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Abstract: Modification of an electrode surface with a selective layer leads to amplification of the
electrochemical signal. A film derived from electrochemically oxidized 3-(4-trifluoromethyl)-phenyl)-
thiophene deposited on a graphite electrode (ThPhCF3/G) was used to estimate the affinity for
synthetic stimulants (2-aminoindane, buphedrone, naphyrone) using a combination of square wave
voltammetry and electrochemical impedance spectroscopy. The modified surface was characterized
using Raman spectroscopy, which confirmed that the presence of the –PhCF3 group is important for
the recognition of synthetic stimulants. The determined values of the adsorption constants (Kads)
showed the significance of charge–transfer and/or hydrogen bond interactions between—PhCF3

groups in the polymeric film and the analyte of interest: buphedrone (9.79 × 105) < naphyrone
(1.57 × 106) < 2-AI (1.87 × 106). Compared to electrodes modified with nanomaterial, PThPhCF3/G-
electrodes showed the highest sensitivity in concentration range of 1–11 µmol L−1 at neutral pH
and a possibility of detection of 0.43–0.56 µg mL−1 (sr = 0.05–0.12). The analytical performance of
ThPhCF3/G promises good perspectives for the detection of synthetic stimulants in forensic samples
without prior pretreatment.

Keywords: thiophene derivative; electrochemical polymerization; synthetic stimulants

1. Introduction

The application of electroanalysis allows for analytical information to be obtained
as a result of an electrochemical or ion-exchange reaction occurring at the electrode sur-
face/solution interface. In voltammetric analysis, quantitative and qualitative information
is obtained from the peak height and specific voltammetric potential. Improvements in the
voltammetric signal include both the introduction of new electrode materials [1–5] and the
modification of the electrode surface [6–8]. The concept of electrode surface modification
can bring two main advantages for electroanalysis: (i) facilitating ion/electron exchange
between electrode and analyte; (ii) increasing the selectivity through the binding of the sig-
nal molecule by the modified materials. Conjugated polymers have emerged as promising
candidates for the modification of electrode surfaces, because they can act as an electro-
chemical transducer for the molecular recognition process. Therefore, selective surfaces
based on conjugated polymers and their derivatives attract a great deal of attention. The
rational molecular design of polymers with certain structures enhance binding affinity and
specificity of the electrode towards the analytes of interest. An advantage of the conjugated
polymer-modified surface is that the relatively rigid conjugated polymer backbone can
act as a scaffold capable of arraying a number of recognizing sites along the backbone,
which promotes the so-called transducer function of the layer, i.e., the response from single
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receptors is “integrated” and collected. Thus, the incorporation of specific binding sites
into the side chain of a conjugated polymer opens a new perspective in the field of the
development a new selective surface. A number of conjugated polymers derived from
polyaniline (PANI), polythiophene (PTh), and polypyrrole (PPy) have been designed and
synthesized for the development of sensors, making them fascinating materials in various
areas of application [9]. Electrochemical polymerizations are alternative ways to synthesize
conducting polymers (CPs) and to modify an electrode surface.

Polythiophene and its derivatives electrochemically deposited on various substrates
improve both the selectivity and sensitivity of a number of electrochemical sensors—as
reported in mini-review [10]. Electrodes modified via the electropolymerization of thio-
phene and its derivatives were used for the voltammetric detection of some organic and
biological molecules of industrial and medicinal interest [11]. Wang and Lin described the
poly(3-methylthiophene (P3MT)-modified glassy carbon electrodes that have received great
attention [12]. The electroactive conducting polymer P3MT reduced the response to ascorbic
acid and enhanced the selectivity towards acetaminophen. As a PTh derivative, poly(3,4-
ethylenedioxythiophene) (PEDOT) in the form of polymeric and molecular-imprinted films
has been routinely applied in the electroanalysis morphine [13–15], diphenylamine [16], and
ephedrine [17,18]. N. Atta et al. have found that morphine could be effectively adsorbed
and accumulated on the PEDOT/Pt electrode in the presence of an anionic surfactant
(sodium dodecyl sulfate), and subsequently, they successfully determined its content in
commercial tablets using a voltammetric approach [15]. In contrast to previously devel-
oped potentiometric sensors for the detection of diphenylamine [19], the voltammetric
sensor based on PEDOT/MIP membranes has displayed significantly lower detection limits
(5.4 µM vs. 290–350 µM) and consequently a wider working range [16].

The term “Forensic Electrochemistry” explains that voltammetric methods have re-
ceived a well-deserved status in the field of forensic analysis. There are a number of
works devoted to the voltammetric determination of gunshot residues or new psychoactive
substances (NPS). In recent years, a trend has been observed of replacing drugs of natu-
ral origin (such as cocaine) with NPS [20]. Several electrochemical strategies have been
reported in the literature for the modification of the electrode surfaces for the detection
of cocaine, which is one of the most widely used drugs worldwide. The potential use of
Schiff base complexes that form stable films on the electrode surface in the voltammetric
analysis of cocaine was evident from the investigations reported in references [21–23].
M.F.M. Ribeiro et al. [21] designed a screen-printed electrode modified with a uranyl Schiff
base to determine cocaine with limits of detection (LOD) and quantification (LOQ) of
110 and 390 µmol L−1, respectively. T.Y. Sengel et al. modified a glassy carbon electrode
with an antibody and poly-l-phenylalanine-bearing electroactive EDOT for the detection
of cocaine between 0.5 and 25 µM [24]. Affinity polymers, such o-phenylenediamine
(OPD) and p-aminobenzoic acid (PABA), were successfully integrated onto the surface of
graphene-modified screen-printed electrodes to improve the selectivity of cocaine detection
in street-level seized samples and to suppress interference from levamisole [25].

Cathinones and aminoindane are synthetic stimulants that represent NPS and are
monitored by the United Nations Office on Drugs and Crime (UNODC) and the European
Monitoring Centre for Drugs and Drug Addiction (EMCDDA) [26]. They are designed to
replicate the effects of traditional drug stimulants and can be synthesized into a variety
of formulations. The new type of electrode materials, nanomaterials, with molecularly
imprinted polymers [27–29], improve the specificity and sensitivity of the voltammetric
detection of NPS [30]. Recently, it has been confirmed that polymer-based materials that are
capable of binding the analyte of interest through a combination of electrostatic, hydrogen,
and π−π interactions might become a selective modifier of the electrode surface [31]. The
deposition of thiophene derivatives with a –PhCF3 group by means of in situ electrochemi-
cal oxidation on the electrode surface is a promising alternative for molecularly imprinted
polymers. Previous investigations by L. Forlani have shown some specific interactions of
nitro-halogenobenzenes with amines that can lead to the formation of various molecular
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complexes, such as charge-transfer or hydrogen bonding complexes [32,33]. Different kinds
of association interactions were observed depending on the nature of the amine. Moreover,
the F atom in the CF3 group is prone to interact with aromatic H atoms [34].

A review of modification approaches of electrode surfaces confirms that polymer-
based materials bearing recognizing sites should help in solving and preventing crimes.
Moreover, forensic electrochemistry uses necessary simple, time-saving, mass-produced,
and cost-effective tools. We are confident that an investigation of thiophene derivatives with
a –PhCF3 group as a modifier of the electrode surface should promise multiple interactions
with analytes of interest (Scheme 1) and so extend the series of selective polymers for
detection of the synthetic stimulants. Therefore, we report the electrochemical deposition of
fluoro-derivative thiophene on the surface of a graphite electrode, study its interaction with
chosen representatives from a category synthetic stimulants (2-aminoindane, buphedrone,
and naphyrone), and compare their analytical performance to reported modified electrodes.

Chemosensors 2024, 11, x FOR PEER REVIEW 3 of 12 
 

 

printed polymers. Previous investigations by L. Forlani have shown some specific inter-

actions of nitro-halogenobenzenes with amines that can lead to the formation of various 

molecular complexes, such as charge-transfer or hydrogen bonding complexes [32,33]. 

Different kinds of association interactions were observed depending on the nature of the 

amine. Moreover, the F atom in the CF3 group is prone to interact with aromatic H atoms 

[34]. 

A review of modification approaches of electrode surfaces confirms that polymer-

based materials bearing recognizing sites should help in solving and preventing crimes. 

Moreover, forensic electrochemistry uses necessary simple, time-saving, mass-produced, 

and cost-effective tools. We are confident that an investigation of thiophene derivatives 

with a –PhCF3 group as a modifier of the electrode surface should promise multiple inter-

actions with analytes of interest (Scheme 1) and so extend the series of selective polymers 

for detection of the synthetic stimulants. Therefore, we report the electrochemical deposi-

tion of fluoro-derivative thiophene on the surface of a graphite electrode, study its inter-

action with chosen representatives from a category synthetic stimulants (2-aminoindane, 

buphedrone, and naphyrone), and compare their analytical performance to reported mod-

ified electrodes. 

 

Scheme 1. Proposed interactions between the polymeric layer derived from 3-(4-trifluoromethyl)-

phenyl)-thiophene and the tested synthetic stimulants. 

2. Materials and Methods 

2.1. Chemicals 

The following chemicals were used in this work: 99% tetrabutylammonium tetrafluorob-

orate (TBATFB; Sigma-Aldrich, St. Louis, MO, USA), 98% thiophene (Th; Sigma-Aldrich, St. 

Louis, MO, USA), 99.5% acetonitrile (ACN; Penta, Prague, Czech Republic). 3-(4-Trifluorome-

thyl)-phenyl)-thiophene (ThPhCF3), used as a monomer for electrochemical polymerization, 

was synthesized at the Department of Organic Chemistry, UCT Prague (Prague, Czech Re-

public). All analytes were in hydrochloride form: 2-aminoindane (2-AI; Sigma-Aldrich, St. 

Louis, MO, USA) and synthetic cathinones (buphedrone and naphyrone). Synthetic cathi-

nones were supplied by the Laboratory of Forensic Analysis of Biologically Active Substances 

(BAFA) (University of Chemistry and Technology, Prague, Czech Republic). 

2.2. Modification of Electrode Surface 

Electrode surface modification was carried out using cyclic voltammetry (CV) with Palm-

sens 3 (PalSmSens BV, Houten, The Netherlands) in a three-electrode system. A graphite elec-

trode (Elektrochemické detektory s.r.o., Turnov, Czech Republic) was used as the working 

electrodes for electrochemical measurements. Ag/AgCl (3 mol L−1 KCl) and a Pt plate (81 mm2) 

served as reference and counter electrodes, respectively. The polymeric film was electrochem-

ically deposited on the G-electrode surface from the polymerization mixture involving 0.01 
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phenyl)-thiophene and the tested synthetic stimulants.

2. Materials and Methods
2.1. Chemicals

The following chemicals were used in this work: 99% tetrabutylammonium tetrafluo-
roborate (TBATFB; Sigma-Aldrich, St. Louis, MO, USA), 98% thiophene (Th; Sigma-Aldrich,
St. Louis, MO, USA), 99.5% acetonitrile (ACN; Penta, Prague, Czech Republic). 3-(4-
Trifluoromethyl)-phenyl)-thiophene (ThPhCF3), used as a monomer for electrochemical
polymerization, was synthesized at the Department of Organic Chemistry, UCT Prague
(Prague, Czech Republic). All analytes were in hydrochloride form: 2-aminoindane (2-AI;
Sigma-Aldrich, St. Louis, MO, USA) and synthetic cathinones (buphedrone and naphy-
rone). Synthetic cathinones were supplied by the Laboratory of Forensic Analysis of
Biologically Active Substances (BAFA) (University of Chemistry and Technology, Prague,
Czech Republic).

2.2. Modification of Electrode Surface

Electrode surface modification was carried out using cyclic voltammetry (CV) with
Palmsens 3 (PalSmSens BV, Houten, The Netherlands) in a three-electrode system. A
graphite electrode (Elektrochemické detektory s.r.o., Turnov, Czech Republic) was used as
the working electrodes for electrochemical measurements. Ag/AgCl (3 mol L−1 KCl) and a
Pt plate (81 mm2) served as reference and counter electrodes, respectively. The polymeric
film was electrochemically deposited on the G-electrode surface from the polymerization
mixture involving 0.01 mol L−1 ThPhCF3 (monomer), ACN (solvent), and 0.05 mol L−1

TBATFB (salt), and the potential window was from 0.0 V to +2.0 V, with a scan rate of
100 mV s−1, 10 cycles (Scheme S1).
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2.3. Raman Spectroscopy

Raman spectra were collected on a Thermo Scientific DXR Raman microscope using
633 nm laser excitation (power 0.1 mW). The scattered light was analyzed using a spec-
trograph with holographic gratings (600 lines per mm) with an aperture of 50 µm and an
EMCCD detector. The spot size of the laser focused by the 50× objective was ∼1µm in
diameter. The acquisition time was 10 s with 10 repetitions.

2.4. Electrochemical Impedance Spectroscopy

The adsorption constants between the G-electrode coated with un- (Th) /substituted
(ThPhCF3) thiophene and target analytes were measured using the EIS technique in the
supporting electrolyte with/without the target analytes using a Palmsens 3. Phosphate buffer
with the addition of 140 mmol L−1 NaCl (PBS) was used as a supporting electrolyte in the
same three-electrode system (Section 2.2). The EIS spectra were collected at a bias potential
of 0.0 V in the frequency range of 10 kHz to 10 mHz (62 points), with an applied sinusoidal
potential (10 mV amplitude). To fit the EIS spectra, the Randles circuit was used. It consists
of ionic resistance of the solution (Rs) in series with a parallel combination of double-layer
capacitance (CDL) with two “resistances” connected in series—they include charge-transfer
resistance (Rct) and diffusional resistance being expressed as Warburg impedance (Zw). The
curve fitting of the impedance spectra was carried out using the PSTrace 5.4 software package.
The adsorption constants were calculated using the Langmuir adsorption model for double-
layer capacitance (CDL) values. The data used for calculation and their processing are present
in “Supplementary Materials” (Tables S1 and S2, Figure S1).

2.5. Square Wave Voltammetry

Calibration dependencies for the monitored analytes were measured in the range
from 1.0 to 1170 µmol L−1 using square wave voltammetry (SWV). The supporting elec-
trolyte was 0.1 mol L−1 KCl. The SWV technique was performed in the potential range of
−0.1 V to +1.6 V, at a frequency of 10 Hz, with a pulse amplitude of 25 mV and a potential
step of 5 mV. For better visualization, all of the square wave voltammograms (SWVs)
presented here were baseline-corrected using the moving average filter included in the
PSTrace 5.4 software.

3. Results and Discussion
3.1. Cyclic Voltammetry

The 3′-substituted thiophenes are generally more suitable for electrochemical oxidation
and surface modification due to their high stability and ease of preparation [35]. The effect
of the substituent on the polymerization process has been noted in the electrochemical poly-
merization of the terthiophene derivative, 3′-(2-aminopyrimidyl)-2,2′:5′,2′′-terthiophene
(oxidized peak at +1.25 V) [36] and 15-crown-5 substituted thiophene that was in direct
n-conjugation with the macrocycle (oxidized peak at + 1.4 V) [37]. Figure 1 shows the cyclic
voltammograms obtained during the electropolymerization of ThPhCF3. Two irreversible
anodic peaks, Ea1 = 0.879 V and Ea2 = 1.51 V, were observable. The current intensity for Ea1
increased up to 3 scan, while the current intensity for Ea2 decreased. An oxidation peak
of 1.56 V was recently reported in the electrochemical synthesis of a copolymer based on
EDOT and 1-(3,5-bis(trifluoromethyl) phenyl)-2,5-di(thiophen-2-yl)-1H-pyrrole [38]. There
are no significant changes in the cyclic voltammogram depending on the number of cycles,
but the anodic peak Ea2 has slightly shifted towards more positive potentials. J. C. Ahu-
mada et al. attributed this phenomenon to the electron-withdrawing nature of the –PhCF3
substituent of the polymer [39]. The reason of the observed shift in the anodic peak can
be attributed to different conformational states of the polymer chains formed by growing
through thiophene units. As noted by Tanaka et al., the increase in thickness of the polymer
film also increases the electrical resistance and leads to a peak shift [40]. The drop in current
at 1.56 V is due to the decreased concentration of monomer species to be oxidized around
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the working electrode. The reproducibility of process modification (sr = 1.8%) carried out
with the same procedure for three electrodes was confirmed (Figure S2).
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Figure 1. Cyclic voltammograms obtained at electrochemical oxidation of 3-(4-trifluoromethyl)-
phenyl)-thiophene on the G-electrode.

3.2. Raman Spectroscopy

In the field of the development of selective surfaces, their characterization using
spectroscopic methods has great significance. The application of Raman spectroscopy made
possible the confirmation of the electrochemical modification of a graphite electrode surface
with a thiophene-derived polymeric layer bearing group –PhCF3 for the recognition of
synthetic stimulants. Figure 2 presents the Raman spectra of the monomeric and polymeric
form of ThPhCF3. The characteristic vibrations of the polythiophene skeleton from the
Raman spectra were described by a number of authors [41–45]. The shoulder band at
1496 cm−1 and the intensive band at 1465 cm−1 are attributed to the C=C stretching of
the PTh ring, with their whole widths being dependent on the film thickness [46]. R.R.
Subbulakshmi et al. carried out theoretical studies on the molecular structure of benzene
derivatives with a C–F group [47]. It was found that the C–F stretching vibration could be
observed over a wide frequency range of 1360–1000 cm−1 because there was significant
influence of neighboring atoms or groups. In our case, in the region of 735 to 648 cm−1, less
intense bands of C–S–C ring deformation and kinks attributed to PTh are observed. The
regions 1205 to 1420 cm−1 are assigned to the –PhCF3 mode [48]. Raman bands 1209, 1261,
1288, and 1349 cm−1 of different intensities observed in the spectrum of the monomer and
polymer confirm the presence of the –PhCF3 substituent in the prepared polymer layer.
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3.3. Affinity Properties of the Modified Electrodes

A comparison of the adsorption constant values for polymeric films derived from
unsubstituted (ThPh) and substituted (ThPhCF3) thiophene should confirm the significance
of the –PhCF3 group in the interaction with the tested synthetic stimulants. The adsorption
constant (Kads) values were measured using the EIS method and calculated using the
Langmuir adsorption model for double-layer capacitance (CDL) values (Tables S1 and S2,
Figure S1). The adsorption constant (Kads) values were varied in the following order:

naphyrone (3.49 × 105) < buphedrone (6.01 × 105) < 2-AI (8.04 × 105) for PTh/G electrode

and

buphedrone (9.79 × 105) < naphyrone (1.57 × 106) < 2-AI (1.87 × 106) for PThPhCF3/G electrode

In the case of the PTh/G electrode, an insignificant effect of the type of amino group
on the Kads values is evident. In the case of the PThPhCF3/G electrode, the higher affinity
for 2-AI and naphyrone can be the result of interactions between the –PhCF3 group and the
tested analytes. It is considered that fluorine-containing hydrogen bonds are not typical
and do not behave as conventional ones (e.g., O···H–O and N···H–N), as demonstrated
by the more angular nature and preference for less electronegative donors [49]. Pietruś
et al. have found that F···H–N+ is determined by the donor–acceptor distance and strongly
influenced by the distance between F···N [50]. It can be suggested that the affinity between
the PThPhCF3/G electrode and synthetic stimulants is determined by a combination of
various interactions, including hydrogen bonds, π-π stacking, aromatic atoms, and others.

3.4. Square Wave Voltammetry

All the analytes differ according to the type of amine group. 2-Aminoindane is a
cyclic analogue of amphetamine, and its primary group cannot be directly oxidized in the
potential region of the graphite electrode. Buphedrone (MABP) and naphyrone (O-2482)
differ in the type of amine group and the substitution on the aromatic ring. Among the
selected analytes, buphedrone has a secondary amine group that is easy to oxidize.

The electrochemical profile of buphedrone and naphyrone at PTh- and PThPhCF3-
modified G-electrodes by SWV is revealed by an anodic region potential between 0.8 and
1.1 V (Figure 3). In the case of buphedrone (MABP) and naphyrone (O-2482), the intensities
of electrochemical signals were similar for both G- and PTh/G electrodes. Voltammet-
ric studies of synthetic cathiones as one representative group in the NPS category have
received the most attention. Therefore, we decided to comment on/discuss our results
in comparison with results published in the literature (Table 1). For this purpose, the
analogues of buphedrone and naphyrone were selected, namely N-ethylhexedrone (NEH)
and alpha-pyrrolidinovalerophenone (PVP), respectively (Table 2). Selected cathinones
(NEH and PVP) were characterized using the SWV technique on the surfaces of graphite
SPE electrodes modified with such nanomaterials as graphene (GPH/SPE) and multiwalled
carbon nanotubes (MWCNT/SPEs) [51]. Nanomaterials are particularly attractive for elec-
trochemical sensing due to their unique electrocatalytic properties, conductivity, strong
adsorption capacity, and possibility of oxidation or reduction of the analyte on the elec-
trode [52]. It should be noted that the effect of nanomaterials on the electrochemical signal
was observable with a remarkably increasing anodic current intensity for the secondary
amine NEH: G/SPE (3.07 µA) < MWCNT/SPE (10.24 µA) < GPH/SPE (3.07 µA). In con-
trary to unmodified electrodes, the electrooxidation potential values of the tested analytes
has been shifted to negative ones after modification with different kinds of nanomaterials.
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Table 2. Comparing analytical performance of GPH-SPEs and PThPhCF3/G-modified electrodes.

Analyte Electrode pH Sensitivity,
µA L µmol−1

Intercept,
µA

Correlation
Coefficient

LOD,
µmol L−1

LOQ,
µmol L−1

2-AI
PThPhCF3/G 7.0

0.583 10.047 0.9833 1.8 5.4
Buphedrone (MABP) 1.419 1.369 0.9851 1.7 5.0
Naphyrone (O-2482) 1.176 27.885 0.9806 1.9 5.5

NEH *
GPH-SPE 12.0

0.041 1.539 0.9700 16.67 –
PVP * 0.155 0.831 0.8310 1.67 –

* The data are from reference [51].

In this study, the intensity of the anodic current was increased for PThPhCF3/G-
electrodes towards the tertiary amine, naphyrone. Contrary to literature data, both syn-
thetic catinones showed the split peaks: 0.84/1.02 V for buphedrone and 0.84/1.02 V for
naphyrone. For 2-AI, only an anodic peak at 1.095 V was observed. We were interested in
the origin of the appearance of these split peaks for synthetic cathinones and its absence
for 2-AI at the PThPhCF3/G-electrode. A.-M. Dragan et al. found that the electrochemical
oxidation of NEH proceeds during the oxidative dealkylation of the secondary amine and
the formation of the primary amine [51]. Profiling of the electrochemical oxidation products
of 4-Cl- alpha PVP showed transformation of the pyrrolidine ring to the primary amine at
1.10 V via a ring-opening intermediate [53]. We can assume that the weak peaks observed
at 1.02 V as shoulders (Figure 3c,d) might be the result of the formation and subsequent
oxidation of the primary amine as the oxidation product of buphedrone (MABP) and
naphyrone (O-2482). In fact, the anodic peak of greater intensity that was observable in the
SWV-voltammogram at 1.095 V for 2-AI can be an evidence of this assumption.

3.5. Analytical Parameters and Application

The sensitivity and limits of detection (LOD) and quantification (LOQ) of PThPhCF3/
G-modified electrodes that are crucial for analytical application are present in Table 2 and
Figure S3. Compared to GPH-SPEs electrodes [51], PThPhCF3/G-modified electrodes
showed the highest sensitivity and applicability at neutral pH (Table 2). The measurement
at pH 7 opens a possibility of detecting synthetic stimulants without the pretreatment of
forensic samples, such as real oral fluids.

In order to investigate and evaluate the stability of PThPhCF3-polymeric films, the
modified electrodes were stored at a laboratory temperature of 25 ◦C for 8 days with doubly
distilled water. For PThPhCF3-modified electrodes, the electrochemical signal retained 82%
of initial values after 8 days. The studies of the pH effect showed that the basic medium
significantly eliminates the life-time of PThPhCF3-polymeric films.

Chromatographic methods are preferred by forensic laboratories for the identifica-
tion of synthetic cathinones, although they require expensive equipment and/or com-
plicated sample preparation. With the point of view of the development of screening
tests, electrochemical sensors using selective surfaces could be an alternative to colori-
metric tests. In this context, the recognition of synthetic stimulants using ThPhCF3/
G-modified electrodes might be crucial for forensic analysis. Doses of synthetic stimu-
lants [54] are ranging from 5 to 20 mg. In this context, the detection of synthetic stimu-
lants using ThPhCF3/G-modified electrodes might extend our ongoing research focused
on improving the properties of electrochemical sensors using different modification ap-
proaches [55,56]. Table 3 summarizes the results of our investigations that were focused on
seeking a suitable receptor (monomeric or polymeric form) as a modifier of the electrode
surface to the electrochemical detection of synthetic stimulants. Recently, it has been pro-
posed that 4-tert-butylcalix[4]arene tetraacetate (monomer) is an active component of an
ion-selective electrode for potentiometric detection and electrochemically oxidized 4′-(N-
3-thiophenecarboxamido)benzo-15-crown-5 (polymer) for electrochemical impedimetric
detection. It is possible to comment on the progress in particularly decreasing detection
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limits. An application of the SWV-method with a ThPhCF3/G-modified electrode allowed
for the detection of 0.43–0.56 µg mL−1 of the chosen synthetic stimulants.

Table 3. Comparing electroanalytical methods used for the determination of synthetic stimulants
(n = 3) with the method of standard addition.

NPS * Method Introduced, mol L−1 Found, mol L−1 Sr Reference

Buphedrone (MABP)
ISE a 2.1 × 10−4 (44 µg/mL) (2.1 ± 0.4) × 10−4 0.10 [55]
EIS b 4.0 × 10−5 (8.5 µg/mL) (4.0 ± 1.7) × 10−5 0.27 [56]
SWV 2.0 × 10−6 (0.43 µg/mL) (2.0 ± 0.6) × 10−6 0.12 Present

Naphyrone (O-2482) SWV 2.0 × 10−6 (0.56 µg/mL) (2.0 ± 0.2) × 10−6 0.05 Present

* Composition of active surface: a potentiometry with ion-selective membrane containing 5 wt % of the 4-tert-
butylcalix[4]arene tetraacetate, 50 mol % of the lipophilic additive in PVC and NPOE (1:2 mass ratio); b electro-
chemical impedance spectroscopy with platinum disk electrode coated with electrochemically oxidized 4′-(N-3-
thiophenecarboxamido)benzo-15-crown-5.

4. Conclusions

A polymeric film derived from 3-(4-trifluoromethyl)-phenyl)-thiophene (ThPhCF3)
deposited on the surface of graphite electrode was applied to study the interaction with syn-
thetic stimulants containing primary (2-AI), secondary (buphedrone), and tertiary (naphy-
rone) amino groups. Such modified electrodes exhibit the sensitivity of 0.583 µA L µmol−1

to 2-AI, 1.369 µA L µmol−1 to MABP, and 1.176 µA L µmol−1 to O-2482. The limit of
detection was, for all stimulants, in a narrow interval from 1.7 to 1.9 µmol L−1, and the limit
of quantification achieved 5.4 µmol L−1 for 2-AI, 5.0 µmol L−1 for MABP, and 5.5 µmol L−1

for O-2482. Future research on PThPhCF3/G-electrodes should explore the potential of
various polymer–analyte interactions (hydrogen bonding, π-π stacking, dipole–dipole
interactions dependent on the protonation status of the analyte) to improve selectivity for a
broader range of synthetic stimulants. The relationship between the adsorption constants
and the structure of selected synthetic stimulants allowed for a determination of the role of
the –PhCF3 group for their recognition. The importance of both hydrogen bonding and
aromatic H atoms in the interaction with PThPhCF3/G-electrodes and their effect on the in-
crease in the electrochemical signal were found. Future research of PThPhCF3/G-electrodes
should explore the potential of various polymer–analyte interactions (hydrogen bonding,
π-π stacking, dipole–dipole interactions dependent on the protonation status of the analyte)
for the improvement of selectivity for a broader range of synthetic stimulants.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/chemosensors12060099/s1, Figure S1: Linear Langmuir isotherms
obtained from experimental results and used for calculations of adsorption constants; Figure S2:
Confirmation of the reproducibility of process modification (sr = 1.8%) carried out with the same
procedure for three electrodes; Figure S3: Calibration dependences determined for PThPhCF3/
G-modified electrodes in solutions of the tested analytes; Scheme S1: Experimental procedure for the
modification of the electrode surface used in the present study; Table S1: Experimental data used for
the calculation adsorption constants with PTh/G-electrodes; Table S2: Experimental data used for
calculation adsorption constants with PTh PhCF3/G-electrodes.
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