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Abstract: The nucleus is not only the control hub of cell life activities, but also the center of storing
and controlling genetic information. The morphology of the nucleus can be used to judge the cell
vitality and health. The various biological molecules contained in the nucleus are closely related
to the normal life activities, occurrence and development of diseases. In recent years, fluorescence
imaging has gained increasing attention due to its advantages of being intuitive, in situ and visual.
The development of fluorescent probes for high-resolution imaging of the nucleus and detection of
biomolecules in the nucleus is of great value for understanding the normal physiological processes of
cells or organisms, as well as for disease diagnosis and treatment. In this review, we mainly introduce
the current general strategies for designing nucleus-targeted fluorescent probes, as well as their
applications in nucleus-targeted imaging, intranuclear biomolecular detection and therapy. Moreover,
we also discuss the current challenges and opportunities of nucleus-targeted fluorescent probes in
terms of selectivity, design strategies and so on.
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1. Introduction

The nucleus, a highly specialized subcellular organelle, is the largest and most impor-
tant cellular structure within eukaryotic cells [1]. The nucleus, as the “heart” of the cell, is
a storage site for genetic information and is a control center of the cell. Gene replication,
transcription, and processing of transcribed primaries, are all associated with the nucleus.
The nucleus consists of the nuclear membrane, nuclear lamina, chromatin, nucleolus and
nuclear body, among others. The nuclear membrane consists of a bilayer containing pro-
tein and phospholipid molecules, and a large number of nuclear pores are present at the
membrane surface. Nuclear pore is a selective hydrophilic channel. Small molecules (such
as ions, metabolites, etc.) pass through the nuclear pore by simple diffusion, while macro-
molecules (such as proteins, RNA, ribosomal subunits, etc.) need to be transported by
active transport under the guidance of nuclear translocation signals and transport carriers.
Chromatin is the existing form of genetic material inside the cell and mainly consists of
DNA and histone. Chromatin also contains a few RNA, which are equally important
for the normal function of chromatin. The nucleolus is mainly composed of RNA and
proteins, and its altered function manifests as aberrant ribosome biogenesis or nucleolar
stress, which can induce various diseases [2]. Therefore, it is very important to monitor
the morphological changes and the biological events in the nucleus, and it will be of great
interest to understand the situation of cell viability and normal physiological activities.

Fluorescent imaging of the nucleus is one of the most important tasks in bioimaging re-
search, and it is beneficial to study cell growth and development, nucleic acid quantification
and dynamic changes and cancer therapy, etc. By imaging the nucleus, the spatiotemporal
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changes in the nucleus, such as chromosome segregation during mitosis, could be observed
in real time and in situ. In addition, the detection of biomolecules in the nucleus also
has high research value. The nucleus contains a variety of biomolecules, such as anions,
metal cations, reactive oxygen/reactive nitrogen species (ROS/RNS), small molecules
and biomacromolecules, are closely related to the normal physiological and pathological
activities of the cells. In recent years, studies have shown that the abnormal expression
of nucleic acids and some enzymes within the nucleus are the main causes of cellular
carcinogenesis and malignant proliferation [3,4]. Since the key function of the nucleus, the
nucleus-targeted therapy may achieve high therapeutic efficacy. Photodynamic therapy
(PDT) is currently an effective method for the treatment of cancer. The labile ROS gener-
ated by PDT can easily damage nucleic acids within the nucleus and the development of
nucleus-targeted therapy can decrease the probability of these ROS reductions by the large
amount of glutathione (GSH) in the cytoplasm, which will contribute to highly effective
cancer therapy. Therefore, the nucleus-targeted therapy may be one of the most effective
ways to treat cancer. Briefly, considering the importance of the nucleus and intranuclear
biomolecules to the cell, achieving highly sensitive and selective imaging and detection of
various biomolecules in the nucleus is beneficial to understand the normal physiological
and pathological processes of cells or organisms, and facilitate the diagnosis and treatment
of related diseases.

Although high-performance liquid chromatography (HPLC) and mass spectrometry
(MS) have been widely used for the detection of various biomolecules in organelles so far [5],
these two methods require the separation of organelles, and more importantly, they cannot
be used for real-time monitoring of biomolecules in living cells. As an intuitive, in situ and
visual technique, fluorescence imaging has been widely used for labeling and detection of
functional molecules. Due to the specificity of nuclear pores, it is always a difficult problem
for small molecular probes or other exogenous organic molecules to enter the nucleus
via the nuclear pores. With appropriate modifications, small-molecule probes enable
specific targeting of the nucleus. Relative to nano fluorescent probes, small-molecular
fluorescent probes are capable of detecting various biological targets due to their structural
tailorability. Therefore, small-molecule fluorescent probes have become a powerful tool
to real-time detect and image biological events in the nucleus, enabling the revelation
and investigation of the nucleus functions [6,7]. However, since this approach requires
the construction of nucleus-targeted fluorescent probes, it comes with the challenges of
sensitive and selective imaging and detection in the nucleus. First, once the probes do
not have suitable nuclear transport signals or carriers, they can hardly enter the nucleus.
Moreover, a large number of nucleic acids are abundant in the nucleus. Once the probe
enters the nucleus, it may affect the normal function of the nucleus or even lead to cell
death. Moreover, the targeting specificity of fluorescent probes is also a matter worth
considering. To address these challenges, in the past years, great efforts have been devoted
to the development of real-time and highly sensitive small-molecule fluorescent probes to
detect and image in the nucleus.

In this review, we mainly introduce the small-molecule fluorescent probes that have
been developed over the past two decades (Scheme 1). Nanomaterials are also briefly
discussed. We first summarize two currently common strategies for the design of nucleus-
targeted fluorescent probes utilizing commercial nucleus targeting dyes and nuclear local-
ization signal (NLS) peptides. The possible mechanism of nucleus-targeted probes into
the nucleus is also discussed. Subsequently, we introduce in detail the fluorescent probes
developed in recent years that can be used for nuclear imaging and nuclear biomolecule
detection. Moreover, we present the applications of nucleus-targeted fluorescent probes in
medical treatment from the aspects of PDT therapy and improving the nucleus-targeted
delivery efficiency of drugs or probes. Finally, the current challenges and the potential
future directions, which would evoke more research interest and open new avenues for
biological analysis of the nucleus, are included as well.
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These probes generally contain short hydrophobic chains and planar aromatic cationic 
structures. For example, Hoechst, DAPI and SYBR Green 1, commonly used commercial 
nucleus fluorescent dyes, possess the above characteristics and their structures are shown 
in the Figure 2a, these dyes can selectively bind to double stranded DNA (dsDNA) at the 
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Scheme 1. Small-molecule fluorescent probes are used for nuclear imaging, detection and therapy.

2. Representative General Strategies for Constructing Nucleus-Targeting Probes

There are two main strategies for the design of organelle targeted fluorescent probes:
chemical molecular labeling and fusion protein tagging. At present, the general design
strategy of a nucleus-targeted fluorescent probe is mainly the chemical molecular labeling
method. The chemical molecular labeling method is one way to achieve organelle targeting
by covalently linking fluorescent probes and organelle targeting units, such as some natural
and synthetic peptides and some small molecules (Figure 1). When designing nucleus-
targeted fluorescent probes, the lipophilicity, hydrophilicity and charge density of the
probes must be considered comprehensively. These properties of probe molecules are
closely related to the cell penetration ability and nuclear targeting ability [8].
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2.1. Nucleus Targeting Dye

At present, the design of nucleus-targeted fluorescent probes is mainly aimed at the
large amount of negatively charged DNA contained in the nucleus, which is achieved by
introducing hydrophilic cations. Taking advantage of the feature that hydrophilic cations
in probes together with negatively charged DNA can tightly combine with each other
through electrostatic interactions [9], many nucleus-targeted probes have been developed.
These probes generally contain short hydrophobic chains and planar aromatic cationic
structures. For example, Hoechst, DAPI and SYBR Green 1, commonly used commercial
nucleus fluorescent dyes, possess the above characteristics and their structures are shown
in the Figure 2a, these dyes can selectively bind to double stranded DNA (dsDNA) at
the minor groove [10,11]. The design strategy for generating nucleus-targeted fluorescent
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probes is to use the above commercial nuclei fluorescent dyes as the nucleus targeting
group, and combine with other fluorescent probes by a flexible long chain to form novel
nucleus-targeted probes. For example, Figure 2b demonstrates a general strategy to design
nucleus-targeted fluorescent probes utilizing Hoechst-tagging [12].

1 
 

 
Figure 2. (a) Structures of Hoechst 33258, DAPI and SYBR Green 1. (b) Nucleus-targeted fluorescent
probe design strategy based on Hoechst.

2.2. Nuclear Localization Signal (NLS)

The polypeptide with nuclear localization signal (NLS) sequence that can be recog-
nized by the NLS receptor on the nuclear membrane and located in the nuclear region
is called the NLS peptide. Another nuclear targeting strategy is to use the NLS short
peptides rich in basic amino acids, such as arginine and lysine, which can strongly inter-
act with nuclear pore complexes. Exogenous substances, such as fluorescent probes can
also be efficiently introduced into the nucleus by using such amino acid sequences [13].
Figure 3 shows a nuclear localization signal peptide with the amino acid sequence of
VQRKRQKLMP. These basic amino acids tend to form positive charges under physiological
conditions, such as guanidine positive ions from arginine. A large number of positive
charges are not only conducive to binding with negatively charged DNA, but also can
enhance cell penetration of probes. Moreover, there exist several other NLS peptides, such
as PKKKRKV, KSRKRKL, RRKRQR, etc.
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3. Mechanism of the Nucleus-Targeted Fluorescence Probe into the Nucleus

Most of the currently developed nucleus-targeted fluorescent probes rely on NLS to
achieve nucleus penetration. The mechanism of NLS entry into the nucleus has been rela-
tively well studied. Therefore, we introduce the mechanism of nucleus-targeted fluorescent
probe linking NLS (NLS-probe) into the nucleus. The transport of the NLS-probe from
the cytoplasm to the nucleus is a process mediated by importin proteins. Importin α is an
adaptor that links the NLS-probe to importin β1. Importin β1 is a transport factor that
carries the NLS-probe through the NPC. Ran is the most abundant member of the small Ras
family GTPases, which provide the energy of nuclear transport. Ran, with the assistance of
guanine nucleotide exchange factors (RanGEF) and GTPase-activating proteins (RanGAP),
acts as a molecular switch that undergoes conformational changes between GDP- and
GTP-bound states [14]. The mechanism of the NLS-probe into the nucleus can be divided
into three steps: assembly in cytoplasm, translocation through NPC, and disassembly in the
nucleus (Figure 4). Step 1: NLS-probe is recognized by the importin α, and subsequently
recognized by the importin β1 to form an NLS-probe-importin α-importin β1 trimer. Step
2: Importin β1 can interact with the NPC, allowing the trimeric complex to translocate to
the nucleus. Step 3: Once the trimeric complex enters the nucleus, RanGTP binding leads
to conformational change of importin β1 that releases importin β1. Then, importin α binds
with Nup50 promoting the release of the NLS-probe in the nucleus [15].
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In addition, although there are some other small-molecule fluorescent probes without
linking NLS, they still have a good ability for nucleus penetration. However, the mechanism
of penetration into the nucleus currently remains unclear. We speculate that there may
be the following reasons: 1. Similar to the NLS, these probes also carry a large number
of positive charges under a physiological environment, which makes them possible to
combine with some nuclear transport proteins to enter the nucleus through NPCs. 2. Small-
molecule probes with many positive charges may bind to nucleic acids present in the
cytoplasm and then enter the nucleus. 3. As it was reported that soluble small molecules
are preferred to diffuse across the nuclear pore, these small-molecule fluorescent probes
have a good hydrophilic balance and therefore possess the ability to diffuse across the
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nuclear pore. The superior nuclear pore permeability of these small-molecule probes may
be due to its good solubility due to the hydrophilic group and shorter alkyl chains.

4. Applications of the Nucleus-Targeted Fluorescent Probes
4.1. Nuclear Imaging

The nucleus is the most complex organelle in the cell, containing substances, such as
DNA and RNA, and controls cellular activities by directing protein synthesis. In bioimaging
studies, one of the most important tasks is to stain the nuclei of living cells to distinguish
organelles. For example, visualization of the nuclei is widely used in studies of cell growth
and development [16], fluorescent probe colocalization [17], DNA quantification [18] and
cancer biology [19]. In addition, nucleic acid distribution and behavior within the nucleus is
a dynamic process, which is closely related to the normal physiological function of the cell.
Tracking the dynamic changes of nucleic acids within living cells is of great significance
for understanding the dynamic behavior and functional relationship of nucleic acids in
different biological processes. For example, the situation of cell division behavior and cell
apoptosis could be visually observed using nucleus imaging. Currently, the commonly used
nuclear stains mainly fall into two categories: organic dyes and transition metal complexes.
Organic dyes, such as the minor groove binding agents DAPI and Hoechst are well-known
commercial nuclear dyes, but they require UV light for excitation and may cause severe
cell damage if irradiated for prolonged periods [20], in addition to the disadvantages
of photobleaching, self-quenching and autofluorescence. SYTO stains are a class of cell
permeable dyes that can be excited by visible and near-infrared radiation. Unfortunately,
they are not a specific nuclear strain and have an unpublished chemical structure. Although
the intracellular anthraquinone dye DRAQ5 displays red fluorescence emission and DNA
specific labeling, it is a DNA intercalator that severely perturbs the structure and function
of nuclear DNA compared to minor groove binders, such as SYTO17 [21]. Transition
metal complexes (such as Ru (II) and Ir (III) complexes) have also been investigated for
nuclear imaging, and these complexes usually show yellow or red luminescence with long
lifetimes, which can be used for time-resolved luminescence imaging [22–24]. However,
these noble metal elements are rare, expensive and unstable for many organisms, and may
have a comparative large biotoxicity. Therefore, it remains a major challenge to develop
new and more perfect fluorescent probes for nuclear imaging. Currently, imaging of
the nucleus and nucleolus is mainly through DNA staining and ribosomal RNA (rRNA)
staining, respectively. Some fluorescent probes developed in recent years to image the
nucleus and nucleolus are presented below. The characteristic properties of these probes
are summarized in Table 1.

In 2013, Tsukiji and coworkers reported that a compound hoeTMP (Figure 5, probe
2) consisting of trimethoprim (TMP) ligand linked to Hoechst via a flexible spacer could
efficiently localize in the nucleus of living cells (Figure 6a) [12]. Inspired by this, a general
strategy for imaging nuclei via Hoechst labeling was proposed in 2014 by Tsukiji et al. [25].
Specifically, linking a Hoechst label to a fluorochrome of interest through flexible long
chains allows the molecule to be synthesized to visualize the nucleus in living cells as a
DNA binding fluorescent probe. They first synthesized hoeFL by linking a very classical
and versatile organic fluorophore, fluorescein, with a Hoechst label through a flexible chain
(Figure 5, probe 1) and observed that hoeFL responded well to DNA. However, due to the
anionic nature of fluorescein, the cell membrane penetration ability of the hoeFL probe was
relatively poor. To address this point, Shinya Tsukiji et al. newly synthesized hoeAc2FL
(Figure 5, probe 1) using 5-carboxyfluorescein diacetate for live cell imaging. Once treated
with hoeAc2FL (5 mM) for 15 min, obvious fluorescence could be observed in the nucleus
of HeLa cells (Figure 6b). However, this probe was easily expelled by the intracellular
drug resistance pump, and it produced a lower fluorescence brightness compared with
Hoechst 33342. In 2015, Johnsson et al. developed a far red DNA fluorescent probe, SiR-
Hoechst, using Hoechst 33342 as a DNA targeting ligand coupled with carboxylated silicon
rhodamine (SiR, Figure 5) [26]. In 2018, Lukinavicius et al. [27], in order to better understand
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the relationship between Hoechst conjugates and the structure and performance of dyes,
carried out an in-depth study on the Hoechst conjugates of tetramethylrhodamine (TMR),
two carbopyrroles (580CP and 610CP), German rhodamine (GER), and silicon rhodamine
(SIR) (Figure 5, probe 3). Live cell imaging showed that the 5′-regioisomer had better
imaging ability of the nucleus and was always brighter than the 6′-regioisomer (Figure 6c).
It was found that the major groove binding of the 5′-regioisomer probe is dominated by the
minor groove binding of DNA, while derivatives containing the 6′-regioisomer can also
interact with the major groove. Molecular docking experiments indicated that binding of
the probe to the major groove would darken the fluorescence and binding to the minor
groove would enhance the fluorescence (Figure 6d). The far-red excitation and emission
spectra of this probe can largely reduce the phototoxicity. Furthermore, in 2019, Xiao and
coworkers coupled thiorhodamine (SR) with Hoechst 33342 via click reaction to obtain a
DNA fluorescent probe, HoeSR (Figure 5) [28].
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The design of probes to achieve nucleus targeting by ligation of Hoechst is compli-
cated. Structural modification mimicking Hoechst and other classical nucleus dyes is
another avenue to obtain nucleus-targeted probes. Peng and coworkers reported a novel
red fluorescent dye, DEAB-TO-3, based on TO-3 (a classical RNA dye), which has excitation
(626 nm) and emission (649 nm) in the longer wavelength region [29]. DEAB-TO-3 replaced
the methyl group of benzothiazole moiety with N, N- diethylaminobutyl group compared
to the parent TO-3. Interestingly, DEAB-TO-3 showed better selectivity for AT-rich DNA
with an 80.3-fold fluorescence enhancement (Figure 7b). The low fluorescence of the probe
(18.9-fold fluorescence enhancement) in the presence of GC-rich DNA is presumably due
to photoinduced electron transfer (PET) from the probe to the guanine residue. Live cell
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fluorescence imaging of DEAB-TO-3 showed that the probe had a good ability to stain
the nucleus (Figure 7e). Moreover, in 2014, Peng and coworkers reported another red
fluorescent probe, TO3-CN, developed based on TO-3 dye, which showed good photosta-
bility and a large Stokes shift (68 nm) [30]. The photostability of TO-3 was improved by
introducing an electron withdrawing group cyano in TO-3, which could inhibit its reactivity
with singlet oxygen. In addition, CN groups may interrupt the plane of the molecule and
thus decrease the rigidity of the molecular structure, which in turn increases the Stokes
shift. The photostability of TO3-CN was tested by sustained irradiation with UV light
for 3 h. It can be seen from the Figure 7c that probe TO3-CN still maintained 90% optical
density after 3 h irradiation, while TO-3 decreased to around 20%, which illustrated that
CN group introduction could indeed increase the photostability. There was a fluorescence
response with TO3-CN for both DNA and RNA, but not BSA (Figure 7d). DNA and RNA
binding was further demonstrated by deoxyribonuclease (DNase) and ribonuclease (RNase)
digestion assays. As shown in Figure 7f, fluorescence from TO3-CN fixation permeabilized
MCF7 cells is diminished upon DNase and RNase treatment. The DNA/RNA selectivity of
this class of probes needs to be addressed along with determination of binding constants
and other characteristic parameters. In addition, Lu et. al. developed a new RNA spe-
cific fluorescent probe Styryl-TO [31]. These findings suggest that the styryl group in the
structure of styryl plays a key role in RNA specific binding. Cell imaging results showed a
strong fluorescence response of Styryl-TO in the nucleolar region (Figure 7g). Compared
with DEAB-TO-3 and TO3-CN, Styryl-TO had a shorter excitation wavelength (476 nm)
and emission wavelength (535 nm), and was susceptible to the interference of intracellular
autofluorescence and was more phototoxic.
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Figure 6. (a,b) Results of cell imaging of hoeTMP and hoeAc2FL, respectively. Reproduced from [12,25]
with permission from the American Chemical Society, Copyright 2013 and Royal Society of Chemistry,
Copyright 2014, respectively. (c) Confocal images of 5′-regioisomer and 6′-regioisomer. (d) Proposed
model of rhodamine–Hoechst conjugate interaction with the target DNA. Minor groove binding results
in a brighter complex compared to major groove binding. Reproduced from [27] with permission from
the Royal Society of Chemistry, Copyright 2019.
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binding constant between the dye molecule and double-stranded helix (such as Cl-TO-5 
and Cl-TO-6). The UV–vis and fluorescence titration results indicated that Cl-TO had a 
strong binding tendency to DNA. Fluorescence imaging results showed that the Cl-TO 
had staining ability for the nucleus, although they were also present in the cytoplasm. 
Among them, Cl-TO-2 and Cl-TO-3 are highly selective for the nucleus. In addition, in 
2021, Kurutos and coworkers developed three more monomethyl cyanine probes (AK-C1, 
AK-C2 and AK-C3) for nucleolar imaging [33]. It was found that they were significantly 
sensitive to AU-rich RNA (379-fold increase in emission signal). AK-C1, AK-C2 and AK-
C3 all stain nucleoli, but their fluorescence is also distributed in the cytoplasm. Fluores-
cence in the cytoplasm may be the result of their interaction with RNA, mitochondrial 
DNA, or other macromolecules. In the same year, Aristova et al. also developed three 
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probes were found to be more sensitive to RNA than dsDNA. In particular, SL-2000 and 

Figure 7. (a) Structures of TO-3, DEAB-TO-3, TO3-CN and Styryl-TO. (b) Fluorescence emission
spectra and enhancement of fluorescence intensities during the titration of a solution of DEAB-TO-3
(1 µM) with poly(dA-dT)2 and poly(dG-dC)2 at 20 ◦C. Inset: The [base pair]/[DEAB-TO-3] molar
ratios are from 0.5 to 7. (c) Photostability response of probes TO3-CN. (d) Fluorescence response of
TO3-CN (1 mM) to DNA, RNA and bovine serum albumin (BSA). (e) Fluorescence images of DEAB-
TO-3 treated live HeLa cells at 5 mM concentration. Reproduced from Ref. [29] with permission from
John Wiley and Sons, Copyright 2011. (f) DNase and RNase digest experiments with TO3-CN in
MCF7. TO3-CN (excited at 559 nm and collected at 575 nm to 620 nm) was cultured at 2 mM for
45 min. Reproduced from [30] with permission from the Royal Society of Chemistry, Copyright 2014.
(g) Fluorescence images of Styryl-TO. Reproduced from [31] with permission from the Royal Society
of Chemistry, Copyright 2015.

There are still many cyanine-based probes available for nuclear imaging. Figure 8
illustrates some other monomethylcyanine probes and trimethylcyanine probes developed
in recent years. In 2020, a series of Cl-TO probes were designed by Kurutos et al. [32].
The anti-photobleaching properties of this series of mono-, di-, and tricationic dyes were
improved 5-fold and the cytotoxicity was lower than commercially available thiazole
orange. Polyionic monomethylamines exhibit stronger fluorescence enhancement, higher
stability constants, and binding constants than the single charged TO analogues. The
introduction of multiple positive charges can improve the aqueous solubility, increasing the
binding constant between the dye molecule and double-stranded helix (such as Cl-TO-5
and Cl-TO-6). The UV–vis and fluorescence titration results indicated that Cl-TO had a
strong binding tendency to DNA. Fluorescence imaging results showed that the Cl-TO
had staining ability for the nucleus, although they were also present in the cytoplasm.
Among them, Cl-TO-2 and Cl-TO-3 are highly selective for the nucleus. In addition, in
2021, Kurutos and coworkers developed three more monomethyl cyanine probes (AK-C1,
AK-C2 and AK-C3) for nucleolar imaging [33]. It was found that they were significantly
sensitive to AU-rich RNA (379-fold increase in emission signal). AK-C1, AK-C2 and AK-C3
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all stain nucleoli, but their fluorescence is also distributed in the cytoplasm. Fluorescence
in the cytoplasm may be the result of their interaction with RNA, mitochondrial DNA, or
other macromolecules. In the same year, Aristova et al. also developed three monomethyl
cyanine probes (SL-2598, SL-2000, L-29) for nucleolar imaging [34]. All probes were found
to be more sensitive to RNA than dsDNA. In particular, SL-2000 and SL-2598 were the most
sensitive, exhibiting 400- and 480-fold increases in fluorescence intensity in the presence of
RNA, respectively. Fluorescence imaging results indicated that all probes were sensitive
to intracellular RNAs, including RNA-rich organelles, nucleoli in the nucleus and RNA
in the cytoplasm. Moreover, in 2022, Aristova and coworkers developed an additional
symmetric trimethylcyanine probe (T-4) that could be used for nucleolar imaging [35]. T-4 is
sensitive to nucleic acids with obvious fluorescence enhancement and also possesses good
biocompatibility (~85% cell viability) and photostability, which ensures the applicability of
this dye as a potentially useful probe for long-term live cell imaging. We believe that the
heavy atoms in the benzoxazole heterocycle decrease the effective length of the π-electron
system (i.e., the length of the polymethyl chain), thereby positively affecting the stability of
the T-4 probe.
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Developing targeted fluorescent probes with deep red light into the NIR region
(650–950 nm) can effectively avoid the interference of autofluorescence in living organisms,
while also improving biological tissue penetration ability as well as reducing phototoxicity
in cells and living organisms. Wang and coworkers reported a probe CP with an emission
wavelength peak at 658 nm that was used for nucleolar imaging in living cells [36]. In vitro
fluorescence studies showed that CP could selectively bound to RNA rather than DNA.
The probe exhibited good nucleolar and cytoplasmic staining ability for both normal cells
(L929 cells) and cancer cells (A549 cells) (Figure 9b). DNase digestion of cells showed
retention of fluorescence intensity, whereas RNase digestion resulted in the complete dis-
appearance of the fluorescence signal of CP in nucleoli (Figure 9c), confirming that the
fluorescence enhancement of CP was due to its selective binding to RNA. In addition,
CP exhibited superior photostability compared to the commercially available dye SYTO
RNAselect. Subsequently, a series of CP family dyes were newly developed by them
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through structural modifications [37]. All CP family dyes exhibit absorption maxima in the
584–600 nm region and corresponding emission maxima in the 638–658 nm range. Notably,
probes CP3 and CP6, which showed similar staining results with CP in A549 cancer cells
as well as normal L929 cells, both clearly stained the nucleoli as well as the cytoplasm of
the cells (Figure 9d). However, the RNA selectivity and fluorescence quantum yield of the
CP-like probes still need to be further improved.
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Chemical Society, Copyright 2015, respectively.

In recent years, an increasing number of transition metal complexes have been found
useful for nuclear imaging. Thomas et al. reported that a dinuclear ruthenium (II)
polypyridyl complex (λem(DNA)= 680 nm) can be used as a nuclear DNA stain (Figure 10,
probe 4) [24]. However, due to its high hydrophilicity and charge, the probe does not enter
cells well, requiring a substantial increase in probe concentration. In addition, Barton’s
group published recognizable mispaired DNA probes 5–6 with ruthenium complexes as
DNA recognition groups (both excitation wavelengths were 440 nm) [38,39]. The fluo-
rescence intensity of probe 5 upon binding to mispaired DNA is 26-fold higher than that
of correctly paired DNA. Probe 6, which connects sterically bulkier aromatic ligands, ex-
hibits 500-fold higher fluorescence intensity when bound to incorrectly paired DNA than
when bound to correctly paired DNA, compared to probe 5. Moreover, they designed
a recognizable mispaired DNA probe 7 with rhodium complex as the DNA recognition
group [40]. Probe 7 emits a weak fluorescence when free in solution or bound to correctly
paired DNA, but a bright fluorescence when a mismatch containing DNA duplex is present.
Unlike probes 5 and 6, probe 7 incorporated the cationic indotrimethylcyanine (Cy3) as
the fluorescent output group, increasing the excitation wavelength (excitation at 520 nm).
However, this class of metal complexes not only faces obstacles on the cellular uptake in
living cells and in vivo applications, but also requires extreme care for detailed toxicity
studies involving DNA and off-target interactions.
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types of genetic materials (Figure 11a) [44]. The dsDNA molecules with high structural 
rigidity confine the cQDs into the grooves, thereby enhancing the fluorescence of the iso-
lated particles, while the flexible ssRNA acts as a cQDs collector, effectively clustering the 
cQDs so that they emit red fluorescence (Figure 11b,c). In addition, this cQD probe pos-
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Carbon dots are a new class of fluorescent nanomaterials that have gained increasing
popularity over the past decade due to their unique optical properties, good biocompatibil-
ity, low toxicity, great aqueous stability, etc. [41,42]. Serdiuk and coworkers developed a
fluorescent probe based on SiC nanoparticles [43]. Studies have found that cell division
(or proliferation) plays a key role for the cellular uptake and nuclear targeting of probes.
Regrettably, the relationship between cell division and SiC NP nuclear uptake is unclear.
In 2019, Zhang et al. reported a cationic carbon quantum dot (cQD) probe that binds to
dsDNA and ssRNA in living cells in different ways, emitting green and red fluorescence in
the nucleus and nucleolus, respectively, and can be used to simultaneously image two types
of genetic materials (Figure 11a) [44]. The dsDNA molecules with high structural rigidity
confine the cQDs into the grooves, thereby enhancing the fluorescence of the isolated
particles, while the flexible ssRNA acts as a cQDs collector, effectively clustering the cQDs
so that they emit red fluorescence (Figure 11b,c). In addition, this cQD probe possesses
great photostability and biological barrier permeation ability.
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Figure 11. (a) The structure of the cQD probe. (b) Schematic drawing of the cQD probe interactions
with intracellular DNA and RNA. cQD confined by dsDNA emits green fluorescence, and cQD
clustered by ssRNA emits red fluorescence. (c) cQD-loaded HeLa cells simultaneously excited with
488 and 543 nm (emission windows of 500–560 nm and 570–650 nm, respectively). Reproduced
from [44] with permission from John Wiley and Sons, Copyright 2019.
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Table 1. Summary of the characteristic properties of the nucleus-targeted fluorescent probes for
nuclear imaging.

Name [Ref.] λex (nm) λem (nm) Stokes
Shift (nm) Binding Constant Quantum Yield

Bound/Unbound
Nucleic Acid

Specificity

probe 1 [25] 460 520 60 KD = 2.5 × 106 M−1 0.0072/0.44 (hpDNA) AT-rich DNA

5-TMR
(probe 3) [27] 558 586 28 KD = 3.65 × 107 M−1 ~0.007/0.209 (hpDNA) AT-rich DNA

6-TMR (probe 3) 562 585 23 KD1 = 1.4 × 108 M−1;
KD2 = 1.68 × 108 M−1 ~0.005/0.052 (hpDNA) AT-rich DNA

5-580CP (probe 3) 588 613 25 KD = 1.55 × 108 M−1 ~0.027/0.372 (hpDNA) AT-rich DNA

6-580CP (probe 3) 594 619 25 KD1 = 2.7 × 108 M−1;
KD2 = 3.62 × 107 M−1 ~0.011/0.124 (hpDNA) AT-rich DNA

5-610CP (probe 3) 614 641 27 KD = 3.47 × 107 M−1 ~0.052/0.432 (hpDNA) AT-rich DNA

6-610CP (probe 3) 618 644 26 KD1 = 6.5 × 108 M−1;
KD2 = 4.4 × 106 M−1 ~0.033/0.282 (hpDNA) AT-rich DNA

5-GeR (probe 3) 641 660 19 KD = 4.4 × 106 M−1 ~0.054/0.392 (hpDNA) AT-rich DNA

6-GeR (probe 3) 643 662 19 KD = 5.72 × 107 M−1; ~0.033/0.207 (hpDNA) AT-rich DNA

5-SiR (probe 3) 651 672 21 KD = 4.8 × 106 M−1 ~0.007/0.374 (hpDNA) AT-rich DNA

6-SiR (probe 3) 654 677 23 KD = 6.69 × 107 M−1 ~0.003/0.156 (hpDNA) AT-rich DNA

SiR-Hoechst [26] 652 672 20 KD = 8.4 × 106 M−1 — DNA

HoeSR [28] 572 590 18 KD = 3.5 × 106 M−1 0.009/0.09 (hpDNA) DNA

DEAB-TO-3 [29] 626 649 23 — 0.36 AT-rich DNA

TO3-CN [30] 543 604 56 (DNA);
49 (RNA) — 0.73 (DNA); 0.72 (RNA) DNA and RNA

Styryl-TO [31] 476 535 59 KD = 1.23 × 106 M−1 0.506/0.0016 RNA

Cl-TO-1 [32] 508 534 26 Ks = 2.22 × 106 M−1 — DNA

Cl-TO-2 [32] 509 536 27 Ks = 2.16 × 106 M−1 — DNA

Cl-TO-3 [32] 510 536 26 Ks = 1.26 × 106 M−1 — DNA

Cl-TO-4 [32] 513 540 27 Ks = 6.32 × 106 M−1 — DNA

Cl-TO-5 [32] 511 538 27 Ks = 4.56 × 106 M−1 — DNA

Cl-TO-6 [32] 514 539 25 Ks = 4.76 × 106 M−1 — DNA

AK-C1 [33] 421 472 51 Ks = 6.92 × 106 M−1 0.0005 (in water) AU-rich RNA

AK-C2 [33] 422 481 59 Ks = 6.46 × 106 M−1 0.0009 (in water) AU-rich RNA

AK-C3 [33] 400 431 31 Ks = 1.29 × 106 M−1 0.0031 (in water) AU-rich RNA

SL-2598 [34] 504 526 22 — 0.44 RNA

SL-2000 [34] 506 529 23 — — RNA

L-29 [34] 451 476 25 — — RNA

T-4 [35] 499 511 12 — — RNA

CP [36] 598 658 60 — 0.22 (in DCM) RNA

CP3 [37] 584 638 54 — 0.555 (in DCM) RNA and
lysosome

CP6 [37] 595 655 60 — 0.338(in DCM) RNA and
lysosome

probe 4 [24] 450 658 (duplex);
631 (GQ)

208
(duplex);
181 (GQ)

Kb > 105 (duplex);
4.4 × 106 M−1 (GQ)

— Duplex and GQ

probe 5 [38] 440 660 220

KB = 6.8 × 104 M−1

(well-matched DNA);
KB = 1.8 × 106 M−1

(mismatched DNA)

— DNA
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Table 1. Cont.

Name [Ref.] λex (nm) λem (nm) Stokes
Shift (nm) Binding Constant Quantum Yield

Bound/Unbound
Nucleic Acid

Specificity

probe 6 [39] 440 700 260

KB = 7.3 × 103 M−1

(well-matched DNA);
KB = 3.5 × 106 M−1

(mismatched DNA)

— DNA

probe 7 [40] 520 570 50 KD = 3.2 × 107 M−1

(mismatched DNA)
— DNA

cQD probe [44] ~400(dsDNA);
~540(ssRNA)

~520(dsDNA);
~620(ssRNA) ~120 — ~0.080 dsDNA; ssRNA

4.2. Detection of Biomolecules in the Nucleus
4.2.1. Detection of DNA

The development of fluorescent probes that can detect DNA is therefore of extraordi-
nary interest for understanding gene mutations and diseases and for developing effective
means of diagnosis and therapy. Figure 12 illustrates several fluorescent probes that have
been developed in recent years to detect DNA. Probe 8 developed by Feng et al. based
on carbazole is a red fluorescent probe that can detect dsDNA [45]. Probe 8 emits a weak
fluorescence at 573 nm. However, when the probe binds to DNA, the fluorescence intensity
is enhanced 77-fold along with an increase of fluorescence quantum yield from 0.003 to
0.13. Consequently, this probe possesses good properties for detecting DNA. The study
demonstrated that probe 8 binds in the minor groove of DNA and was successfully applied
to two-photon detection of DNA in HeLa cells. Furthermore, Duan et al. synthesized a
series of organic small molecule fluorescent probes for detection of DNA based on a car-
bazole backbone [46]. Probe 9 possesses a large Stokes shift (201 nm) and low cytotoxicity.
Probe 9 showed a 30-fold enhancement in fluorescence intensity upon binding to DNA.
Unlike probe 8, probe 9 was distributed in mitochondria in live HeLa cells and mainly in
the nucleus in fixed HeLa cells.
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Probes 10–12 were synthesized for detecting DNA using trianiline as a scaffold [47].
Interestingly, these compounds exhibit weak fluorescence in water, while upon binding to
dsDNA, their fluorescence emission is strongly recovered (enhancement factors of 20–100).
Circular dichroism experiments demonstrate that probes 10–12 bind in the minor groove
of DNA. In 2016, Gaur et al. revealed the potential of electron rich heteroatoms of the
chalcogen family in improving the binding efficiency and specificity of molecular probes
toward DNA, in which the PA5 probe is more capable of intranuclear DNA imaging and
detection relative to the probes of PA1–PA4 (PA5 penetrates the cell membrane and stains
the nucleus in 15 s) [48]. Moreover, Wu and coworkers developed a pyrene-functionalized
cationic oligopeptide probe 14 that can efficiently bind to AT-rich dsDNA [49]. When bound
to nucleic acids, probe 14 undergoes a conformational change from a folded to an extended
form, thereby converting the fluorescence of probe 14 from excimer emission to monomer
emission. Thus, probe 14 functions as a molecular polypeptide beacon for the sensing
of different types of polynucleotides, as binding to p(dA-dT)2 is preferred to GC-rich
polynucleotides. In the calculated binding mode, two pyrenes are inserted into the base
stack, while the peptide linkers are aligned along the minor groove of the nucleic acid with
additional electrostatic interactions between the positively charged lysine side chains and
the phosphate backbone. In addition, probe 14 most likely enters the cell by endocytosis
and binds to nucleic acids in the nucleus after reaching the nucleus. The imaging results
showed that probe 14 produced a strong fluorescence signal in the nucleus and almost no
fluorescence was observed in the cytoplasm. Notably, in 2020, the Lin group designed a D-
π-A-π-D type of probe QPP-AS by rationally regulating the intramolecular charge transfer
(ICT) ability between electron acceptors and electron donors, which could help realize
ratiometric fluorescence response to nucleic acids in living cells [50]. As shown in Figure 13b,
with the increase of the dsDNA concentration, a new red fluorescence peak appeared at
670 nm for QPP-AS and continuously enhanced, meanwhile the green fluorescence peak
at 510 nm remained unchanged. Specifically, after it was intercalated in DNA, QPP-AS
molecular movement was restricted, and the hydrophobic environment provided by the
nucleic acid matrix could reduce the interaction between QPP-AS and water molecules.
These effects reduced nonradiative decay and excitation energy dissipation, thereby causing
QPP-AS to produce red fluorescence and exhibit fluorescence gradual enhancement with
increasing DNA concentration. QPP-AS showed the capability of living cell imaging at
two emission channels (λ1 = 510 ± 20 nm, λ2 = 670 ± 20 nm), in which the red fluorescence
channel (670 ± 20 nm) shows a good nucleus staining. Following DNase treatment, the
fluorescence in the nucleus almost disappeared and appeared mainly in the nucleoli and
cytoplasm, whereas after RNase treatment, the fluorescence remained in the nucleus. In
addition, this probe possesses a good signal-to-noise ratio and can accurately show the
distribution location and relative content of nucleic acids in the nucleus (Figure 13c). More
importantly, QPP-AS can also monitor in monitor the nucleic acid dynamic behavior of
different cellular processes, such as nucleic acid distribution for cellular mitotic processes
and in situ monitoring of chromatin aggregation and segregation of apoptotic cells.
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Figure 13. (a) The chemical structure of QPP-AS. (b) Fluorescence response of QPP-AS (3 µM) to
dsDNA in buffer solution. (c) Ratiometric fluorescence imaging of QPP-AS (10 µM, incubated 2 h)
by a dual-emission channel (λ1 = 510 ± 20 nm; λ2 = 670 ± 20 nm; ratio = λ2/λ1) at λex = 405 nm in
living A549 cells, fixed A549 cells with DNase I (100 U/mL,2 h) treatment, and RNase A (100 µg/mL,
2 h) treatment. Reproduced from [50] with permission from the American Chemical Society, Copy-
right 2021.

4.2.2. Detection of RNA

RNA also plays important roles in cellular physiological processes, such as protein
synthesis, gene regulation and reaction catalysis, among others. RNA in the nucleus is
concentrated in the nucleolar region, the site of ribosomal RNA (rRNA) transcription,
processing and assembly. At present, designing RNA specific fluorescent probes is difficult
work because RNAs have flexible conformations of secondary and tertiary structures [51].
In addition, small molecule probes have a stronger binding tendency for DNA than RNA,
which also makes the design of RNA specific probes difficult. The only commercially
available RNA probe known to date is SYTO RNAselect, a green fluorescent dye (which
is easily perturbed by background fluorescence in biological media), but its molecular
structure has not been made public to date. Several RNA selective fluorescent probes
developed in recent years are presented below (Figure 14). In 2018, Peng and colleagues
reported a deep red (705 nm) RNA selective probe NBE based on the Nile scaffold that
is more photostable than SYTO RNAselect [52]. However, it is worth noting that SYTO
RNAselect exhibits >100-fold fluorescence enhancement upon binding to RNA, compared
to 5-fold fluorescence enhancement for NBE, which would result in a lower sensitivity for
RNA detection. Nishizawa et al. indicated that this resulted from the lack of a rigid chemical
structure of NBE when binding to RNA. In 2019, they developed an RNA fluorescent probe
that simultaneously satisfied deep red emission (657 nm) and large fluorescence response
(105-fold) based on the asymmetric methylcyanine scaffold benzo [c, d] indole-quinoline
monomethine yaninee (BIQ) [53]. In contrast to NBE, BIQ has torsional elasticity around
two heterocycles of a central bridge that is key for emitting light signals when bound to
RNA. In addition, compared with commercial SYTO RNAselect probes, BIQ offers several
advantages, such as high photostability, RNA selectivity, good cell permeability, and
negligible cytotoxicity, and can be a candidate fluorescent probe for the imaging analysis of
nucleolar RNA.
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In 2019, Yi et al. developed a fluorescent probe capable of specifically recognizing
ribosomal RNA (rRNA) based on a naphthalimide scaffold [54]. The dimethylamine in the
structure of probe 15 could not only serve as a donor for intramolecular charge transfer
(ICT), but also decrease the fluorescence quantum yield of the free probe by rotation. In
addition, the alkylamine group at the end of this probe acts as a hydrophilic group, which
keeps the probe in a hydrophobic balance, thereby increasing the membrane permeability
of the probe. In vitro studies have shown that probe 15 has a concentration dependent and
specific recognition of rRNA (Figure 15a,b). The results of molecular docking and 1H NMR
titration studies indicated that the higher fluorescence enhancement of probe 15 with rRNA
was mainly due to the specific binding of probe 15 to the complex 3D structure of rRNA.
The live cell fluorescence imaging results indicated that probe 15 could stain rRNA quickly,
and obvious green fluorescence could be observed at the nucleolus within 30 s, and the
fluorescence intensity reached saturation within 1 min (Figure 15c). Probe 15 exhibits excel-
lent selectivity, remarkable photostability, biocompatibility and excellent cell permeability,
and may provide an alternative tool for commercial rRNA staining. In addition, Lin and
coworkers developed a fluorescent probe MR-IDE capable of detecting mitochondrial RNA
(mtRNA) [55]. However, MR-IDE is detected by insertion into an RNA groove structure,
which is susceptible to interference from DNA that also possesses a groove structure, as
well as other kinds of RNA. The imaging results of MR-IDE in cancer cells showed that,
in addition to the green fluorescence appearing in the cytoplasm, it also presented obvi-
ous green fluorescence on the nucleolus due to rRNA interference in the nucleolus. Sun
et al. designed and synthesized two low-molecular-weight indolyl mono-cationic probes
(probe 16, INR1 and INR2) that were identified as RNA selective fluorescence turn-on
probes [56]. These two probes, with good membrane permeability, have been successfully
used to image ribonucleic acids in the nucleus and cytoplasm of living cells by confocal
and two-photon fluorescence microscopy. Finally, to be introduced is a water-soluble RNA
fluorescent probe, TAB, developed by Yang et al., consists of triarylboron, diphenylamine
and 1,4,7,10-tetraazacyclododecane (Cyclen) moieties [57]. Conjugated triarylboronic com-
pounds containing electron donating groups are characterized by ICT and exhibit many
good fluorescence properties, such as excellent membrane permeability and high quantum
yield. The hydrophobic diphenylamine was used to tune the hydrophilicity of the probe,
ensuring good cell permeability. Cyclen is frequently used as a scaffold for artificial RNA
lyases and shows specificity for RNA, so it serves as an RNA recognition group. Notably,
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multiple polar hydrogens in the circularized structure can readily form hydrogen bonds
with exposed bases of single stranded RNA, but not with double stranded DNA. In double
stranded DNA, strand-strand base pairing prevents these sites from circularizing. Thus,
TAB is able to preferentially bind RNA with excellent selectivity. In summary, the design of
RNA selective probes is difficult, and the currently available probes for detecting RNA are
still very few.
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Figure 15. (a) Fluorescent titration of probe 15 at 10 µM with the addition of rRNA. (b) Selectivity of
probe 15 (10 µM) versus different species including 20 kinds of amino acids (200 µM), four kinds of
mononucleotide acid (200 µM), two nucleolus proteins nucleolin (NCL) (10 µM), and nucleophosmin
(NPM) (10 µM), BSA (200 µM), ctDNA (1200 µg/mL), synthesized dsDNA (630 µg/mL), synthesized
ssDNA (370 µg/mL), synthesized dsRNA (370 µg/mL), synthesized ssRNA (206 µg/mL), tRNA
(750 µg/mL), mRNA (100 µg/mL) and rRNA (1000 µg/mL) in 20 mM PB at pH 7.2. (c) Time-
dependence (0 s, 30 s, 60 s, 90 s, 120 s) CLSM images of HeLa cells incubated with probe 15 at 5 µM
(λex = 488 nm, λem = 515–565 nm). Bottom right: fluorescence intensity profile of selected area labeled
with a white bar. Scale bar: 10 µm. Reproduced from [54] with permission from the American
Chemical Society, Copyright 2019.

4.2.3. Detection of the G-Quadruplex

Usually, DNA exists mainly as a double helix, but some unique structures, such as
G-quadruplex also occur. G-quadruplex is a four stranded structure of guanine rich nucleic
acid sequences, which can be further divided into three structures, parallel, anti-parallel
and hybrid. Notably, G-quadruplex often occurs at telomeres and the promoter regions
of certain cancer genes and is thought to be closely associated with aging and disease.
Therefore, G-quadruplex has been considered as a potential drug target, and studies based
on G-quadruplex have also received increasing attention in recent years. Thiazole orange
(TO), a versatile and widely used fluorescent dye for nucleic acids, cannot distinguish
G-quadruplex DNA from other DNA species despite its high fluorescence quantum yield.
In 2016, Lu and coworkers designed a series of new fluorescent dyes 4a, 4b, 4c, 4d by
introducing various styrene substituents on the framework of TO (Figure 16a) [58]. It was
found that these newly designed fluorescent dyes were able to bind to nucleic acids and ex-
hibited excellent fluorescence discrimination ability against the G-quadruplex (Figure 16b),
among which 4a exhibited the best recognition ability. More importantly, the excellent
fluorescence signal discrimination ability was found to be determined by the spatial length
and orientation of small substituents of TO molecules. As shown in Figure 16c, 4a can
stain the nucleolus region because there are rRNAs within the nucleolus for transcription,
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and guanine rich rRNAs may form quadruple conformations. Furthermore, the possibility
of 4a binding to RNA in the nucleolus was excluded by RNAase treatment Figure 16c).
Therefore, the newly designed dyes can be used not only for G-quadruplex detection, but
also for live cell staining and imaging.
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DNA: da21, dt21. Duplex DNA: 4a4t, 4at, ds12 and ds26. Telomere G-quadruplex DNA: htg22, 
telo21, 4telo, human 12, oxy12 and oxy28. Promoter G-quadruplex DNA: bcl2, ckit-1, ckit-2, Pu27, 
Pu18, RET and VEGF. (c) Fluorescence images of PC3 cells (fixed) stained with 5.0 μM of 4a for 15 
min and 1.0 μg/mL DAPI for 5 min without and with DNase or RNase treatment. 1000× magnifica-
tion was utilized in the imaging. Scale bar is 10 μm. Reproduced from [58] with permission from 
the Royal Society of Chemistry, Copyright 2014. 

Figure 16. (a) Structures of TO, 4a, 4b, 4c and 4d. (b) Fluorescence intensities at 630 nm (λex = 475 nm)
of 4a with different nucleic acids in Tris-HCl buffer containing 60 mM KCl. Single-stranded DNA:
da21, dt21. Duplex DNA: 4a4t, 4at, ds12 and ds26. Telomere G-quadruplex DNA: htg22, telo21,
4telo, human 12, oxy12 and oxy28. Promoter G-quadruplex DNA: bcl2, ckit-1, ckit-2, Pu27, Pu18,
RET and VEGF. (c) Fluorescence images of PC3 cells (fixed) stained with 5.0 µM of 4a for 15 min and
1.0 µg/mL DAPI for 5 min without and with DNase or RNase treatment. 1000×magnification was
utilized in the imaging. Scale bar is 10 µm. Reproduced from [58] with permission from the Royal
Society of Chemistry, Copyright 2014.

In 2017, Würthner‘s team developed a G-quadruplex-specific fluorescent probe Di-
cyanovinyl squaraine dye (SQgI, Figure 17) based on thiazole [59]. The squaraine acid
can form an unconventional sandwich π-complex combining two quadruplexes, which
results in a strong fluorescence (фF = 0.61) supramolecular structure. SQgI exhibits bet-
ter G-quadruplex selectivity with excitation at 661 nm and emission at 700 nm by one
photon absorption in the complexed state. However, this probe still has some deficien-
cies, including general solubility properties, moderate binding constants and excitation
wavelengths outside the biological transparency window (BTWs, NIR-I: 700–950 nm and
NIR-II: 1000–1350 nm). In 2018, they developed a water-soluble near-infrared (NIR) am-
phiphilic squaraine dye (CAS-C1, Figure 17) by modifying dicyanovinyl squaraine moieties
by changing to better water-soluble groups that can be used to detect parallel G-quadruplex
motifs [60]. The complex of CAS-C1 with parallel G-quadruplex exhibits strong two-photon
absorption, which is well suited for NIR to the NIR imaging process. Compared with the
previously designed SQgI, CAS-C1 contains a large amount of ethylene glycol chains
that can generate strong electrostatic interactions with the G-quadruplex polar backbone
to enhance its binding with the G-quadruplex. In addition, a large number of ethylene
glycol chains may enhance the affinity of binding to the G-quadruplex by replacing wa-
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ter molecules in the groove structure. In summary, the variety of probes able to detect
G-quadruplex is still few at present, the recognition mechanism is relatively single, and
the selectivity and sensitivity of the probes are still to be improved. Moreover, DNA has
multiple substructures (e.g., triplex) in addition to G-quadruplex, which do not appear to
be specifically detectable by probes.
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Change of DNA conformation is also a key mechanism of gene regulation in organ-
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4.2.4. Detection of DNA Conformational Changes

Change of DNA conformation is also a key mechanism of gene regulation in organ-
isms during development and disease. Small aberrations in DNA structure could lead
to the development of many genetic diseases, such as Friedreich’s ataxia (FRDA), Hunt-
ington’s disease, and myotonic dystrophy [61,62]. Although it is currently possible to
characterize DNA structural conformational changes by single-crystal X-ray diffraction,
AFM, and cryogenic transmission electron microscopy, these techniques require complex
sample processing and only capture the static conformation of DNA, making real-time
measurements of transient conformational changes in DNA challenging [63,64]. Li’s team
developed a fluorescent probe to detect transient DNA conformational changes in DNA
structures of different lengths and shapes using the DNA intercalator K21 [65]. K21 can
exhibit two forms in a DNA double helical structure: one is a monomer and the other
is a dimeric molecule or excimer, both of which exhibit different fluorescence emission
spectra. The transient conformational changes produced during DNA respiration may
lead to the transition of K21 in monomeric and dimeric (or excimer) forms, resulting in
the alteration of the fluorescence emission ratio (Figure 18). K21 has also been successfully
applied to identify DNA structures with different transient conformational stabilities, such
as mismatched dsDNA, G-quadruplex, i-motifs and single plasmid DNAs with different
topologies. In a word, this intercalative fluorescent dimeric probe capable of probing tran-
sient conformational changes in DNA would have great potential in nucleic acid analysis
applications, but few such probes have been developed.
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4.2.5. Detection of Biological Macromolecules—Histones H2B and HDACs

Histones are DNA bound basic proteins present within chromosomes. Histones are
rich in the positively charged basic amino acids arginine and lysine, which can tightly bind
to acidic and negatively charged DNA. Histones comprise five components, termed H1, H3,
H2A, H2B and H4, in order of molecular weight from large to small. Xiao’s team developed
a new dye, Rh-Gly, by extending the opening time of the photochromic rhodamine spiro-
lactam, which can be used for the detection and super-resolution imaging of histone H2B
in chromosomes inside the nucleus [66]. Rhodamine spirolactams will undergo a reversible
structural transition from a nonfluorescent colorless state to a highly fluorescent zwitterion
upon UV light irradiation, and such a reversible turn-on switch can avoid the release of
additional toxic species. However, achieving super-resolution imaging of histone H2B that
provides only strong fluorescence brightness is not sufficient, and it also requires extending
the fluorescence emission time of zwitterions. Notably, an acidic environment can be used
to stabilize zwitterionic structures. To this end, they added a carboxyl group near the lactam
site to provide an intramolecular acidic environment to the rhodamine spirolactam as a
way to prolong the opening time of the photogenerated rhodamine spirolactam zwitterion
(Figure 19a). Subsequently, by HaloTag fusion protein technology, a chloroalkane ligand
conjugated derivative of Rh-Gly (Rh-Gly-Halo, Figure 19b) was prepared. Super resolution
imaging of histone H2B, as shown in Figure 19c, the average number of photons per frame
of a single molecule was 1040, with an average localization accuracy of 21 nm.
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Image of Rh-Gly-Halo coupled haloalkane dehalogenase (1BN6) is designed with Chimera. (c) PALM
image of H2B-Halo fusion proteins labeled with Rh-Gly-Halo in a live HeLa cell under inclined
illumination. Inset shows the wide-field image of the same H2B-Halo fusion proteins labeled with
Rh-Gly-Halo. Reproduced from [66] with permission from the American Chemical Society, Copy-
right 2019.

Histones in the nucleus play an important role for the regulation of chromatin struc-
ture and gene expression. However, aberrant downregulation of some genes by histone
deacetylases (HDACs) has been found to contribute to several diseases, such as cancer and
psychiatric disorders [67]. Therefore, the development of a fluorescent probe capable of
detecting the activity of intranuclear HDACs is of high medical value for the diagnosis of
diseases. Kikuchi et al., for example, developed a fluorescent probe BOXTO-GK(Ac)G that
can detect HDAC activity (Figure 20a) [68]. When the probe has not been deacetylated by
HDACs, the interaction between DNA and the probe is weak, and the probe shows little
fluorescence, even in the presence of DNA. However, once the probe is deacetylated by
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HDACs (BOXTO-GKG, Figure 20a), its charge state becomes more positive, which allows
enhanced electrostatic interactions with negatively charged DNA, exhibiting increased
fluorescence signal (Figure 20b). Based on this principle, a simple, rapid and continuous
detection of HDACs is achieved. Additionally, Rooker’s team developed a ratiometric
fluorescent probe based on coumarin that could be used to detect HDACs (Figure 20c) [69].
Based on a novel application of the intramolecular imine formation process with amine
reactive coumarin fluorophores, probe 17 enables one-step detection of HDACs activity
with simple spectrophotometric and fluorescence measurements. It is worth mentioning
that, in addition to histones, there are many other kinds of proteins (including enzymes) in
the nucleus, and their imaging and detection are still difficult.
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Figure 20. (a) Structures of BOXOTO-GK(Ac)G and BOXTO-GKG. (b) Schematic illustration of the
HDAC detection system that uses a fluorogenic probe based on a DNA staining dye. Reproduced
from [68] with permission from the American Chemical Society, Copyright 2014. (c) Schematic
representation of probe 17 used to detect HDACs.

4.2.6. Detection of Small Molecules and Ions

a. Detection of Pyrophosphate (PPi)

The pyrophosphate (PPi) anion has received increasing attention because of its impor-
tant role in cellular metabolic processes, such as ATP hydrolysis, and in several diseases,
such as calcium pyrophosphate dihydrate crystal deposition disease. However, pyrophos-
phate has a high solvation energy in water, so it is relatively difficult to design fluorescent
probes for detecting PPi with a low detection limit (nanomolar scale) under physiological
conditions. In addition, PPi has a strong coordination affinity with metal ions. Inspired
by this, Chao and coworkers developed a tripyridine zinc (II) complex, CZtpyZn, for the
detection of pyrophosphate based on aggregation-induced-emission (AIE) and ICT [70].
Strong fluorescence emission was observed when CZtpyZn PPi aggregated into nanoag-
gregates, which could effectively suppress the quenching effect caused by polar solvents,
such as water (Figure 21a). As shown in Figure 21b,c, CZtpyZn is highly selective for PPi,
whereas it responds poorly to ATP, ADP, AMP and other anions. Importantly, it is worth
noting that the probe can also be used for staining the nucleus of living cells (Figure 21d).
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excited at 400 nm in HEPES buffer (pH = 7.4, 10 mM in H2O/DMSO, 7/3, v/v) at room temperature.
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(d) The confocal fluorescence images of living HeLa cells and fixed HeLa cells with CZtpyZn. Scale
bar: 20µm. Reproduced from [70] with permission from Springer Nature, Copyright 2016.

b Detection of hydrogen peroxide (H2O2)

Common reactive oxygen species (ROS) are hydrogen peroxide (H2O2), superoxide
anion (O2−) and singlet oxygen (1O2), which are endogenous metabolites that are indica-
tors of oxidative stress. Among them, H2O2 can play an important role in physiological
processes as a second messenger in intracellular signal transduction. However, H2O2 may
be abnormally generated intracellularly when cells are stimulated by exogenous chemicals.
The excessive H2O2 accumulates inside the cell, which will lead to oxidative damage to
intracellular proteins, nucleic acids and liposomes. In the case of cancer, the DNA enriched
in the nucleus is the most important target [71]. Once the oxidative damage of DNA is
generated, such as cannot be repaired in a timely manner, it will induce the generation of
gene mutations and eventually lead the cell to carcinogenesis or death [72]. Therefore, it is
necessary to achieve sensitive detection of H2O2 in the nucleus. Chang’s team discovered
the nucleus-targeted H2O2 probe NucPE1 [73]. Interestingly, despite the absence of a spe-
cific targeting moiety, this probe can accumulate in the nucleus of several mammalian cell
lines and C. elegans. Furthermore, once NucPE1 reacted with H2O2 in the cytoplasm, it lost
its targeting ability, which enabled nucleus selective H2O2 imaging. Although the targeting
mechanism remains to be further elucidated, this probe may serve as a novel fluorescent
tool for monitoring the H2O2 flux in the nucleus. Moreover, Yi’s team developed a versatile
small molecule fluorescent probe NP1 that can be used for ratiometric detection of H2O2
(Figure 22a) [74]. NP1 mainly accumulated in the cytoplasm without adding to the nucleus.
So, the transcription factor NF-κB derived sequence (VQRKRQKLMP-NH2, named pep-1)
was chosen as a NLS peptide for nuclear targeting modification of NP1. As shown in
Figure 22b,c, pep-NP1 showed a ratiometric fluorescence response and good selectivity.
More importantly, pep-NP1 achieved excellent nucleus targeting (Figure 22d) and enabled
the detection of H2O2 levels inside the nucleus. However, how such probes avoid reacting
with H2O2 inside the cytoplasm before entering the nucleus, is a matter for thought.



Chemosensors 2023, 11, 125 24 of 38

Chemosensors 2023, 11, x FOR PEER REVIEW 23 of 37 
 

 

targeting mechanism remains to be further elucidated, this probe may serve as a novel 
fluorescent tool for monitoring the H2O2 flux in the nucleus. Moreover, Yi’s team devel-
oped a versatile small molecule fluorescent probe NP1 that can be used for ratiometric 
detection of H2O2 (Figure 22a) [74]. NP1 mainly accumulated in the cytoplasm without 
adding to the nucleus. So, the transcription factor NF-κB derived sequence 
(VQRKRQKLMP-NH2, named pep-1) was chosen as a NLS peptide for nuclear targeting 
modification of NP1. As shown in Figure 22b,c, pep-NP1 showed a ratiometric fluores-
cence response and good selectivity. More importantly, pep-NP1 achieved excellent nu-
cleus targeting (Figure 22d) and enabled the detection of H2O2 levels inside the nucleus. 
However, how such probes avoid reacting with H2O2 inside the cytoplasm before entering 
the nucleus, is a matter for thought. 

 
Figure 22. (a). The structures of NucPE1, NP-1 and pep-NP1. (b). Fluorescence spectral changes of 
pep-NP1 (5 μM) with time after addition of H2O2 (200 μM). (c). The fold change (R551/403) of pep-
NP1 (5 μM) to various ROS/RNS (200 μM) at 120 min. A to J represent none, tBHP, OCl−, NO, 1O2, 
HO·, ·OtBu, O2−, O2−· and H2O2, respectively. (d). CLSM images of HeLa cells co-labeled (i–iii) with 
pep-NP1 (50 μM)/PI (1 nM) and (v–vii) with NP1 (5 μM)/ PI (1 nM) at 37 °C; (i,v) blue channel, (ii, 
vi) red channel and (iii,vii) the overlay images of blue and red channels; (iv,viii) cross-sectional 
analysis along the white line in the insets (amplified images of a single cell in green squares in (iii) 
and (vii), respectively). Blue channel: 445 ± 20 nm for NP1/pep-NP1; red channel: 625 ± 25 nm for 
PI. λex = 405 nm; scale bar = 20 μm. Reproduced from [74] with permission from the American Chem-
ical Society, Copyright 2014. 

c. Detection of Calcium Ions (Ca2+) 
Calcium ions (Ca2+) are very important for signal transduction in the cell interior, 

which through temporal and spatial fluctuations in concentration enable regulatory ef-
fects on a variety of biological processes [75]. Changes in the concentration of calcium ions 
in the nucleus can affect important life processes, such as gene expression, transport of 
nucleoprotein and RNA, degradation of DNA and nucleoprotein and cell division. There-
fore, detecting the intranuclear Ca2+ content and change is of great significance for biolog-
ical and medical research. Although many fluorescent indicators for Ca2+ have been re-
ported so far, probes capable of detecting Ca2+ inside the nucleus are scarce. Zhu and 
coworkers developed a new red emitting and ratiometric Ca2+ fluorescent probe STDBT 
to measure Ca2+ at the nucleus and the cytosol [76]. STDBT is composed of 1,2-bis (2-ami-
nophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA) units with a high Ca2+ selectivity 
and benzothiazolium hemicyanine dye with excellent spectral properties to construct an 
intramolecular charge transfer (ICT) structure (Figure 23) [77,78]. When Ca2+ is 

Figure 22. (a). The structures of NucPE1, NP-1 and pep-NP1. (b). Fluorescence spectral changes of
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λex = 405 nm; scale bar = 20 µm. Reproduced from [74] with permission from the American Chemical
Society, Copyright 2014.

c Detection of Calcium Ions (Ca2+)

Calcium ions (Ca2+) are very important for signal transduction in the cell interior,
which through temporal and spatial fluctuations in concentration enable regulatory effects
on a variety of biological processes [75]. Changes in the concentration of calcium ions
in the nucleus can affect important life processes, such as gene expression, transport
of nucleoprotein and RNA, degradation of DNA and nucleoprotein and cell division.
Therefore, detecting the intranuclear Ca2+ content and change is of great significance for
biological and medical research. Although many fluorescent indicators for Ca2+ have
been reported so far, probes capable of detecting Ca2+ inside the nucleus are scarce. Zhu
and coworkers developed a new red emitting and ratiometric Ca2+ fluorescent probe
STDBT to measure Ca2+ at the nucleus and the cytosol [76]. STDBT is composed of 1,2-
bis (2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA) units with a high Ca2+

selectivity and benzothiazolium hemicyanine dye with excellent spectral properties to
construct an intramolecular charge transfer (ICT) structure (Figure 23) [77,78]. When Ca2+

is coordinated to BAPTA, it will induce conformational changes in the ICT structure and
reduce the electron donating ability of aniline, leading to a blue shift in the spectra and an
increase in the fluorescence intensity of STDBT. They further synthesized STDBT-AM (the
tetra (acetoxymethyl) ester of STDBT) to increase the cellular permeability of the probe.
STDBT-AM will be hydrolyzed by esterases contained in the cytoplasm after penetrating the
cell membrane, thus reverting back to STDBT, which can detect Ca2+. When Ca2+ was added
to the STDBT buffer solution, an obvious ratiometric type response could be observed from
the absorption and emission spectra of STDBT. Imaging results showed that STDBT was
distributed in both the nucleus and the cytosol, delineating a very clear boundary between
these two compartments. Thus, the probe can simultaneously distinguish Ca2+ changes
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in the cytosol and nucleus of living cells. However, the mechanism of Ca2+ entering the
nucleus remains unclear, more probes are needed to help reveal this. The characteristic
properties of these probes in this section are summarized in Table 2.
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Table 2. Summary of the characteristic properties of nucleus-targeted fluorescent probes for intra-
nuclear biomolecule detection. 

Name [Ref.] λex (nm) λem (nm) 
Stokes 
Shift 
(nm) 

Binding Constant 
Fluorescent Quan-

tum Yield 
Species of  
Detection 
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Table 2. Summary of the characteristic properties of nucleus-targeted fluorescent probes for intranu-
clear biomolecule detection.

Name [Ref.] λex (nm) λem (nm) Stokes
Shift (nm)

Binding
Constant

Fluorescent
Quantum

Yield

Species of
Detection

Extinction
Coefficient

probe 8 [45] 451 548 97
Kb = 2 × 106

M−1 (DNA
d[A]10:d[T]10)

0.13 DNA —

probe 9 [46] 430 585 155 — 0.024 AT-rich DNA 26,700 M−1 cm−1

probe 10 [47] 475 636 161 — 0.090 DNA 28,500 M−1 cm−1

probe 11 [47] 491 656 165 — 0.11 DNA 37,400 M−1 cm−1

probe 12 [47] 491 665 174 — 0.12 DNA 66,000 M−1 cm−1

PA1 (probe 13)
[48] 473 522 49 7.3 × 102 M−1 0.008 DNA 41,200 M−1 cm−1

PA2 (probe 13) 480 560 80 5.9 × 102 M−1 0.009 DNA 38,700 M−1 cm−1

PA3 (probe 13) 454 490 36 1.2 × 103 M−1 0.010 DNA 38,600 M−1 cm−1

PA4 (probe 13) 481 520 39 2.4 × 103 M−1 0.030 DNA 49,200 M−1 cm−1

PA5 (probe 13) 504 534 30 7.4 × 103 M−1 0.070 DNA 29,600 M−1 cm−1

probe 14 [49] 340 406; 490 66; 150

2 × 105 M−1

(p(dA·dT)2)
3 × 104 M−1

(p(dG·dC)2)

— AT-rich DNA —

QPP-AS [50] 405; 488
(in DCM)

500 and 650;
650 (in DCM) — — — DNA

22,900 M−1 cm−1;
54,300 M−1 cm−1

(in DCM)

NBE [52] 618 680 62 — 0.040 RNA —

BIQ [53] 611 657 46 1.2 × 108 M−1 0.010 RNA —

probe 15 [54] 444 545 101 — 0.0378 rRNA 11,250 M−1·cm−1

INR1 (probe 16)
[56] 467

533 (single-
fluorescent peak);
540 (two-photo

fluorescent peak)

66; 73 — 0.028 RNA 25,000 M−1 cm−1
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Table 2. Cont.

Name [Ref.] λex (nm) λem (nm) Stokes
Shift (nm)

Binding
Constant

Fluorescent
Quantum

Yield

Species of
Detection

Extinction
Coefficient

INR2 (probe 16)
[56] 465

532 (single-
fluorescent peak);
540 (two-photo

fluorescent peak)

67; 75 — 0.027 RNA 25,000 M−1 cm−1

MR-IDE [55] 438 (in
DMF) ~531 (in DMF) ~93 — 0.0157 mtRNA —

TAB [57] 405 560 155 — 0.500 (in
DMSO) RNA —

4a [58] 475 630 155 9.65 × 105 M−1 0.170 GQ —

SQgI [59] 660 744 84 ~105 M−1 0.610 Parallel GQ —

CAS-C1 [60] 698 720 22 9.7 × 106 M−1 ~0.700 Parallel GQ ~90,000 M−1 cm−1

K21 [65] 426 480 54 6.32 × 106 M−1

(10AT dsDNA)
— AT-rich DNA —

Rh-Gly [66] 365 585 220 — — H2B —

BOXTO-GK(Ac)G
[68] 520 545 25 ~1.41 × 106 M−1 — HADCs —

probe 17 [69] 499 523 24 — — HADCs —

CZtpyZn [70] 400 515 115 — — PPi —

NucPE1 [73] 505 530 25 — 0.626 H2O2 19,100 M−1 cm−1

NP1 [74] 446 555 109 — 0.087 H2O2 10,820 M−1 cm−1

pep-NP1 [74] 403 551 148 — — H2O2 ~5900 M−1 cm−1

STDBT [76] 506 600 94 1.32 × 103 M−1 — Ca2+ —

4.3. Application of Nucleus-Targeted Fluorescent Probes in Theranostics

Photodynamic therapy (PDT) is currently emerging in the clinic as a novel treatment.
PDT generated reactive oxygen species (ROS) have a very short half-life (20 ns), which
renders their radius of action very short (20 nm). The cytoplasm is rich in a large amount
of reducing substances, such as GSH, which is able to quench singlet oxygen, thus leading
to poor PDT treatment efficacy. However, ROS can easily damage nucleic acids within
the nucleus, leading to cell death. Therefore, developing photosensitizers with nucleus
targeting ability will greatly improve the PDT therapeutic effect. Several nucleus-targeted
organic photosensitizers are mainly introduced below for tumor therapy. The characteristic
properties of these probes in this section are summarized in Table 3.

In 2021, Liu and coworkers developed a nucleus-targeted AIE photosensitizer, MeT-
PAE, which achieved nucleus-targeted PDT treatment by interacting with DNA and histone
deacetylases (HDACs) inside the nucleus [79]. The structure of MeTPAE is shown in Fig-
ure 24, with the positively charged cationic pyridine unit on the left facilitating electrostatic
binding between MeTPAE and nucleic acids, and its ‘Y’-shaped structure facilitating interca-
lation into DNA; The hydroxamic acid chelating group on the right serves to chelate the zinc
ion at the active center of HDACs. In addition, Zhang et al. developed a nucleus-targeted
organic iridium human serum albumin (Ir1-HSA) conjugate for PDT cancer therapy [80].
Studies have shown that albumin appears to play an important role in the transport and
delivery of Ir1 to the nucleus. Ir1-HSA has a very high quantum yield of 1O2 generation as
well as high photostability, and exhibits good photocytotoxicity against a range of cancer
cell strains and multicellular spheroids.
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PDT exhibits selective cytotoxicity to cancer cells with high spatiotemporal precision
and noninvasiveness. However, PDT also shows some disadvantages. For example, highly
active photosensitizers and high-power light can destroy normal cells, affecting the efficacy
of treatment [81]. Therefore, it is important to achieve synchronous monitoring of the
anticancer efficacy of PDT to prevent overtreatment. Gao et al. developed a bifunctional
photosensitizer TPCI [82], which could not only effectively ablate cancer cells, but also
report anticancer effects in real time from the beginning of the treatment (Figure 25a). TPCI
exhibits weak fluorescence in the nuclei before light irradiation, induces cell death due
to singlet oxygen generation after light irradiation, and then immediately emits a strong
fluorescence signal in the nuclei of dead cells, as a way to achieve accurate and efficient real-
time reporting of the cell death situation (Figure 25b). Different from TPCI, Zhang et al.,
to avoid therapeutic overdosing by monitoring the process of PDT, induced apoptosis
and developed a self-report photosensitizer, TPE-4EP+ (Figure 25c), for monitoring the
apoptotic process in situ [83]. TPE-4EP+ translocated from mitochondria to the nucleus
during PDT induced apoptosis, which was monitored in real time in situ by observing
fluorescence migration (Figure 25d). In short, these photosensitizers have short excitation
and emission wavelengths and insufficient penetration ability into biological tissues. In
addition, its biosafety remains to be examined.

Improved Strategies for Nucleus-Targeted Delivery Efficiency of Drugs or Probes

The nucleus, as a control center for cellular genetic information and metabolism, is
an optimal anticancer drug target. Many chemotherapeutic drugs used clinically, such
as doxorubicin (DOX), cisplatin and hydroxycamptothecin (HCPT), mainly function in
the nucleus. Unfortunately, the nucleation capacity of these drugs is poor. Moreover, the
reactive oxygen species (ROS) generated by the photosensitizer activated by light, which
is easily quenched in aqueous solution with limited diffusion distance, have a stronger
killing effect in the nucleus. Therefore, nuclear targeting can effectively improve the
anticancer effects of therapeutic drugs that function in the nucleus. However, various
physiological barriers are faced for drugs to enter the nucleus, which makes drug delivery
very inefficient to achieve good therapeutic effects. To address this, several strategies
have been proposed to improve nuclear drug delivery, such as chemical modification
of drugs, covalent conjugation to units that target or penetrate cells and nanoparticle
formulations. Currently developed methods are bioconjugation techniques, endogenous
vesicle (i.e., exosome) loading, nanoparticle carriers, etc.
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Figure 25. (a) The structure of TPCI. (b) Fluorescence microscopic images of TPCI-pretreated HeLa
cells co-stained with propidium iodide (PI) at different irradiation times and post irradiation. (460 nm,
18 mW/cm2), TPCI channel: (λex = 460–490 nm), PI channel: (λex= 510–550 nm). (c) The structure
of TPE-4EP+. (d) Real-time confocal imaging of HeLa Cells under continuous 405 laser irradiation
stained with TPE-4EP+. Reproduced from [82,83] with permission from John Wiley and Sons,
Copyright 2019 and the American Chemical Society, Copyright 2019 respectively.

Bioconjugation is simply the attachment of one molecule to another often by covalent
bonds to produce a complex in which two molecules are held together. Bioconjugation
is a promising research area due to its wide application in the development of novel
technologies concerning specific target derivatized proteins, DNA, RNA and carbohydrates,
such as ligand discovery, disease diagnosis and efficient screening. Lipids, aptamers, cell
targeting and cell penetrating peptides and sugars have been developed to improve nuclear
delivery efficiency.

Oligonucleotide therapy, one of the approaches for cancer treatment, which can pre-
vent many erroneous gene expressions by precisely repressing some genes, or silencing the
genes with aberrant coding, has received increasing attention in cancer and other diseases.
Currently, the known oligonucleotide drugs mainly include antisense oligonucleotides
(ASO), small interfering ribonucleic acid (siRNA), microRNAs (miRNA), nucleic acid ap-
tamers (aptamers) and so on. However, a major hurdle currently facing oligonucleotide
therapeutics is the difficulty in efficiently delivering drugs to target organs and tissues. Xia
and coworkers synthesized TDNCP that can be used for real-time tracking, efficient and
sequential targeted delivery of ASO into the nucleus by conjugating multiple functional
peptides on the aggregation induced luminophores (AIEgen) [84]. TDNCP mainly include
four parts (Figure 26): (1) Cancer cell targeting peptide (DGR), which is an integrin αvβ3 tar-
geting ligand for the receptor. Integrin receptors are highly expressed on a variety of tumor
cells, such as breast and cervical cancer cells. (2) Nuclear localization signal (KRRRR), which
plays an important role in nucleocytoplasmic transport through the nuclear pore complex.
(3) Cell penetrating peptide (RRRR), which mainly consists of 4 to 9 positively charged
amino acids, is used to deliver cell impermeable cargo into the cell or nucleus and improve
endosomal escape ability. (4) One AIE based molecule (PyTPE), is an azide functionalized
tetraphenylethylene derivative with good fluorescence properties for cellular imaging.
Moreover, PyTPE can enhance the hydrophobicity of TDNCP to stimulate self-assembly
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ability. Based on the above four parts, TDNCP can efficiently encapsulate therapeutic genes,
achieving sequential targeted delivery in the nucleus and real-time tracking.
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todynamic therapy (PDT) agents. Keyes and coworkers have used nuclear factor-kappa B 
(NF-κB, a transcription factor peptide) conjugated Ru(II)-bis-tap complex (tap = 1,4,5,8-
tetraazaphenanthrene) and successfully achieved nucleus specific targeting of living 
HeLa and CHO cells [85]. Ru(II) complexes containing two tap ligands have sufficiently 
positive excited state reduction potentials to serve the purpose of DNA damage by pho-
toinduced electron transfer for oxidation of guanine in DNA. Remarkably, this Ru-tap 
probe can achieve the precise killing of individual cells with excellent spatiotemporal con-
trol over the ability to induce cell destruction (Figure 27b). The aforementioned are all the 
modifications of NLS peptide to increase the nuclear targeting ability, in fact, the modifi-
cation of glycosyl can also enhance the nuclear targeting ability of drugs or probes. In 
2020, Scott’s team developed a very effective method to conjugate sugar groups with triple 
complexed metal helices, and the synthesized products have amphiphilic structures and 
are very stable in both water and biological media [86]. In addition, studies found that 
combining glucose derivatives has the best selectivity and can better increase the nuclear 
targeting ability. 

Figure 26. Illustration of TNCP and TNCP/ASO self-assembled nanoparticles (TNCP/ASO-NPs).
(a) Molecular structure of TNCP including TDNCP and TRNCP. (b) TNCP/ASO-NPs are used for
real-time tracking the efficient and sequential targeted delivery into the nucleus. (i) Selective bind to
integrin αvβ3; (ii) rapid entry into the cytoplasm; (iii) partially degraded by protease and disassembly
in the cytoplasm; (iv) partial ASO released into the cytoplasm and performed intracytoplasmic
interference; (v) selective combination with importin and transported into the nucleus; (vi) most of
ASO released in the nucleus and performed endonuclear interference. Reproduced from [84] with
permission from John Wiley and Sons, Copyright 2019.

Ru (II) complexes containing polyazaaromatic ligands can be better characterized
for their interaction with DNA and thus have long been investigated as DNA sensors or
photodynamic therapy (PDT) agents. Keyes and coworkers have used nuclear factor-kappa
B (NF-κB, a transcription factor peptide) conjugated Ru (II)-bis-tap complex (tap = 1,4,5,8-
tetraazaphenanthrene) and successfully achieved nucleus specific targeting of living HeLa
and CHO cells [85]. Ru (II) complexes containing two tap ligands have sufficiently positive
excited state reduction potentials to serve the purpose of DNA damage by photoinduced
electron transfer for oxidation of guanine in DNA. Remarkably, this Ru-tap probe can
achieve the precise killing of individual cells with excellent spatiotemporal control over the
ability to induce cell destruction (Figure 27b). The aforementioned are all the modifications
of NLS peptide to increase the nuclear targeting ability, in fact, the modification of glycosyl
can also enhance the nuclear targeting ability of drugs or probes. In 2020, Scott’s team
developed a very effective method to conjugate sugar groups with triple complexed metal
helices, and the synthesized products have amphiphilic structures and are very stable in
both water and biological media [86]. In addition, studies found that combining glucose
derivatives has the best selectivity and can better increase the nuclear targeting ability.
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Figure 27. (a) Structures of Ru-tap-NLS. (b) Ru-tap-NLS probe can precisely kill single HeLa cells at
470 nm (0.13 mW/cm2). Reproduced from [85] with permission from the American Chemical Society,
Copyright 2018.

Exosomes, that are a kind of natural nanovesicles that can be endogenously secreted
by mammalian cells, have been regarded as a very suitable platform for drug delivery
due to their good biocompatibility and low immunogenicity. Li et al. developed a multi-
functional chimeric peptide engineered exosome (ChiP-EXO) for dual stage light induced
plasma membrane and nucleus-targeted photodynamic therapy [87]. Among them, multi-
functional chimeric peptides engineered exosome consist of three parts: (1) alkyl chains:
for exosome engineering; (2) PpIX photosensitizer; (3) nuclear localization signal (NLS)
peptide (Figure 28a). As shown in the Figure 28b, ChiP-EXO is partially targeted to the
cell membrane and a portion enters the cell interior via endocytosis. When the first stage
light irradiation was performed, ChiP-EXO fused on the membrane and generated reactive
oxygen species in situ on the membrane to destroy the cell membrane structure and thus
cause cell death; In parallel, ChiP-EXO were released from lysosomes and targeted to the
nucleus. Due to the disruption of the cell membrane structure, so that ChiP-EXO can also
directly enter the cytoplasm by diffusion and then target to the nucleus. CLSM image
results confirms the translocation process of ChiP-EXO from the cytoplasm to the nucleus
after the first stage of light irradiation. Subsequently, a second stage of light irradiation
PDT treatment was performed, ChiP-EXO entering the nucleus was excited to generate
ROS in situ to destroy the nucleus. The tumor targeting efficiency was made high by the
dual-stage photoirradiation strategy, which well improved the PDT treatment efficiency.
This synergistic PDT dual targeting strategy based on exosomes may open a window for
the development of biologically derived nanomedicines for precision tumor therapy.
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Figure 28. (a) Chemical structure of ChiP. (b) The proposed processes of ChiP-Exo for dual-stage
light guided plasma membrane and nucleus-targeted PDT. 1© Plasma membrane targeted delivery
of Chip-Exo; 2© The intracellular delivery of ChiP-Exo through endocytosis; 3© Plasma membrane
fluctuation and 4© lysosomal escape of ChiP-Exo under the first-stage light irradiation; 5© Photo-
chemical internalization (PCI) of ChiP-Exo; 6© Nucleus targeted translocation of ChiP-Exo; 7© Plasma
membrane rupture and 8© nucleus destruction under the second-stage light irradiation.

To solve the problem of inefficient nuclear delivery of drugs, various nanoparticle
carriers were developed. In 2012, Pan et al. were the first to couple TAT peptide onto meso-
porous silica nanoparticles with high efficient drug loading capacity for nucleus-targeted
drug delivery [88]. In the same year, Xu and coworkers designed a poly(2-(pyridin-2-
yldisulfanyl) ethyl acetate) (PDS) based nanoparticle delivery system [89]. Polyethylene
glycol and cyclic (ArG-Gly-Asp-D-Phe-Cys) (cRGD) peptide were combined with PDS
via thiol disulfide exchange reaction to obtain RPDSG polymer, a pH- and redox dual
responsive nanoparticle that can be used for nucleus-targeted drug delivery. In 2018, a
novel DNA nanostructure based on the coordination between calcium ions (Ca2+) and
AS1411 DNA G-quadruplex to form nanocoordinating polymers (NCPs) was developed by
Yu Yang et al. [90]. Figure 29a shows the Ca-AS1411/Ce6/hemin@pHis-PEG preparation
and nuclear targeting process of (CACH-PEG) NCP nanostructures. Among them, chlorine
e6 (Ce6) is a photosensitizer; hemin is an iron containing porphyrin; The AS1411 aptamer
is single stranded DNA with specific recognition ability for nucleolin (a non-ribosomal
protein in the nucleus) that can bind hemin to form a G-quadruplex-galactose DNAzyme
and display high catalase-like activity, and this enzyme can trigger the decomposition of
endogenous H2O2 to generate O2 appropriately to relieve tumor hypoxia, thus further
overcoming hypoxia related PDT resistance. In addition, AS1411 also inhibited the ex-
pression of anti-apoptotic protein B-cell lymphoid carcinoma 2 (Bcl-2). When the NCPs
enter the cells through endocytosis, the acidic environment of lysosomes will break down
the NCPs, thus achieving the inhibition of the intranuclear transport of Ce6 and the ex-
pression of anti-apoptotic Bcl-2. This nanosystem can achieve intranuclear delivery of
photosensitizers, downregulation of anti-apoptotic proteins, and simultaneous modulation
of unfavorable tumor microenvironment for improved cancer therapy. In 2019, Chen and
coworkers developed a novel universal platform for direct nuclear delivery based on C5N2
nanoparticles (Figure 29b) [91]. The supramolecular interaction between C5N2 NPs and
the cell membrane can enhance the cellular uptake; The abundant marginal amino groups
prompted the rapid and efficient fragmentation of early endosomes to release the drug
and readily targeted them to the nucleus. The results demonstrate that this platform can,
not only deliver molecular drugs (doxorubicin, HCPT, and propidium iodide) and MnO2
nanoparticles efficiently to the nucleus, but also be light responsive for nucleus-targeted
photothermal therapy (PTT) and photodynamic therapy (PDT), thus further improving the
anticancer efficacy.
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In 2019, a new graphene based tumor cell nucleus-targeted fluorescent nanoprobe
(GTTN) was developed by Wang et al., and a novel cell membrane permeable targeting
(CMPT) mechanism was proposed [92]. Notably, this probe not only possesses excellent
tumor targeting ability (approximately 50% tumor targeting rate), but also specifically
targets tumor cell nuclei. GTTN identifies tumor cells and normal cells by differences
in cell membrane permeability between normal and tumor cells. GTTN can penetrate
tumor cell membranes without crossing normal cell membranes. Once GTTN enters tumor
cells, it binds to DNA and histones and finally targets tumor cell nuclei. The spatial
structure of GTTN is shown in Figure 30a. GTTN was functionalized with sulfonic acid
groups and hydroxyl groups with some Na+ existing between the interlayer to maintain
this spacing, preventing graphene from expanding when immersed in aqueous solution.
Confocal imaging results showed that GTTN possessed good nuclear targeting function in
tumor tissues (Figure 30b), while in normal tissues, GTTN only stayed in the intercellular
space and could not cross the cell membrane (Figure 30c). This study shows for the first
time that nanomaterials can directly recognize tumor cells by specifically targeting the
nucleus without traversing the normal cell membrane. This highly efficient and accurate
tumor cell targeting technology will accelerate the arrival of a new era of tumor diagnosis
and treatment.

Table 3. Summary of characteristic properties of nucleus-targeted fluorescent probes for therapy.

Name [Ref.] λex
(nm)

λem
(nm)

Stokes
Shift (nm) Binding Constant

Fluorescent
Quantum

Yield

1O2
Quantum

Yield
Lifetime Extinction

Coefficient

MeTPAE [79] 424 632 208

~4.52 × 105 M−1

(dsDNA);
~1.70 × 106 M−1

(G4)

— 0.772 — 39,400 M−1 cm−1

Ir1-HAS [80] 405 515 110 — 0.036 0.830 871.8 ns —

TPCI [82] 441 ~580 139 5.68 × 108 M−1 0.03 0.986 — —

TPE-4EP+ [83] 405 610 205 — 0.15 — — —

Ru-tap-NLS
[85] 415 640 225 2.26 × 107 M−1 0.028 — 760 ns 16,700 M−1 cm−1

GTTN [92] ~500 ~520 ~20 — 0.4179 — — —
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5. Conclusions and Perspectives

In the past decades, considerable progress has been made in the development of a
small-molecule nucleus-targeted fluorescent probe. These probes provide a powerful means
to better understand the roles of the nucleus in the physiological and pathological processes
of cells, as well as the study of intranuclear biomolecule functions during cancer diagnosis
and treatment. In this review, we summarized recent advances in this promising field,
including the current general strategies for designing nucleus-targeted fluorescent probes,
and the applications of nucleus-targeted fluorescent probes in nuclear imaging, intranuclear
biomolecular detection (e.g., DNA, RNA, Ca2+, H2O2, etc.) and cancer therapy. Although
many well-performing nucleus-targeting fluorescent probes have been developed in recent
years for use in biological and medical research, the field still faces several challenges:
Firstly, there are few general strategies for designing nucleus-targeted fluorescent probes
and the specificity of these probes is usually unsatisfactory. Design strategies for cation-
based fluorescent dyes of the nucleus tend to have mitochondrial targeting capabilities
because this class of positively charged lipid soluble probes is also readily enriched in
mitochondria. In addition, the basic NLS peptide may be trapped in lysosomes and readily
hydrolyzed or inactivated by multiple proteases in vivo. Therefore, it is essential to develop
novel methodologies for constructing novel nucleus-targeted probes with high specificity.
Secondly, the mechanism of many nucleus-targeted fluorescent probes without using NLS
entering the nucleus is still unclear, which is one of the unsolved difficulties in the field.
Subtle changes in the structure of the probe may lead to a significant reduction in targeting
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efficacy. The number of hydrophilic cations contained in the molecular structure, the
length of the hydrophobic chain, and the size of the planar aromatic system can all affect
the nuclear targeting effect of the probe. Therefore, in-depth study of the mechanism
of these probes into the nucleus will be very critical for the development of nucleus
targeted fluorescent probes. Thirdly, for the imaging of nucleus, it is essential to note
the brightness, lifetime, penetration depth, high spatiotemporal resolution and ability to
avoid autofluorescence from the surrounding environment. Therefore, it is imperative to
appreciate the promising potential of two-photon and NIR probes for nuclear imaging.
Moreover, although some fluorescent probes have been developed which can be used
for the detection of biomolecules (such as DNA, RNA, G-quadruplex, H2B, Ca2+, H2O2,
etc.) in the nucleus, the number is small, and in a part of the probes, there still exist
problems with the unclear detection mechanism. In addition, there are many other kinds of
biomolecules (such as various biological enzymes and proteins) in the nucleus, and they
have not yet been developed with suitable fluorescent probes to detect them. Consequently,
there is still much room for the development of fluorescent probes for the detection of
biomolecules inside the nucleus. In terms of medical applications, whether the effect of
nucleus-targeted therapy is higher compared with other treatments requires more favorable
evidence. Although many kinds of nucleus-targeted drugs have been developed so far,
their nuclear delivery efficiency is unsatisfactory (whether based on active targeting or
passive targeting strategies). Therefore, it is still necessary to develop novel nucleus-
targeted mechanisms to further improve the delivery efficiency of nucleus-targeted drugs.
Moreover, probes with the functions of multiparametric detection and multimodal imaging
are still scarce. Last but not the least, nucleic acid bounding fluorescent probes, such as
DAPI and Hoeschest, may affect the normal function of the nucleus. Their cytotoxicity
should be comprehensively studied and not simply be evaluated by testing the cell survival
rate after 24 or 48 h treatment with these dyes. We believe relevant investigations will
greatly accelerate diagnosis and treatment.

In summary, over the past few decades, a great deal of research has been devoted to the
development of nucleus-targeted fluorescent probes, focusing on the preparation of robust
fluorescent tools to improve the resolution and sensitivity during cellular imaging and to
better explain the molecular mechanisms of various biological events. However, studies on
nucleus-targeted fluorescent probes are currently immature, and many questions remain to
be addressed. It is believed that with the joint efforts of a wide range of researchers, more
efficient and higher performance nucleus-targeted fluorescent probes will be developed in
the future for further understanding the pathogenesis of nuclei and their related diseases,
to inject energy for the development of chemistry, biology, medicine and other fields.
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