculation of the feature attributions ¢; through SHAP for each prediction sample to
explain the concrete prediction value is then used to visualize and quantify the importance
of each individual feature of the algorithm.

2.3. Simulation of Different Sensor Instabilities

This section focuses on the different simulation techniques and objectives that are to be
studied in terms of algorithm robustness. The section on device-specific variations focuses
on effects that occur during sensor production and pre-treatment. The part on sensor drift
emphasizes the impact of a medium-term effect on the sensor performance. Subsequently,
long-term effects are described in the section on sensor ageing.

2.3.1. Sensor-to-Sensor Variations

Reproducibility is an important aspect in the fabrication of chemiresistive gas sensors.
In the production process of such devices, it occurs that similarly processed sensors, even
from the same batch, show slightly different physical characteristics in their measurement
properties when measured in similar conditions [42]. This means that different sensor
devices of the same type can show a different reaction, when they are exposed to the exact
same concentration profile. In other terms, the sensors produce different signals for the
same gas concentrations.

This represents a problem for the development of gas sensor algorithms. The machine
learning models that are deployed on new sensor devices are trained on measurements
recorded from a small batch of devices or even a single device. When deploying such an
algorithm on a new device showing different measurement characteristics, the performance
in terms of gas prediction might diminish.

The field in which methods to compensate for such effects are studied is called “Cali-
bration Transfer”. Here, algorithms are investigated that map the signals obtained by slave
devices (new sensors, which were not part of the measurement calibration process) to a
master device. Different algorithmic techniques were studied by researchers in terms of
their performance to achieve calibration transfer for different devices [43—47].

In terms of evaluating the impact of sensor-to-sensor variations on the prediction
performance of chemiresistive gas sensors, few studies have been published. Bruins et
al. investigated the changes in sensor data heterogeneity, if sensors show temperature
shifts compared to each other. Throughout their studies, they conclude that strict temper-
ature control is necessary for chemiresisitve sensor reproducibility and that temperature
in general has a rather strong effect on the data heterogeneity compared to morphologi-
cal variances [48].

In order to study the impact of such sensor-to-sensor variations, we performed differ-
ent simulations. In the proposed study, we investigated the effect of different sensitivities
on the sensor surface and their impact on the algorithm performance. One of the model
parameters of our sensor simulation model [14] is the so-called splitting factor. It describes
the ratio between sites associated with higher and lower energies on the sensor surface.
This ratio can be either influenced by the concrete production process of the sensor material
or by the pre-treatment of the material performed on the sensor before release. Variations
in these processes ultimately alter the sensor sensitivity.

In our study, we were therefore altering the splitting factor in order to simulate the
differences in production and pre-treatment and analyze them in terms of their algorithm
performance impact. The test set concentration profile was hence simulated with deviations
from the standard parameter between —30% and +30% in 5% steps.
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In a second step, we investigated whether additional variation in the training data can
increase the robustness of the regression models. To this end, we augmented the training
set with additional sensor data simulated with parameter deviations of —15% and +15%.
The model was then tested on the test sets of the previous experiment. An overview of the
different data configurations of the experiments is shown in Figure 4.

-15%

~ A SVR|IMLP|GRU|LSTM  }..... . +15%

Figure 4. Illustration of the data configuration used for the sensor-specific deviation analysis. The
full lines represent the original data setup for the first experiment corresponding to Section 3.2.1
in the Results section, whereas the dotted lines represent the additional datasets used for the data
augmentation experiment. During the training process, the training set(s) and the validation set(s)
are used to fit the different regression models. Overall, the models are then evaluated on 13 different
test sets and evaluated individually for each of these sets in order to compare the performance on
each sensor variation level.

2.3.2. Sensor Drift

In our second study, we analyze the impact of different additive and multiplicative
drift states on the sensor algorithm performance. In the literature, Llobet et al. studied the
impact of drift and other effects on the sensor measurement features, resorting to a PCA
plot for different gas mixtures. The data were obtained by a simulation tool based on PSpice,
which was presented in their paper [49]. Brahim-Belhouari et al. evaluated the classification
performance of a tin-oxide sensor using a Gaussian mixture model with respect to the
additive sensor drift behavior. They found a strong decay in sensor accuracy due to
drift and could partially compensate for the accuracy loss by retraining the model, which
enhanced the robustness of the algorithm [50]. In another work, Vergara et al. proposed
a classifier ensemble technique for drift compensation. In their work, they analyzed the
classification performance decay for different classifiers over the course of 36 months
without drift compensation. They found that the application of ensemble classifiers for
drift compensation can significantly reduce the accuracy decay caused by sensor drift [51].

To carry out our analysis, we altered the original test data signals by applying additive
and multiplicative drift of different levels onto the signal. Furthermore, the simulation of
the original training, validation and test set was different compared to the other studies.
For the dataset of the drift study, a long concentration pulse has been simulated, followed
by a short period of time without a gas present, before the actual concentration profiles
were simulated. At the beginning of the actual concentration profile, a recalibration of the
sensor signals has been performed. This is done in order to reduce the initial drift of the
sensor in the dataset and hence obtain a more stable sensor signal, so that the impact of
different drift levels can be analyzed without interference of other drift effects.

In order to create a test set with different levels of drift, a definition of the levels
for the additive drift is necessary in order to quantify the amount of drift relative to the



Chemosensors 2022, 10, 152

9 of 21

sensor signal. Since the simulation output signals describe already the relative resistance
calibrated to zero, a measure has to be defined, which is relative to the signal itself, in order
to measure the magnitude of the additive drift. Therefore, we take the difference between
the minimum and the maximum resistance of the training dataset for each sensor as the
span of values used for training and apply ratios of this value span to the baseline drift.

ddrift = rnl.in{Ri,tmin} - m?X{Ri,tmin} (7)

Here, R describes a vector of the three sensor signals and dy,f; a vector of three value spans
of the signals.

For the multiplicative drift, the signals, which were already calibrated to a baseline
around zero, were multiplied with different multiplicative drift values. This influences the
value span of the different test measurements and hence produces a multiplicative drift of
the sensor signals.

The regression models were trained on the undrifted training set and validation set and
then evaluated on the test sets with the different levels of additive and multiplicative drift.

2.3.3. Sensor Ageing

The ageing process of a chemirestive sensor over its lifetime can lead to different
effects. In our third study, the ageing process characterized by sensitivity loss is simulated
and analyzed. In the literature, Fernandez et al. investigated different sensor damage types
and quantified their impact in terms of performance degradation with the mean Fisher
score. They concluded that sensor ageing had a significant negative impact on the sensor
performance, also in comparison to the other damage types [16]. In another investigation,
Skariah et al. studied the impact of ageing of a Mg-doped tin-oxide gas sensor. They
could measure a significant decay in the sensor’s response to the target gas of up to 50% in
96 months [52].

In order to quantify the performance loss of the algorithms due to sensor ageing for
our algorithm setup, the test profile was simulated multiple times, with different adsorption
sites on the modeled sensor surface continuously covered. Throughout the simulation,
these adsorption sites were treated as adsorbed and no new molecules were able to adsorb
onto these sites, resulting in lower sensitivity. The simulated sensor signal was recalibrated
in the beginning of the simulation, assuming that the simulation process starts after cleaning
the still responsive parts of the sensor surface.

The fraction of adsorption sites that were put on hold describes the ageing state in the
simulation procedure. The fraction was iterated between 0 and 0.9 in steps of 0.1, where 0.9
represents a sensor, where 90% of the originally available adsorption sites are continuously
adsorbed and non-responsive to new gas molecules. The regression models were trained on
the respective profiles without sensor ageing and then tested on the test profile simulated
with the different ageing states.

3. Results and Discussion

In this part, the different results of the previously described experiments are presented
and discussed. First, the regression performance and explainability of the model without
instability effects is shown. Subsequently, the different robustness studies are illustrated.

3.1. Regression Performance and Model Explainability

The different regression models were trained by making use of the training and
validation set. Figure 5 shows the predictions of the LSTM model compared to the ground
truth of the ozone concentration. Despite the predictions showing some noisy behavior, the
overall concentration estimates are in good alignment with the real concentrations.
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Figure 5. Plot of the ground-truth ozone concentrations (dark orange) of the test set and the LSTM
model concentration estimates (light orange).

The results of the Shapley-value-based feature importance analysis are shown in
Figure 6. It can be observed that for both RNN approaches, the energy vector features seem
to have the main share in the gas estimation procedure as all three of the energy vectors
rank the highest for the GRU and the LSTM model. After this, the relative resistance of the
first and second sensor (R0 and R1, for the LSTM) and the derivatives of the first and third
sensor (drv0 and drv2, for the GRU) play a minor part in the prediction process.

A more detailed analysis of the model output impact depicted in Figure 6c,d shows
that the different energy vectors seem to influence the regression outcome in opposite
ways. The energy vector of the first and third signal (ev(0, 2)) has a negative impact on
the concentration prediction, whereas the other two energy vectors have a positive impact.
This suggests that ev(0, 2) is used for the baseline drift compensation of the absolute sensor
features, since it lowers the prediction, especially for high energy feature values. It has to
be added that a negative impact of the energy vector for high values is needed for drift
compensation, since a downwards drift in the resistance signal leads to an upwards drift in
the energy vector signal. The other two energy vectors tend to increase the concentration
prediction value for high energy vector values, which suggests that they recognize relative
changes in the drifting sensor signals.

We note that the focus on one feature group is an important characteristic to monitor
during sensor algorithm development. A non-diversification of features can have an impact
on the performance of the algorithms in the presence of additional effects, such as sensor
instabilities, which might be specifically affecting the corresponding feature group. Finally,
we observe that, for each new setup or change to the sensor implementation, a similar
analysis should be repeated since the value of different features and hence the observed
dependencies are highly dependent on the specific technology characteristics.
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Figure 6. Feature ranking plots for LSTM and GRU algorithms. (a,b) show the mean SHAP values
for the different features for (a) the LSTM and (b) the GRU model, respectively, and hence a ranking
on the features. (¢,d) provide an overview over the different SHAP values and their distributions for
each individual feature and also illustrating the feature value.

3.2. Sensor-to-Sensor Variations

The section on sensor-to-sensor variations is structured into two subsections. In
Section 1, the study on the impact of sensitivity changes is shown. Subsequently, the
change in sensor performance by augmenting the training dataset with data containing
such variations is analyzed.



Chemosensors 2022, 10, 152

12 of 21

3.2.1. Sensitivity Variations

For the study on sensitivity variation, machine learning models, which were trained
and validated on the standard sensitivity parameter, have been tested on the same test
concentration profile simulated with a set of different sensitivity variations. The results are
shown in both Figure 7 for the MLP variation and Table 1 for all algorithms.

In Figure 7, it can be seen that, for the MLP algorithm, the variation in the sensitivity

parameter has a noticeable effect on the algorithm’s prediction performance. Moreover,
when analyzing the different error metrics, the data suggest that the positive and negative
deviations from the original sensitivity parameter lead to a performance degradation.
A negative deviation seems to lower the prediction accuracy in the higher concentration
range, since the relative error appears to be rather stable, while the RMSE shows an increase
for negative parameter deviations. The positive sensitivity parameter deviations are shown
to have a strong impact on all error metrics. In the simulation, a positive deviation from the
sensitivity parameter is connected to a stronger drift behavior. This signal behavior seems
to have a stronger effect on the model performance than the enhanced relative sensitivity
associated with the negative sensitivity parameter variations.

For the recurrent neural networks, the negative deviations of the temperature parame-
ters seem to have statistically no noticeable negative effect on the prediction performance.
For both recurrent architectures, a small increase in the MAE can be seen for positive
parameter changes. A reason for this difference towards the other algorithms might be that
the focus of the recurrent algorithms on the historical development of the feature values
might make them less prone to the lower drift and higher sensitivity characteristics of the

negative parameter deviations.
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Figure 7. Error metric plots for the MLP algorithm with respect to the different variations in sensitivity
parameter. (a) Mean absolute error, (b) R? score, (c) relative error and (d) root mean square error.
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Table 1. Comparison of the mean absolute error for different variations in the sensitivity parameter
with respect to the regression algorithm.

Alg. -30% —25% —20% —15% —10% —5% 0% +5% +10%  +15%  +20%  +25%  +30%
SVR 12.1 11.55 12.98 11.26 11.07 11.53 10.59 119 12.11 12.84 16.64 14.74 17.37
MLP 11.9 11.29 12.82 11.27 10.85 11.71 10.21 11.7 12.03 13.85 17.72 15.61 18.73
GRU 6.22 6.41 7.48 6.53 6.28 6.34 6.43 6.06 6.17 6.09 7.32 6.82 7.01
LSTM  6.67 6.66 7.02 6.67 6.18 6.55 6.15 6.15 6.29 6.16 7.45 6.61 6.99
3.2.2. Robustness for Augmented Training Profiles
In an additional experiment, we took the algorithm robustness analysis one step
further by investigating whether a more diverse dataset would be capable of increasing
the stability of the algorithm to the sensor-to-sensor deviations. By training with both
the original training data and the same data with —15% and +15% sensitivity parameter
deviation, we performed the same analysis as in the previous section. A comparison
between the original results and the results from this more diverse training data case is
shown in Figure 8.
LSTM MLP
B [0%] Training BN [0%] Training
7 m [-15%,0%,+15%] Training 17.54 MW [-15%,0%,+15%] Training
6 15.0 1
51 12.5
< 4 < 10.0
= =
34 7.5
21 5.0 1
14 2.5
0 4
-30  -20  -10 0 10 20 30 -30  -20  -10 0 10 20 30

Temperature Parameter Deviation

(a) (b)

Sensitivity Parameter Deviation

Figure 8. Comparison of the MAE metric performances of differently trained algorithms regarding
different levels of sensitivity deviations. The blue bars show the algorithms trained on solely the
single-sensitivity parameter data, whereas the red bars show the algorithms trained with a diverse
dataset, also featuring the same concentration profile simulations with —15% and +15% deviation
from the standard sensitivity parameter. (a) shows the LSTM prediction performance and (b) the
MLP prediction performance.

It can be observed that training with a diverse dataset has a positive impact on the
prediction performance. For the LSTM model shown in Figure 8a, a decrease in the MAE
can be seen on both extremes of the parameter deviation scale. The MLP model, which is
depicted in Figure 8b, shows a much stronger increase in the prediction performance for
the positive sensitivity parameter deviation levels.

Overall, our data show that a diversification of the training dataset can improve, to
some extent, the prediction performance in the presence of sensor-to-sensor variations
linked to the sensitivity. Depending on the algorithm, the improvement might be limited to
certain types of sensitivity changes.
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3.3. Drift Effects
In this section, we wish to review the experiments on additive and multiplicative drift

and their influence on the gas prediction performance. Figure 9 shows the mean absolute
errors for (a) the LSTM model and (b) the MLP model with respect to different levels of

additive drift. For both models, a strong decay in prediction performance is observed in
the presence of additive drift. The downwards drift leads to a considerably faster increase

in MAE than the upwards drift.

It is noted that a peak occurs in the MAE curve at around 75% of additive downwards
drift. When comparing the concentration estimation plots for test profiles with lower levels
and higher levels of downwards drift, as depicted in Figure 10, clear differences in the
prediction behavior are observed. For smaller downwards shifts of the signals, the LSTM
model tends to severely overestimate the low concentrations. However, a general alignment
with relative concentration changes is still visible. In contrast, for larger downwards shifts
of the signals, the LSTM model only predicts in a considerably small concentration range.

It is assumed that such strong shifts in absolute signal values are beyond the scope of the

trained neural network model and hence lead to unfeasible predictions.
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Figure 9. Comparison of the MAE metric performances of differently trained algorithms with respect

to different levels of additive drift. The blue curve represents the downwards drift, whereas the
red curve represents the upward drift performance. (a) shows the LSTM model and (b) the MLP

model evaluation.
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Figure 10. Prediction plots of the LSTM model for two levels of additive downwards drift at (a) 50%
and (b) 225%.

The effect that the upwards drift appears to have a smaller, but still noticeable, impact
on the sensing performance might be explained by analyzing the feature importance, as
illustrated in Figure 11. This shows that, similarly to the previous model for the sensitivity
analysis, the main contributor to the concentration prediction is the energy vector between
the first and the third sensor. Additionally, the derivatives are observed to play a stronger
role in the prediction as well as the resistance value of the third sensor. During the upwards
drift experiment, the energy vectors change less in their absolute values compared to the
downwards drift experiment. This means that the state of overestimation observed at low
levels of downwards drift is only reached at moderate levels of upwards drift. This might
explain the slower decay behavior for the upwards drift experiment.
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Figure 11. Feature importance plots for the LSTM model used in the drift study. (a) shows the
mean SHAP values for the different features and (b) shows an overview of the different SHAP value
distributions.
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The evaluation of the performance loss due to multiplicative drift is shown in Figure 12.
It is observed that the performance decay of the two different multiplicative drift directions
is dependent on the evaluation metric. Overall, for both the LSTM model and the MLP
model, the increasing drift seems to have a stronger impact on the model performance
than the reducing drift. Only for high levels of multiplicative drift, the MAE of the
reducing drift surpasses the increasing drift error. This means that the concentration
overestimation due to increasing drift seems to worsen the prediction accuracy more

severely than a slight underestimation.

For the MLP, the relative error shows even better performance values at moderate
reducing drift values than the non-drifting case, whereas the MAE shows an upwards trend
at these drift levels. This is due to a concentration overestimation of the MLP with respect
to lower concentrations observed for the non-drifting test set. In this case, the reducing
drift enhances the prediction accuracy for the lower concentration domains, while it leads

to an underestimation of the higher concentration regions at advanced drift levels.

MAE Multiplicative Drift Comparison LSTM

25.0
== Reducing Drift X
-»=- Increasing Drift el
22.5 1 A X
I e
- -
5 20.0 4 A
g g
I~ X
S 17.5 1 A
Llj // ,//
E,J / x/
3 15.0 1 X
<} / Vi
@ / ’
e} )
< 4
< 12.51 X ;7
) AW,
= /s
/X
10.0 4 S il
X 7
// /,
754 Le%
1.0 1.5 2.0 2.5 3.0 3.5 4.0
Multiplicative Drift
(a)
Relative Error Multiplicative Drift Comparison LSTM
70
=¥~ Reducing Drift PSS Tl Hmm——— X
~»~ Increasing Drift X7
-
60 g
/
/ _-X
— ! f’—,
S X -
= 50 - L -7
e / ,,’x
i // R
x
5
2 404 / X,/
o
/I 7
/ 7’
X o
/ ’
304 7 P
X
x~\xz’
1.0 1.5 2.0 25 3.0 3.5 4.0
Multiplicative Drift
(9

Figure 12. Comparison of the MAE (first row) and relative error (second row) metric performances
of differently trained algorithms with respect to different levels of multiplicative drift. The blue
curve represents the reducing drift (multiplicative factor < 1), whereas the red curve represents
the increasing drift performance (multiplicative factor > 1). (a,c) show the LSTM model, whereas

Relative Error [%]

Mean Absolute Error [ppb]

MAE Multiplicative Drift Comparison MLP

=»- Reducing Drift _-X
201y Increasing Drift x’//
Pt _oX
19 4 //X/ /x/,
’ ,/
4 -2 Pa
18 X ,/z
g X
4 7’
17 A 4 d
4 ’
4 ’
X R
16 7 X
X R4
7 e
15 A X/ /,
Vil X
14 <
X
// /X
134
ST 4
N
12 T T T T T T T
1.0 1.5 2.0 25 3.0 3.5 4.0
Multiplicative Drift
(b)
Relative Error Multiplicative Drift Comparison MLP
=¥~ Reducing Drift _-X
70 1 == Increasing Drift —_—
/’X”’
65 =
60 X
-
//x
554 ’
X
/7
//
50 4 X
/
//
4547 -=X
><\ ——’_)(——'
\\ ”)(—’
401 R ’,,—x”/
Sy
351+— T T T T T T
1.0 1.5 2.0 2.5 3.0 3.5 4.0
Multiplicative Drift
(d)

(b,d) show the MLP model evaluation.
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3.4. Sensor Ageing

In a final study, the impact of sensor ageing on the performance of the different
machine learning algorithms was investigated. The results of the simulated scenario are
shown in Figures 13 and 14.

The data show that the continuous ageing process clearly decreases the performance
of all machine learning models. For all cases, the performance decay process starts quickly
at 0.1. For the LSTM, MLP and SVR algorithms, the increase in the MAE becomes slower
and finally saturates for higher ageing values above 0.6. The GRU algorithm does not show
this saturation behavior.

Furthermore, it is noticeable that the two best-performing models for the sensor data
without ageing effects, LSTM and GRU, generate considerably worse results for sensor
signals showing advanced levels of sensor ageing than the MLP and SVR models. Since
this effect is visible to both RNN models, this indicates that this property is linked to the
recurrent nature of the models.
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Figure 13. Comparison of the MAE across the different regression models for different ageing states.
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states.

Our experiments show that, in terms of long-term stability, also models performing
moderately under normal circumstances can show higher robustness to certain instabilities.
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In contrast, the more complex RNN approaches, even though better adaptable to the
regression task, might need additional ageing compensation techniques in order to increase
their robustness.

4. Conclusions

In this work, we developed and presented a scheme for characterizing and testing
various machine learning algorithms on smart chemiresistive gas sensor devices in the
presence of different instabilities by using a validated sensor model.

It was shown that explainable AI methods, such as SHAP [38], provide significant
insights into the roles of the various features in the prediction process. We have also
seen that sensor-to-sensor variations due to sensitivity differences can lead to a strong
decay in prediction performance, which can only partially be compensated by training
set diversification.

Additive and multiplicative drift can lead to a strong decay in the prediction perfor-
mance. The impact of drift on machine learning models varies among the drift types and
the drift direction. Moreover, it was found that the sensitivity loss due to sensor ageing
leads to significant performance decays, even having a stronger effect on more complex
algorithm architectures.

Overall, our work substantiates the need for a thorough characterization of algorithm
robustness when dealing with low-cost chemiresitive gas sensors. Even though models
can never capture every detail of a sensor’s complexity, they provide a meaningful and
necessary tool for algorithm characterization. In future investigations, the evaluation of
sensor robustness shall be further extended to additional effects such as sensor poisoning
or environmental changes [53,54].
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Abbreviations

The following abbreviations are used in this manuscript:

SVR Support Vector Regression
MLP  Multilayer Perceptron

GRU  Gated Recurrent Unit

LSTM  Long Short-Term Memory
SHAP SHapley Additive exPlanations
MAE  Mean Absolute Error

RMSE Root Mean Square Error

R? Coefficient of Determination
RE Relative Error
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