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Abstract: A sensitive and flexible detection method for organophosphorus pesticides (OPs) detection
is a crucial request to avoid their further expanded pollution. Herein, an acetylcholinesterase (AChE)
electrochemical sensor, based on the co-modification of ZIF-8 and graphene (GR), was constructed
for the detection of OPs. ZIF-8/GR composite can provide a stable and biocompatible environment
for the loading of AChE and can accelerate the chemical reaction on the electrode surface. After
optimization, the linear detection range of the constructed AChE-CS/GR/ZIF-8/GCE sensor for ICP
was 0.5–100 ng/mL (1.73–345.7 nM), and the limit of detection was 0.18 ng/mL (0.62 nM). Moreover,
high sensitivity and high specificity of the sensor were also achieved in actual cabbage and tap
water samples. Therefore, it has great potential for the application of organophosphorus pesticide
residue analysis.

Keywords: electrochemical biosensor; metal-organic framework; graphene; acetylcholinesterase;
isocarbophos

1. Introduction

Organophosphorus pesticides (chlorpyrifos, methylparathion, isocarbophos, etc.)
used in agricultural production have been extremely harmful to the environment and
humans, due to their high toxicity, even at very low concentrations. The organophosphorus
compounds induce human poisoning through strong inhibition of acetylcholinesterase
(AChE) activity, causing the accumulation of acetylcholine (ACh) in the body to lead
to acute poisoning with serious disorders of the nervous system and even death [1,2],
which reminds us that research on effective organophosphorus pesticide defense and rapid
detection methods is still worthwhile and urgent.

Traditional analytical methods for OPs are mainly based on chromatography, includ-
ing high-performance liquid chromatography (HPLC) [3], gas-liquid chromatography-mass
spectrometry (GC-MS) [4], and high-performance liquid chromatography-mass spectrome-
try (HPLC-MS) [5]. Although these analysis methods have high sensitivity and accuracy,
they are complex, expensive, and difficult to operate, which limits these methods in the
practical application of OPs detection [6]. However, electrochemical biosensors combining
biological characteristic elements with electrochemistry have high applicability because
of their high sensitivity, low cost, small size, ease to operate, fast detection, and direct
detection in the field [7].

Among them, enzyme electrochemical biosensors using AChE as the recognition
element are widely used for OPs detection [8]. However, the immobilization of enzymes has
always been an important factor affecting the performance of enzyme sensors. Introducing
suitable nanomaterials to increase the enzyme loading, without losing its activity, is a widely
used idea [9–11]. Metal-organic frameworks (MOFs) are a class of porous nanomaterials
prepared by bridging metal ions or metal clusters with organic ligands. Due to their diverse
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structure, adjustable pore size, large specific surface area, and good adsorption affinity, they
are widely used in the field of biosensing [12–14]. Zeolitic imidazolate frameworks (ZIFs),
as a special subfamily of MOFs, consist of transition metal ions and imidazole or imidazole
derivatives coordination [15], where ZIF-8 materials are made by combining Zn2+ and
dimethylimidazole. In addition to the above advantages, ZIF-8 has good biocompatibility,
because the Zn2+ imidazole ester group is a component of the physiological system [16].
Moreover, ZIF-8 has excellent chemical resistance, maintaining good crystallinity and
porosity, even after a period of time, in solvents, such as water, methanol, ethanol, and
N,N-dimethylformamide (DMF) [17]. Therefore, it is well-suited as a carrier for biosensitive
substances [18–20]. Many of the literature have reported the embedding of enzymes in the
pore structure of ZIFs [21,22]. For enzymes, especially AChE with complex conformation
and deep active center, being immobilized in the interior of MOFs is not necessarily the
most advantageous. Small pores may limit the access of the substrate to the active center
of the enzyme and affect the catalytic efficiency of the enzyme. Li’s group created a
hollow covalent organic framework (COF) capsule constructed for enzyme encapsulation
using MOF as a sacrificial template. Compared to enzymes assembled on electrodes, the
enzyme@COF microcapsules exhibited good stability and ensured enzyme conformational
expansion [23]. However, this method involves multiple steps, such as encapsulation
and etching, which are complicated to operate. How to achieve both simple and efficient
enzyme electrode construction is still in need of further research.

Inspired by the above concept, we used ZIF-8 as a substrate to immobilize the enzyme,
expecting to increase the enzyme loading, while maximizing the enzyme activity by simply
mixing and loading the enzyme on the periphery of ZIF-8. The direct mixing process
would preserve the original conformation of AChE and make the substrates more easily
approach the active center of the enzyme. Therefore, this work is a representative for
the study of sensors based on 3D MOFs surface immobilization of AChE. Due to the
poor conductivity of MOF, we also introduced graphene to improve the electron transfer
efficiency. After optimization, the sensor constructed with ZIF-8/GR composite showed
good performance and successfully achieved the detection of ICP in vegetable and tap water
samples, demonstrating the feasibility of the method and its great potential application in
the analysis of organophosphorus pesticide residues.

2. Experimental Section
2.1. Chemicals and Reagents

Acetylcholinesterase (AChE, EC3.1.1.7, C3389-500UN), acetylthiocholine chloride
(ATCl, A5626), and isocarbophos (ICP, 37901-100MG) were purchased from Sigma Aldrich
(Saint Louis, MS, USA). Potassium ferricyanide (K3[Fe(CN)6]) and potassium ferrocyanide
(K4[Fe(CN)6]·3H2O) were purchased from Guangfu Technology Development Co., Ltd.
(Tianjin, China). Potassium chloride (KCl), sodium dihydrogen phosphate (NaH2PO4·2H2O),
disodium hydrogen phosphate (Na2HPO4 12H2O), and chitosan (CS) were purchased from
Sinopharm Chemical Reagent Beijing Co., Ltd. (Beijing, China). Zinc nitrate (Zn(NO3)2) was
purchased from Xilong Science Co., Ltd. (Shantou, China), 2-Methylimidazole (2-MI) was
purchased from Maclean Biochemical Technology Co., Ltd. (Shanghai, China). Monolayer
graphene dispersion was purchased from Suzhou Tanfeng Graphene Technology Co., Ltd.
(Suzhou, China). The glassy carbon electrodes were purchased from Ada Hengcheng
Technology Development Co., Ltd. (Tianjin, China). All other chemicals and reagents
used in this study were of analytical grade, and all aqueous solutions were prepared with
ultrapure water (18.25 MΩ/cm) by a Millipore Direct-Q water system.

2.2. Instruments and Measurements

XRD (MxiniFlex600cx, Rigaku; Tokyo, Japan) was used to verify the crystal structure,
and purity of ZIF-8, FT-IR (Spectrum Two, PerkinElmer, Waltham, MA, USA) was used to
characterize the chemical structure of ZIF-8. SEM (Sigma300, Zeiss, Oberkochen, Germany)
photographed the microscopic surface morphologies of ZIF-8 and GR. All electrochem-
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ical tests were carried out on Electrochemical Workstation (CHI760E, CH Instruments;
Shanghai, China).

2.3. Synthesis of AChE-CS/GR/ZIF-8 Composites

Zinc nitrate (1.98 mM) was dissolved in 40 mL deionized water, and then the above
solution was added to 138.2 mM of 2-MI (molar ratio 1:70). The solution was stirred at
1000 rpm for 2 h at room temperature and then filtered. The collected particles were washed
three times with deionized water. Finally, the product was dried in a vacuum drying oven
at 80 ◦C for 10 h and ground into fine particles.

ZIF-8 were uniformly dispersed in PBS buffer (pH = 7.4) for 30 min. A liquid transfer
gun was used to take 2 µL ZIF-8 dispersion (3.5 mg/mL) and 2 µL graphene dispersion
(4 µg/mL), and then 2 µL 0.2 U/µL AChE buffer solution and 0.2% chitosan (CS) solu-
tion of pH 5.0 were added into a 0.5 mL centrifuge tube, respectively. The liquid in the
centrifuge tube was mixed evenly using a vibration mixer shaking for 30 s. Thus, the
AChE-CS/GR/ZIF-8 composites were synthesized.

2.4. Fabrication of Electrochemical Enzyme Biosensor

Glassy carbon electrode (GCE) needs to be polished and cleaned before use. The
specific process is as follows: polish the GCE with 1.0 µm, 0.3 µm, and 0.05 µm alumina
powder, respectively, then ultrasonic clean in deionized water, ethanol, and deionized
water, respectively (time should not be too long to avoid electrode damage). Finally, the
electrode surface was dried with nitrogen gas.

The AChE-CS/GR/ZIF-8/GCE sensor was obtained by evenly dropping the above
7 µL mixture onto the surface of GCE with a pipette gun and then dried in a refrigerator at
4 ◦C for 4 h.

2.5. Electrochemical Measurement

Cyclic voltammetry (CV), alternating impedance spectroscopy (EIS), and differential
pulse voltammetry (DPV) tests were performed on the prepared AChE-CS/GR/ZIF-8/GCE
sensor. CV tests were carried out in a mixture of solutions containing 0.1 M KCl and 5 mM
K3[Fe(CN)6]/K4[Fe(CN)6] (1:1), the scan speed was set to 50 mV/s, and the voltage range
is −0.2–0.6 V. The EIS test solution is the same as CV, the test frequency was 0.01–100 kHz,
the initial potential was 0.23 V, and the amplitude was 5 mV. These two measurements were
used to characterize the effect of different material modifications on the enzyme electrode.

DPV assays were performed in PBS containing 1 mM ATCl. The test voltage range
was 0.3–0.9 V, the pulse width was 50 ms, the voltage increment was 4 mV, and the rest
time was 2 s. The detection of AChE-CS/GR/ZIF-8/GCE sensor was based on the change
of DPV response current. The detection principle is shown in Scheme 1. Acetylthiocholine
chloride (ATCl), as a substrate, can be hydrolyzed into acetate and thiocholine (TCl) under
the catalysis of AChE. TCl can be further oxidized under a certain voltage to generate an
oxidation current, and the magnitude of the current is related to its concentration. When
ICP exists, it can combine with AChE to form phosphorylated AChE, thereby inhibiting
the activity of AChE, reducing the production of TCl, and reducing the oxidative current.
In a certain range, the inhibition of AChE by ICP is linear with its concentration, so it can
be quantitatively analyzed. The inhibition rate was calculated as follows:

Inhibition(%) =
I0 − I1

I0
× 100%,

where I0 is the initial DPV peak current of the sensor, and I1 is the DPV peak current of the
sensor after a certain concentration of ICP inhibition.
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Scheme 1. Schematic diagram of the construction of the AChE-CS/GR/ZIF-8/GCE sensor for
ICP detection.

2.6. Detection of Isocarbophos in Real Samples

A total of 1.0 g/L ICP standard solution was prepared with acetone and diluted with
ultra-pure water to obtain working standard solutions of different concentrations. Fresh
cabbages were purchased from the local market. The cabbage was cut into small pieces of
approximately 2 cm × 2 cm with scissors, weighed to 20 g, and further pounded in a mortar
and pestle. The mixture of 20 mL of deionized water and acetone (1:1) was shaken for
10 min and filtered by ultrasonic stirring for 30 min. Finally, the acetone in the filtrate was
removed by rotary evaporation at 60 ◦C, and the remaining filtrate was diluted 100 times
to obtain the final cabbage leachate sample. Different concentrations of ICP standards
were added to it to make spiked samples. Three measurements were made using different
sensors, and the corresponding concentration values were obtained from the standard
curve. It was divided by the actual spiked concentration to calculate the recovery of the
sample. Alternatively, ICP standards were added directly to the tap water samples to make
spiked samples, and the testing procedure was the same as above.

2.7. Limit of Detection

The limit of detection (LoD) represents the concentration CL corresponding to the
minimum analytical signal XL that the electrode can reasonably detect [24]. The calculation
formula is as follows:

XL = X + KS

where XL is the minimum analytical signal, X is the mean value of the blank, S is the
standard deviation of the blank, and K is a constant related to the confidence level, generally
taken as 3. Therefore, the CL corresponds to the value calculated by the calibration plot
obtained from a given analytical procedure.

3. Results and Discussion
3.1. Characterization of Nanomaterials

The composites were characterized by SEM. Figure 1a shows the morphology of ZIF-8,
observing a distinct rhombic dodecahedral shape, with a particle size of about 100–200 nm.
Figure 1b demonstrates the presence of a large number of structural defects and folds on
the GR surface. In addition to its inherent advantage of high electrical conductivity, it
also provides sufficient attachment points for ZIF-8 and AChE, which is confirmed by the
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ZIF-8/GR morphology shown in Figure 1c. Finally, a CS film wrapping the composite
can be observed in Figure 1d, further solidifying the loading of the composite on the
electrode surface.
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Figure 1. SEM image of (a) ZIF-8, (b) GR, (c) ZIF-8/GR, and (d) ZIF-8/GR/AChE-CS.

Figure 2a shows the XRD image of ZIF-8 particles. The characteristic peaks of ZIF-8
crystals are sharp and free of other spurious peaks, which are in general agreement with the
XRD simulated images, implying that the ZIF-8 particles have good purity and crystallinity.
FT-IR (Figure 2b) shows that there is an absorption peak at 1583 cm−1 for the stretching
vibration absorption peak of the C=N bond. In addition, the sample shows an absorption
peak at 420 cm−1, attributed to the stretching vibration peak of Zn-N. We also found that
the synthesized samples did not show the stretching vibration peak of the N-H bond in
2-MI at 2500–2800 cm−1 and 1851 cm−1, which can indicate that the 2-MI in the synthesized
products has been completely deprotonated [25]. The above results indicate that ZIF-8
nanoparticles with good morphology and structure have been successfully prepared.
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3.2. Electrochemical Characterization of Enzyme Biosensor

The electrochemical characteristics of electrodes modified with different materials
were investigated by CV and EIS. Figure 3a shows that the CV of each electrode exhibits a
pair of reversible redox peaks. The bare glassy carbon electrode has strong redox peaks.
After adding ZIF-8, the redox current decreased, which was caused by the poor conductiv-
ity of ZIF-8. While the electrode was modified by GR, the redox current was significantly
increased because its good electrical conductivity accelerated the electron transfer. After
loading AChE/CS, the redox current decreased again, mainly caused by the poor conduc-
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tivity of acetylcholinesterase as a protein molecule and hindrance of CS membrane, these
factors hinder the redox electric probes diffusion and electron transferring.
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Figure 3. CV curves (a) and Nyquist diagrams (b) of different modified electrodes in 5 mM
Fe(CN)6

3−/4− (1:1) test solution containing 0.1 M KCl.

EIS can be used to probe the interface properties of electrodes during different modifi-
cation processes. A typical Nyquist plot consists of a high-frequency semicircular region
associated with electron transfer-limited processes and a low-frequency linear part asso-
ciated with diffusion-limited processes. The diameter of the semicircle is often used to
estimate the resistance of charge transfer (Rct). In Figure 3b, the Rct of the bare glassy
carbon electrode is 74.5 Ω. The Rct of ZIF-8/GCE was significantly increased to 677 Ω.
After adding GR, Rct dropped to 470.9 Ω. Finally, the loading of AChE-CS increased Rct
to 981.2 Ω. The conclusion of the EIS test is consistent with the CV study, and the above
results show that the composites were successfully loaded on the electrodes.

3.3. Study on Substrate Response of Different Enzyme Electrodes

AChE-CS/GCE, AChE-CS/ZIF-8/GCE, and AChE-CS/GR/ZIF-8/GCE were con-
structed by the same method, and the responses of different enzyme electrodes to the
substrate ATCl were investigated by DPV. Figure 4 shows that all three electrodes have
obvious oxidation peaks around 0.65 V, which are generated by the electrochemical oxida-
tion of ATCl hydrolysis product TCl. By comparing the differences of the three response
currents, it can be found that the sensor constructed with bare GCE electrodes generates
the smallest response current, and the response current increases significantly after adding
ZIF-8 and further increases after adding GR. The above experimental results show that the
ZIF-8/GR composites can effectively immobilize AChE and improve the electron transfer
rate, thereby increasing the response current of the sensor, which is beneficial to improve
the sensor performance.

3.4. Optimization of Detection Conditions of Enzyme Biosensor

In order to detect ICP more efficiently and sensitively, we optimized several key
influencing factors related to sensor performance, including the amount of AChE loading,
the concentration of ZIF-8, and the concentration of GR. A series of sensors with different
AChE loadings (0.1 U–0.7 U) were prepared. Their DPV response current magnitudes
at 1 mM ATCl were compared. As shown in Figure 5a, the response current increases
with increasing AChE loading, in the range of 0.1 U–0.4 U. The response current reaches
a maximum when the AChE activity is 0.4 U. The response current decreases when the
acetylcholinesterase content increases further. This is due to the low ability of a small
amount of AChE to catalyze the ATCl hydrolysis reaction, and the response current is
relatively small. However, since the active center of AChE is deep in its structure, too
much loading does not allow AChE to perform more effective catalysis, but may lead to
poor conductivity of the electrode. Therefore, 0.4 U was chosen as the optimal loading for
constructing the sensor.
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The concentration of ZIF-8 is also directly related to the sensing performance of the
AChE sensor. A series of ZIF-8 dispersions with different concentrations were prepared for
the construction of the AChE sensor, and its DPV response current to 1 mM substrate ATCl
was observed and recorded; the experimental results are shown in Figure 5b, and they
reached the maximum at 3.5 mg/mL. This is mainly due to the adsorption of ZIF-8, which
provides a stable environment for AChE, but the excessive amount of ZIF-8 will lead to the
poor conductivity of the electrode, which is not conducive to electron transfer. Therefore,
3.5 mg/mL was used as the optimum concentration value in the subsequent experiments.

In addition, the effect of GR concentration on the response current of DPV was also
investigated. It can be found from Figure 5c that the response current increased with the
increase of GR concentration at the beginning, but after the GR concentration reached
4 µg/mL, the response current remained basically stable when the GR concentration was
increased again. This is due to the good electrical conductivity of GR, and the appropriate
amount of GR can effectively promote the electron transfer and enhance the AChE-catalyzed
hydrolysis reaction. Therefore, 4 µg/mL was chosen as the optimum concentration.

3.5. The Performance of AChE-CS/GR/ZIF-8/GCE Electrochemical Biosensor

The performance of the AChE-CS/GR/ZIF-8/GCE sensor for ICP detection was
investigated under optimal experimental conditions (the loading of AChE is 0.4 U, the
concentration of ZIF-8 is 3.5 mg/mL, and the concentration of GR is 4 µg/mL). Figure 6a
shows that the DPV response current decreases with increasing ICP concentration. Ac-
cording to the linear calibration curve of DPV response current suppression versus the
logarithm of ICP concentration in Figure 6b, it can be found that the AChE-CS/GR/ZIF-
8/GCE sensor shows a linear relationship between the suppression rate and the logarithm
of ICP concentration after 15 min of suppression in ICP at 0.5, 1, 5, 10, 50, and 100 ng/mL
concentrations. The linear fitting equation was I (%) = 0.143lgCICP + 0.284, R2 = 0.995.
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Therefore, the linear detection range of the AChE-CS/GR/ZIF-8/GCE sensor for ICP in this
paper was 0.5–100 ng/mL (1.73–345.7 nM), and the LoD was calculated to be 0.18 ng/mL
(0.62 nM).

Chemosensors 2022, 10, x FOR PEER REVIEW 8 of 12 
 

 

 

Figure 5. The trend of the response current of different sensors to 1 mM ATCl of (a) different AChE 

loads, (b) different ZIF-8 concentration, (c) different GR concentration. 

The concentration of ZIF-8 is also directly related to the sensing performance of the 

AChE sensor. A series of ZIF-8 dispersions with different concentrations were prepared 

for the construction of the AChE sensor, and its DPV response current to 1 mM substrate 

ATCl was observed and recorded; the experimental results are shown in Figure 5b, and 

they reached the maximum at 3.5 mg/mL. This is mainly due to the adsorption of ZIF-8, 

which provides a stable environment for AChE, but the excessive amount of ZIF-8 will 

lead to the poor conductivity of the electrode, which is not conducive to electron transfer. 

Therefore, 3.5 mg/mL was used as the optimum concentration value in the subsequent 

experiments. 

In addition, the effect of GR concentration on the response current of DPV was also 

investigated. It can be found from Figure 5c that the response current increased with the 

increase of GR concentration at the beginning, but after the GR concentration reached 4 

μg/mL, the response current remained basically stable when the GR concentration was 

increased again. This is due to the good electrical conductivity of GR, and the appropriate 

amount of GR can effectively promote the electron transfer and enhance the AChE-cata-

lyzed hydrolysis reaction. Therefore, 4 μg/mL was chosen as the optimum concentration. 

3.5. The Performance of AChE-CS/GR/ZIF-8/GCE Electrochemical Biosensor 

The performance of the AChE-CS/GR/ZIF-8/GCE sensor for ICP detection was inves-

tigated under optimal experimental conditions (the loading of AChE is 0.4 U, the concen-

tration of ZIF-8 is 3.5 mg/mL, and the concentration of GR is 4 μg/mL). Figure 6a shows 

that the DPV response current decreases with increasing ICP concentration. According to 

the linear calibration curve of DPV response current suppression versus the logarithm of 

ICP concentration in Figure 6b, it can be found that the AChE-CS/GR/ZIF-8/GCE sensor 

shows a linear relationship between the suppression rate and the logarithm of ICP con-

centration after 15 min of suppression in ICP at 0.5, 1, 5, 10, 50, and 100 ng/mL concentra-

tions. The linear fitting equation was I (%) = 0.143lgCICP + 0.284, R2 = 0.995. Therefore, the 

linear detection range of the AChE-CS/GR/ZIF-8/GCE sensor for ICP in this paper was 

0.5–100 ng/mL (1.73–345.7 nM), and the LoD was calculated to be 0.18 ng/mL (0.62 nM). 

 
Figure 6. (a) DPV response of AChE-CS/GR/ZIF-8/GCE after ICP inhibition at different concentra-
tions (0.5, 1, 5, 10, 50, 100 ng/mL) in 1 mM ATCl PBS solution. (b) Calibration curve of inhibition rate
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Since there are few studies using AChE sensors to detect ICP, a fraction of AChE
sensors detecting other OPs were used for comparison. As shown in Table 1, the sensor
proposed in this work has a comparable, even wider, linear range and lower detection
limits than them.

Table 1. Comparison of the performance of some other reported AChE sensors for the detection of OPs.

Method Target Linear Range Detection Limit Ref.

GN-AuNPs/CLDH-
AChE/GCE Chlorpyrifos 0.1426–427.87 µM 142.6 nM [26]

AChE-MWCNTs-Au-
CHIT/GCE Malathion 3.027–3027 nM 1.8 nM [27]

AChE-Cs/Pd-Cu NWs/GCE Malathion 15 pM–9 µM 4.5 pM [28]
AChE/CNT-NH2/GCE Paraoxon 0.2–1 nM, 1–30 nM 0.08 nM [29]

Nafion-AChE/PB/DSPE Isocarbophos 0.35–17.3 µM 1.73 µM [30]
AChE-CS/GR/ZIF-8/GCE Isocarbophos 1.73–345.7 nM 0.62 nM This work

3.6. Anti-Interference and Reproducibility of Enzyme Sensor

Glucose, urea, CO3
2−, Mg2+, and NO3

−, which are common interfering substances
in practical assays, were selected. Their concentrations were set to 5 times the substrate
concentrations for the anti-interference experiments. The PBS solution containing only
1 mM ATCl was used as the control group for the blank experiment. As can be seen in
Figure 7a, the response current of the sensor did not change significantly in the solutions
containing glucose, CO3

2−, and Mg2+ interfering substances, while the response current
values decreased slightly in the solutions containing urea and NO3

− interfering substances,
proving the good anti-interference ability of the sensor.

Repeatabilityis also an important index to evaluate the sensor performance. Five
identical sensors were prepared in parallel to test the DPV response current in 1 mM ATCl
in PBS solution. As shown in Figure 7b, the relative standard deviation (RSD) for the five
electrodes was 5.05%, which indicates that the sensor has good reproducibility.
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Experiments on the preservation stability of the sensor were implemented, and the
results were shown in the modified Figure 7c, where we stored the prepared AChE-
CS/GR/ZIF-8/GCE sensors in a refrigerator at 4 ◦C. After 3 days, the sensors maintained
99.79% of the initial response current. After 6 days, the response of the sensors retained
98.09% of the initial response current. The test results of three parallel prepared sensors
were used as a reference for each time point. The results indicate that the sensor has good
preservation stability during the experimental period.

3.7. Real Samples Detection

Cabbage and tap water samples were selected for ICP recovery studies to validate
the practical application of the sensor AChE-CS/GR/ZIF-8/GCE. To make the analysis
more comprehensive, three concentrations were set within the detection range of the sensor
(0.001, 0.01, and 0.1 µg/mL). As shown in Table 2, the recoveries of cabbage samples and
tap water ranged from 88.1% to 122.4%, and the relative standard deviations ranged from
1.7% to 5.6%. The results indicate that the sensor is acceptable for the detection of ICP in real
samples and has a promising development in the field of food safety and water monitoring.

Table 2. Recovery results of the proposed AChE-CS/GR/ZIF-8/GCE electrochemical biosensor for
detecting ICP in cabbage and tap water samples.

Sample Added (µg/mL) Found (µg/mL) Recovery (%) RSD (%)

Cabbage
0.001
0.01
0.1

0.00106
0.00918
0.11427

106.1
91.7

114.3

2.2
5.6
2.7

Tap 0.001 0.00096 95.7 3.9
water 0.01 0.00881 88.1 1.7

0.1 0.12237 122.4 3.5
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4. Conclusions

In summary, we successfully constructed a highly efficient electrochemical AChE
biosensor based on ZIF-8/GR composite for OPs detection. The AChE loading amount,
ZIF-8 addition concentration, and GR addition concentration were optimized, and the
obtained sensor had a high linear detection range of (0.5~100 ng/mL (1.73~345.7 nM))
and a low detection limit (0.18 ng/mL (0.62 nM)). In addition, it had good reproducibility,
interference resistance, and storage stability. Satisfactory results were also obtained in
the recovery studies of cabbage and tap water samples. the successful construction of the
AChE-CS/GR/ZIF-8/GCE biosensor provides a simple and effective method for loading
and modification of AChE on electrodes, which is valuable in the rapid detection of OPs.
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