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Abstract: Creatinine is the final metabolic product of creatine in muscles and a widely accepted
biomarker for chronic kidney disease. In this work, we present a non-enzymatic sensor based on
an electrochemical pretreated screen-printed carbon electrode (PTSPCE) with electrodeposited Cu
nanoparticles (CuNPs). To function in a PoC format, the prepared PTSPCE/CuNPs non-enzymatic
sensors were used as disposable elements in a portable potentiostat. The pretreatment using mild
anodic and cathodic potentials in PBS resulted in an increased electroactive surface area and improved
conductivity, confirmed by cyclic voltammetry and electrochemical impedance. Moreover, the
detection through the CuNPs–creatinine interaction showed an enhanced performance in the PTSPCE
surface compared to the bare electrode. The optimized PTSPCE/CuNPs sensor showed a linear
working range from 10 to 160 µM (R2 = 0.995), a sensitivity of 0.2582 µA·µM−1 and an LOD of 0.1 µM.
The sensor analytical parameters covered the requirements of creatinine detection in biofluids such
as blood and saliva, with a low interference of common biomarkers such as urea, glucose, and uric
acid. When evaluated in Fusayama/Meyer artificial saliva, the PTSPCE/CuNPs showed an average
recovery rate of 116%. According to the observed results, the non-enzymatic PTSPCE/CuNPs sensor
can potentially operate as a creatinine early screening system in PoC format.

Keywords: creatinine; non-enzymatic; pretreatment; screen-printed carbon electrode; copper
nanoparticles; point of care

1. Introduction

Chronic kidney disease (CKD) is defined as having a kidney abnormality or a de-
creased kidney function for three months or longer [1]. Since CKD presents a worldwide
prevalence between 11 and 13%, early screening is strongly recommended in high-risk
groups such as diabetic, hypertensive, and people with a family history of CKD [2,3].
However, the lack of Point of Care (PoC) systems devoted to CKD biomarkers detection
poses a challenge for frequent testing and home evaluation [3–5]. Creatinine (2-amino-1-
methyl-2-imidazoline-4-1) is the final metabolic product of creatine in muscles and a widely
accepted biomarker for CKD, as it can be accumulated in the body due to kidney failure [6].
Additionally, serum creatinine concentration is usually the prime information to calculate
the filtration glomerular rate, a major clinical indicator of CKD. Serum creatinine in healthy
individuals ranges from 60 to 110 µM for men and 45 to 90 µM for women, but levels can
be increased up to 10 times as CKD progresses [7]. Creatinine can be found at significant
concentrations in non-invasive body fluids such as urine, sweat and saliva, which can be
considered as alternative species for analysis [5]. Traditionally, creatinine tests are based
on the Jaffe method, which involves the reaction of picric acid with creatinine to generate
a red–yellow compound that can be detected spectrophotometrically. However, among
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the main drawbacks of this method are non-specificity and sensitivity affected by pH and
temperature [8].

Clearly, accurately detecting creatinine is of high concern, and the development of
tools for a fast evaluation based on chemical sensors in the PoC format is under great
demand. Electrochemical biosensing strategies are the most extensively studied and are
mainly based on creatinine amidohydrolase (CA) or creatinine deiminase (CD) enzymes [9].
However, these methods usually involve additional enzymes in cascade reactions until an
electroactive species suitable for detection is produced at the electrode’s surface. Moreover,
the complexity of the immobilization protocol, and the heavy influence of factors such as
pH, temperature, ionic strength and enzyme concentration, make the implementation of
CA and CD biosensors difficult. Recently, non-enzymatic detection has been exploited as a
reliable alternative due to creatinine interaction with metallic centers through the formation
of organometallic complexes, including Fe, Ag, Ni, Ti and Cu [7]. In this sense, the efficiency
of copper nanoparticles (CuNPs) over carbon electrodes has been explained through the
complexation of Cu ions with creatinine, leading to either increased or decreased currents
as creatinine concentration is augmented [10,11].

In order to advance non-enzymatic sensing devices into the electrochemical PoC
format, some characteristics need to be fulfilled such as integration and miniaturization of
the electrochemical cell, minimization of sample consumption, and working in a disposable
way [12]. Screen-printed carbon electrodes (SPCE) are large-scale-produced electrochemical
transducers suitable for the PoC format, with advantages such as stability, reproducibility,
a compact format, and the facility for surface modification [13,14]. With SPCEs as the
base transducers, chemical sensors for clinical biomarker detection in the PoC format
have been developed, including glucose [15–17], uric acid [18,19], dopamine [20–22], and
immunoglobulin A [23]. To enhance their electrochemical performance, SPCEs can be
subjected to an electrochemical pretreatment in order to activate the working surface [24].
This environmentally friendly procedure aims to eliminate binders and additives of the
carbon inks that can interfere with electronic transfer [25]. In addition, pretreated screen-
printed carbon electrodes (PTSPCE) exhibit new edge exposures created in the carbon
microstructure which increase sensitivity and selectivity towards target analytes.

Taking this into consideration, in this work we present the effect of a simple pretreat-
ment over SPCE performance for enhancing creatinine detection. The SPCE was subjected
to anodic and cathodic pretreatments prior to Cu electrodeposition, which was optimized
according to the registered current for a given creatinine concentration. The obtained
materials were characterized by CV, EIS, SEM and EDS prior to creatinine detection with
the optimized PTSPCE/CuNPs sensor using a portable potentiostat. The operation in the
PoC format of the proposed device was validated in Fusayama/Meyer artificial saliva
samples. The results showed that the PTSPCE/CuNPs might be able to efficiently detect
creatinine in a useful clinical range, with potential applicability in complex samples, even
in the presence of typical interference biomarkers.

2. Materials and Methods
2.1. Reagents

CuSO45H2O (CAS: 7758-99-8), H2SO4 (CAS: 7664-93-9), KH2PO4 (CAS: 7778-77-0),
Na2HPO4 (CAS: 7558-79-4), KCl (CAS 7447-40-7), NaCl (CAS: 7647-14-5), creatinine (CAS:
9012-76-4), glucose (CAS: 50-99-7), urea (CAS: 57-13-6), uric acid (CAS: 69-93-2), ascorbic
acid (CAS: 50-81-7) and Fusayama/Meyer artificial saliva were purchased from Sigma
Aldrich (Toluca, Mexico). The phosphate buffered saline (PBS) solution at 0.1 M used
during the electrode pretreatment was prepared using Na2HPO4, KH2PO4, NaCl and KCl
with tridistilled water. The phosphate buffer (PB) at 0.1 M was prepared similarly, but
without adding the saline solutions; this was used as the electrolyte during electrochemical
characterization and creatinine detection. The SPCE model 110 featuring a 4 mm diameter
working electrode (WE), a counter electrode (CE) and a pseudoreference Ag electrode was
obtained from Metrohm DropSens.
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2.2. Equipment

The morphology of the bare SPCE, PTSPCE and PTSPCE/CuNPs was investigated
by FESEM using the JSM 7401F microscope (JEOL, Tokyo, Japan). The surface of the
SPCE and PTSPCE were analyzed under the next conditions: acceleration voltage 2.0
kV, WD 3.0 mm and magnification of ×1000 and ×25,000. For the PTSPCE/CuNPs,
an acceleration voltage of 10.0 kV, WD 7.6 mm and magnification of ×5000 were used.
The same equipment was used for the energy dispersive spectroscopy (EDS). The cyclic
voltammetry (CV) experiments were performed with the portable EmStat3 Blue potentiostat
(Palmsens, Houten, The Netherlands). The electrochemical impedance spectroscopy (EIS)
was recorded with the Sensit smart potentiostat (Palmsens, Houten, The Netherlands).

2.3. Electrode Pretreatment with PBS Buffer

The bare SPCE (see Figure 1A) was subjected to a two-step pretreatment with chronoam-
perometry using a fixed potential at −1 V during 150 s followed by a +1V potential during
150 s in PBS as the electrolyte. Subsequently, the SPCE was treated with CV in a potential
window from 0 to 0.8 V at a scan rate of 100 mV/s for 20 cycles. The resulting electrodes
were labeled as the PTSPCE, as shown in Figure 1B.

Chemosensors 2023, 11, x FOR PEER REVIEW 3 of 14 
 

 

adding the saline solutions; this was used as the electrolyte during electrochemical char-
acterization and creatinine detection. The SPCE model 110 featuring a 4 mm diameter 
working electrode (WE), a counter electrode (CE) and a pseudoreference Ag electrode was 
obtained from Metrohm DropSens. 

2.2. Equipment 
The morphology of the bare SPCE, PTSPCE and PTSPCE/CuNPs was investigated by 

FESEM using the JSM 7401F microscope (JEOL, Tokyo, Japan). The surface of the SPCE 
and PTSPCE were analyzed under the next conditions: acceleration voltage 2.0 kV, WD 
3.0 mm and magnification of ×1000 and ×25000. For the PTSPCE/CuNPs, an acceleration 
voltage of 10.0 kV, WD 7.6 mm and magnification of ×5000 were used. The same equip-
ment was used for the energy dispersive spectroscopy (EDS). The cyclic voltammetry (CV) 
experiments were performed with the portable EmStat3 Blue potentiostat (Palmsens, 
Houten, The Netherlands). The electrochemical impedance spectroscopy (EIS) was rec-
orded with the Sensit smart potentiostat (Palmsens, Houten, The Netherlands). 

2.3. Electrode Pretreatment with PBS Buffer 
The bare SPCE (see Figure 1A) was subjected to a two-step pretreatment with chron-

oamperometry using a fixed potential at −1 V during 150 s followed by a +1V potential 
during 150 s in PBS as the electrolyte. Subsequently, the SPCE was treated with CV in a 
potential window from 0 to 0.8 V at a scan rate of 100 mV/s for 20 cycles. The resulting 
electrodes were labeled as the PTSPCE, as shown in Figure 1B. 

 
Figure 1. Schematic representation of creatinine sensor fabrication: (A) bare SPCE; (B) the resulting 
PTSPCE after pre-treatment conditions in PBS; (C) the final PTSPCE/CuNPs sensor after Cu electro-
deposition. 

2.4. CuNPs Electrodeposition 
After pretreatment, the PTSPCE was used as a template for the Cu electrodeposition 

using a 0.1 M solution of CuSO45H2O in 0.1 M of H2SO4. Since SPCE sensors are intended 
for single use, the pretreatment and electrodeposition of the WE were assisted with exter-
nal reference and CE electrodes. To study the growing CuNPs, a fixed potential of −0.6 V 
was applied during either 25, 50, 75 or 100 s, resulting in the PTSPCE/CuNPs sensor ob-
served in Figure 1C. 

  

(A) (B) (C)

Pretreatment
• −1  V 150s
• 1 V 150 s
• 20 CV cycles, 
0-0.8V 100 mV/s

Electrodeposition
• 0.1 M CuSO4 

• −0.6 V

PTSPCE PTSPCE/CuNPs

Figure 1. Schematic representation of creatinine sensor fabrication: (A) bare SPCE; (B) the result-
ing PTSPCE after pre-treatment conditions in PBS; (C) the final PTSPCE/CuNPs sensor after Cu
electrodeposition.

2.4. CuNPs Electrodeposition

After pretreatment, the PTSPCE was used as a template for the Cu electrodeposition
using a 0.1 M solution of CuSO45H2O in 0.1 M of H2SO4. Since SPCE sensors are intended
for single use, the pretreatment and electrodeposition of the WE were assisted with external
reference and CE electrodes. To study the growing CuNPs, a fixed potential of −0.6 V was
applied during either 25, 50, 75 or 100 s, resulting in the PTSPCE/CuNPs sensor observed
in Figure 1C.

2.5. Electrochemical Characterization

To investigate the electroactive area produced by the pretreatment, the CV was
recorded using the redox couple K3[Fe (CN)6]/K4[Fe (CN)6] at 5 mM in 0.1 M PB at
different scan rates, in a potential window from −0.2 to 0.8 V. To study the pretreatment
effect in conductivity, EIS measurements using a potential of 10 mVrms in a frequency
range from 200 kHz to 0.01 Hz were recorded prior to and after the pretreatment using the
same redox couple solution.
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2.6. Creatinine Detection

Creatinine dilutions from 10 to 160 µM were prepared using a 0.1 M PB buffer at
pH 7.4 as the solvent, departing from a 0.1 M creatinine stock solution. CV was used as the
quantitative technique using potentials within −1 V to 1 V at a scan rate of 100 mV/s. Each
concentration was measured by triplicate.

2.7. Selectivity Evaluation

The effect of common interferences present in biological samples over the PTSPCE/CuNPs
sensor response was evaluated in the CV using the same conditions as in the creatinine
detection. A creatinine solution at 100 µM was evaluated in the presence of glucose (6 mM),
urea (6 mM), ascorbic acid (125 µM) and uric acid (125 µM).

2.8. Real Sample Evaluation

In this study, the complex matrix evaluation was performed using the Fusayama/Meyer
artificial saliva with spike concentrations of creatinine. We selected the evaluated creatinine
concentration considering the reported salivary range in the literature [26]. Thus, 25 µM is
considered a creatinine amount found in healthy individuals, while 50 and 100 µM exceed
the normal expected value and can be potentially related to kidney malfunction [5].

3. Results
3.1. Effect of SPCE Pretreatment

To study the repercussions of the electrochemical pretreatment over the SPCE surface,
the morphology of the WE was observed in FESEM. Originally, the top view of the SPCE
amplified at ×1000 showed a flat surface with minimal roughness (Figure 2A) but a closer
view in the highlighted yellow zone revealed a granular composition of the ink at high
amplifications of ×25,000 (Figure 2B). The recorded morphology is consistent with that
observed for SPCE in literature. After the pretreatment, the surface morphology of the
PTSPCE showed a similar microstructure as the SPCE at both amplifications, which is in
accordance with the mild morphological variations produced by the applied potentials [24].
However, a pretreatment with these conditions can eliminate binders and additives of the
carbon inks that interfere with the electronic transfer during detection. Thus, to study
this effect, an electrochemical characterization was conducted in the SPCE and PTSPCE
electrodes by CV and EIS using the K3[Fe (CN)6]/K4[Fe (CN)6] redox probe. The CV at
a scan rate of 100 mV/s in both electrodes showed well-defined redox peaks with quasi-
reversible behavior as shown in Figure 2C. However, an increased anodic and cathodic
current is observed in the PTSPCE as well as a decreased ∆Ep = 200 mV compared with
∆Ep = 360 mV of the bare SPCE. Similarly, when an EIS specter was obtained, the Nyquist
plot in Figure 2D showed a dramatic decrease of the semicircle diameter from 2000 Ω for
the SPCE to 700 Ω for the PTSPCE. This result was attributed to a reduction in the charge
transfer resistance due to the applied electrode surface mild pretreatment. According to the
observed electrochemical results, it was concluded that the PBS pretreatment effectively
improved the electron transfer rate, decreased the charge/transfer resistance, increased
conductivity, and allowed and enhanced oxidation/reduction of the redox probe at the
WE surface.

To corroborate the pretreatment effect on the electroactive surface, we studied the per-
formance of the SPCE and PTSPCE using K3[Fe (CN)6]/K4[Fe (CN)6] at different scan rates
from 10 to 100 mV/s. The CV data of Figure 3 show the results for the PTSPCE along with
the obtained slopes for anodic and cathodic currents; the corresponding results of the SPCE
are presented in Figure S1. The obtained information was subsequently used to calculate
the electroactive surface area of both electrodes using the Randles–Sevick equation:

Ipa = 2.69 × 105AD
1
/

2n
3
/

2v
1
/

2C
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where n is the number of electrons involved in the redox reaction (n = 1), A being the elec-
troactive area (cm2), v the scan rate (Vs−1), D the diffusion coefficient (6.7 × 10−6 cm2 s−1)
and C the molar concentration (mol cm−3) of the ferricyanide/ferrocyanide redox probe.
Since A can be calculated from the slope resulting from the Ipa vs. root of scan rate graph,
it is possible to calculate the electroactive surface area of the PTSPCE as 0.0642 cm2. Com-
paring the value of 0.059 cm2 calculated for the SPCE, the 14% increase registered was
attributed to the applied electrochemical pretreatment.
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3.2. CuNPs Electrodeposition

The PTSPCE was used as template for Cu growing through electrodeposition at −0.6 V
during either 25, 50, 75 or 100 s. In the Supplementary Figure S2, it is observed that the size
and distribution of the CuNPs over the electrode surface were clearly influenced by the
applied time. When an electrodeposition time of 25 s was applied, the carbon ink in the
background surface prevailed over the CuNPs growing, reducing the potential interaction
sites with creatinine. For 50 s of electrodeposition (Figure 4A), Cu nucleation produced
structures distributed homogeneously over the WE, while 75 and 100 s produced particles
of higher dimensions that can be associated with lower catalytic activity. To study the effect
of electrodeposited CuNPs over creatinine detection, the current produced for 100 µM was
studied in Figure 4B. It was observed that compared against the CuNPs obtained at 25 s, the
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structures produced at 50 s increased the registered current almost 46%. If the initial 25 s
time is compared with 75 s and 100 s, the increment was almost 33%, and 56%, respectively.
Considering the manufacturing time and the obtained currents, an electrodeposition time
of 50 s was selected for creatinine detection. Finally, the EDS specter of the PTSPCE/CuNPs
was obtained showing the distinctive signals for C and Cu, confirming the presence of
these elements in the electrode surface (Figure 4C).
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3.3. Creatinine Detection with Optimized PTSPCE/CuNPs

With the optimized PTSPCE/CuNPs, the detection of creatinine was performed using
CV in the range of −1 V to 1 V using 0.1 M PB as the electrolyte. Figure 5A shows the
comparison between electrodes with electrodeposited Cu during 50 s with and without a
pretreatment for creatinine detection of 100 µM. Similarly, the current of both electrodes in
0.1 M PB as blank was registered. The current for the bare SPCE/CuNPs was 24 µA for PB
and 47 µA for creatinine, while PTSPCE/CuNPs registered a value of 39 µA for PB and
95 µA for creatinine. The current value was clearly increased in pretreated sensors, as the
registered current is approximately double that in bare electrodes. The observed response
was directly attributed to the PBS pretreatment; since the electroactive surface area was
increased and the conductivity was enhanced for the PTSPCE, it was expected that Cu
electrodeposits will find a high number of nucleation sites for growing and consequently,
a higher number of sites for creatinine interaction. Moreover, the non-enzymatic detection
in both the SPCE/CuNPs and PTSPCE/CuNPs relies on the interaction between creatinine
and Cu oxide produced in situ during CV. Figure 5A shows both CV measurements during
the transition from Cu0 to CuII at 0.2 V due to a potential scan; the in situ produced
CuII interacts with creatinine through N in its aromatic ring forming a Cu II–creatinine
complex, which is oxidized on the surface. However, the PTSPCE/CuNPs clearly exceeds
the performance of the bare sensor, which directly benefits analytical parameters such as a
wide detection range and sensitivity.

Additionally, we investigated the effect of pH over detection since creatinine is present
in biological samples such as saliva, serum, plasma and urine (Figure 5B). These biofluids
can range from acidic (saliva), to slightly neutral (serum, plasma) to basic pH (urine). The
non-enzymatic PTSPCE/CuNPs sensor evaluated within 100 µM of creatinine performed
increasingly better at acidic conditions. Still, the non-enzymatic interaction was observed
in every evaluated condition, suggesting the potential application of the sensor in a variety
of biofluids.
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3.4. Analytical Performance of PTSPCE/CuNPs for Creatinine Detection

Under optimized conditions, CV was used to measure creatinine concentrations in a
range from 10 to 160 µM in PB pH 7.4 using the PTSPCE/CuNPs non-enzymatic sensor.
Figure 6A shows the data obtained during the creatinine measurements, highlighting
the region with an increased oxidation current produced by adding higher creatinine
concentrations (Figure 6B). The data were recorded by triplicate to build a calibration curve
to correlate the recorded current and creatinine concentration with a linear model using the
equation I(µA) = 0.2582 (µM) + 40.95 with R2 = 0.9553 (Figure 6C). With these parameters,
it was determined that the PTSPCE/CuNPs sensor exhibited a linear working range from
10 to 169 µM, a sensitivity of 0.2582 µA·µM−1 and a low limit of detection (LOD) of 0.1 µM.
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According to the described analytical results, the PTSPCE/CuNPs was compared in
Table 1 with previous non-enzymatic sensors based on Cu as a sensing material for creati-
nine detection. For instance, the obtained detection range from 10 to 160 µM was similar to
that achieved with carbon nanomaterials applied for an increase to the surface area [27,28]
and molecular synthetic layers such as imprinted polymers (MIP) [29]. Although some
architectures based on encapsulated NPs [30] and ionic liquid [28] can indeed extend the
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detection range with a lower LOD, the presented PTSPCE/CuNPs shows a good detection
performance with a simple, environmentally friendly, efficient and low-cost method for
surface activation. Moreover, the normal concentration range for creatinine in blood was
covered with the PTSPCE/CuNPs non-enzymatic sensor and even abnormal ranges up to
140 µM linked to kidney disease can be potentially discriminated [5]. Similarly, considering
the detection in non-invasive fluids, salivary creatinine concentration has been reported
from 8.8 to 26.5 µM, with concentrations out of this range indicating potential kidney
damage [5]. Thus, the developed PTSPCE/CuNPs are suited to meet these requirements
and possibly provide information on the creatinine content in salivary biofluids within
clinical ranges. Further, all electrodes were prepared as disposable strips and measured
with a portable potentiostat, which can effectively be applied as a proof-of-concept system
in the PoC format.

Table 1. Comparison of PTSPCE/CuNPs with previous non-enzymatic sensors based on CuNPs.

Electrode Sensing
Material Technique

Detection
Range
[µM]

LOD
[µM] Real Sample Ref.

GCE CuNPs/PDA-rGO-NB/ CV 0.01–100 0.02 serum, urine [27]
pSPCE CuO/IL/ERGO CV 10–2000 0.22 urine [28]

CPE CuO@MIP AMP 0.5–200 0.083 urine [29]

SPCE Nafion/
polyacrylic gel Cu2+/Cu2O CV/DPV 1–2000 0.3 saliva [30]

SPCE CuNPs CV 6–378 0.0746 pretreated serum [31]
SPCE ZfCu2ONPs CV 100–200 5 serum [32]
GCE αCuPc CV 10–100 5.2 artificial urine [33]
ACF PMB-PVAc-Cu-CNF DPV 0.5–900 ng/mL 0.2 ng/mL saliva, blood [34]

– SnO2NPs/Cu2O AMP 2.5–100 0.0023 serum [35]
PTSPCE CuNPs CV 10–160 0.1 artificial saliva This work

pSPE: paper-based carbon electrode; CPE: carbon paste electrode; ZfCu2ONPs: zwitterion functionalized cuprous
oxide nanoparticles; αCuPc: copper phthalocyanine; ACF: activated carbon fiber.

3.5. Selectivity of PTSPCE/CuNPs

One crucial concern with non-enzymatic sensors is the selectivity of the inorganic
sensing layer against the well-known high selectivity of enzymatic detection. As the non-
enzymatic PTSPCE/CuNPs sensor is intended for application in biological samples, we
evaluated the potential interferences that common biomarkers and electroactive species
can influence over sensor response. We selected glucose (GC), urea (UR), uric acid (UA)
and ascorbic acid (AA) for the interference evaluation under the same CV conditions for
creatinine (CRT) detection in PB. Figure 7 shows that the PTSPCE/CuNPs recorded current
was only inhibited by 10% with GC (6 mM) and UA (125 µM), which potentially could
avoid additional pretreatment steps to eliminate the effect of both biomarkers as observed
in previous reported sensors [31]. UR (6 mM) and AA (125 µM) only affected the response
by 3 and 5%, respectively. However, the high complexity of biological samples such as
blood could pose additional challenges for detection; thus, online sample pretreatment
stages can be subsequently incorporated in the proposed sensor to maintain the portable,
low-cost and in situ operation format.

3.6. Recovery in Real Samples

A final assay was proposed to prove the applicability of the PTSPCE/CuNPs in
real matrices. Creatinine in Fusayama/Meyer artificial saliva was tested considering a
concentration for healthy individuals and two exceeding the normal parameters. Table 2
shows that the average recovery rate was 116%, suggesting the potential utility of the
developed non-enzymatic sensor.



Chemosensors 2023, 11, 102 10 of 12
Chemosensors 2023, 11, x FOR PEER REVIEW 11 of 14 
 

 

 
Figure 7. Selectivity of PTSPCE/CuNPs for creatinine (CRT) detection against urea (UR), uric acid 
(UA), ascorbic acid (AA) and glucose (GC). 

3.6. Recovery in Real Samples 
A final assay was proposed to prove the applicability of the PTSPCE/CuNPs in real 

matrices. Creatinine in Fusayama/Meyer artificial saliva was tested considering a concen-
tration for healthy individuals and two exceeding the normal parameters. Table 2 shows 
that the average recovery rate was 116%, suggesting the potential utility of the developed 
non-enzymatic sensor. 

Table 2. Recovery obtained with non-enzymatic PTSPCE/CuNPs in artificial saliva. 

Sample 
Added 
[μM] 

Found 
[μM] 

Recovery 
[%] 

M1 20 25.59 128 
M2 50 54.45 109 
M3 100 109.98 110 

4. Conclusions 
In this work, we presented a non-enzymatic PTSPCE/CuNPs sensor based on a mild 

electrochemical pretreatment using PBS. The pretreatment allowed an increase in the elec-
troactive surface area and conductivity of the bare carbon substrate impacting the growth 
of electrodeposited Cu. The increased number of active sites for creatinine interaction led 
to a detection range from 10 to 160 μM with an LOD of 0.1 μM. The analytical parameters 
were similar to that achieved with previous systems based on carbon nanomaterials for 
surface enhancement but using a simpler, environmentally friendly and low-cost ap-
proach. Moreover, the sensor detection range of the PTSPCE/CuNPs covers the require-
ments for blood and saliva biofluids with a low interference of common biomarkers such 

C
ur

re
nt

 [µ
A

]

0

10

20

30

40

50

60

70

80

90

Interferents
CRT UR-CRT UA-CRT AA-CRT GC-CRT

Figure 7. Selectivity of PTSPCE/CuNPs for creatinine (CRT) detection against urea (UR), uric acid
(UA), ascorbic acid (AA) and glucose (GC).

Table 2. Recovery obtained with non-enzymatic PTSPCE/CuNPs in artificial saliva.

Sample Added
[µM]

Found
[µM]

Recovery
[%]

M1 20 25.59 128
M2 50 54.45 109
M3 100 109.98 110

4. Conclusions

In this work, we presented a non-enzymatic PTSPCE/CuNPs sensor based on a
mild electrochemical pretreatment using PBS. The pretreatment allowed an increase in
the electroactive surface area and conductivity of the bare carbon substrate impacting
the growth of electrodeposited Cu. The increased number of active sites for creatinine
interaction led to a detection range from 10 to 160 µM with an LOD of 0.1 µM. The
analytical parameters were similar to that achieved with previous systems based on carbon
nanomaterials for surface enhancement but using a simpler, environmentally friendly
and low-cost approach. Moreover, the sensor detection range of the PTSPCE/CuNPs
covers the requirements for blood and saliva biofluids with a low interference of common
biomarkers such as uric acid. All prepared electrodes were prepared and disposed of
after measurement with a portable potentiostat. Thus, according to these results, the non-
enzymatic PTSPCE/CuNPs showed a promising performance to operate as a disposable
sensor in creatinine screening systems in the PoC format.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/chemosensors11020102/s1, Figure S1: CV of PTSPCE in K3[Fe
(CN)6]/K4[Fe (CN)6] at different scan rates from 10 to 100 mV/s for electroactive surface area
calculation, Figure S2: SEM images according with electrodeposited time: (a) 25 s, (b) 75 s and
(c) 100 s.
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