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Abstract: This review is a comprehensive overview of recent advancements in underwater in situ
heavy metal voltammetric analyzers (UIHVAs). It explores various types of in situ voltammetric
analyzers, including the voltammetric in situ profiling system, submersible integrated multi-channel
trace metal sensing probes, vibrating gold microwire electrode voltammetric analyzers, and electro-
chemical analyzers designed for on-site flow measurements. It also covers electrochemical sensors
based on flexible liquid crystal polymers, deep-sea mercury sensors, and other in situ electrochemical
analyzers. This review systematically examines the research and development progress of micro-
electrode arrays, screen-printed, carbon, bismuth, antimony, and lab-on-a-chip electrodes. The final
section looks at key trends in the research and development of voltammetric analyzers, highlighting
the exploration of novel working electrodes, the integration of smart monitoring and data analysis
technologies, and the promotion of interdisciplinary collaboration and innovation. From a global
perspective, in situ heavy metal voltammetric analysis technology has demonstrated significant ap-
plicability in various fields, such as environmental monitoring, marine science, and biogeochemistry.
This technology holds considerable potential for further development. However, extensive research
and continuous improvement are required to improve detection performance. We are convinced
that with continued technological advances and dedicated research efforts, these challenges can be
overcome and will pave the way for the widespread application of UIHVAs.

Keywords: underwater; in situ; voltammetry analyzer; trace metal

1. Introduction

The issue of heavy metal pollution in aquatic environments has become a significant
global environmental concern [1–3]. Industrialization and urbanization have accelerated
the discharge of heavy metal pollutants into water bodies through various pathways, in-
cluding wastewater discharges, atmospheric deposition, and land-use change, significantly
impacting water quality [4–7]. Heavy metals pose significant threats to ecosystems and
human health due to their high toxicity, potential for bioaccumulation, and persistence in
the environment [8–14].

Among the various techniques for detecting heavy metals, voltammetric analysis
in electrochemistry has attracted significant attention due to its distinct advantages in
analyzing heavy metal ions within complex matrices. This method enables high-precision
in situ determination of heavy metals and allows for the simultaneous detection of multi-
ple elements [15,16]. It offers rapid analysis, outstanding sensitivity and accuracy, good
selectivity, minimal sample requirements, and a wide detection range. Additionally, its sim-
plicity of operation and portability make it widely applicable in environmental monitoring
and analysis [17].

Traditional heavy metal environmental monitoring primarily relies on centralized lab-
oratory analysis, where samples are susceptible to various interferences during collection,
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preservation, transportation, and processing, potentially affecting the accuracy of the re-
sults [18,19]. To more accurately reflect in situ heavy metal concentrations, the development
of in situ heavy metal sensors is crucial. Underwater in situ voltammetric analyzers have
emerged to address this need, inheriting the advantages of voltammetric analysis while
offering real-time, continuous, and highly sensitive underwater in situ analysis capabili-
ties [20,21]. Compared to traditional laboratory methods, this technology provides faster and
more accurate data on the heavy metal content in water bodies [22,23].

Underwater in situ voltammetric analyzers achieve rapid and accurate detection of
heavy metal ions by directly measuring their voltammetric characteristics underwater,
demonstrating broad application prospects [24]. In the field of water environment monitor-
ing, they can be utilized for real-time monitoring and assessment of heavy metal pollution in
rivers, lakes, oceans, and other aquatic environments, aiding in the timely detection of, and
response to, pollution issues. Additionally, in biological and oceanographic research, this
technology provides an important means of monitoring heavy metal content in organisms,
with profound implications for biogeochemical cycling studies [25–27]. However, the devel-
opment of underwater in situ voltammetric analyzers faces numerous challenges, including
the selection and design of electrode materials, optimization of signal acquisition and
processing systems, and improvement of data transmission and storage technologies [28].
Future advancements in this technology will focus on enhancing detection sensitivity,
reducing costs, simplifying operation processes, and meeting the needs of environmental
protection and scientific research [29]. Meanwhile, ex situ electrochemical heavy metal
detection techniques remain in a stage of continuous evolution and development. It is
particularly noteworthy that the ongoing innovations in environmentally friendly electrode
designs, including bismuth electrodes, antimony electrodes, and lab-on-a-chip systems,
have infused new vitality into the field of heavy metal detection. When it comes to perform-
ing large-scale rapid measurement tasks, ex situ measurement techniques currently possess
irreplaceable advantages due to their efficiency and convenience. With the continuous
updating and improvement of technology, ex situ measurement will continue to play a
significant role in the field of electrochemical heavy metal detection.

Recent advancements in the voltammetric analysis of heavy metals have demonstrated
a significant increase in research output. This surge is evident in the number of publications
indexed in the Web of Science over the past decade (2014–2024), where 2013 scientific
articles include the keyword “Trace Metal, Voltammetric”, and 276 of these also feature
the keyword “in situ”. This underscores the growing importance and research intensity
surrounding in situ voltammetric analysis techniques. These studies encompass both
fundamental theoretical research on heavy metal voltammetry and the practical application
of this method in underwater in situ environments. Particularly in the domain of in situ
detection technology, there is a focused effort on developing robust instruments capable
of reliably performing heavy metal analysis in underwater settings. The advancement of
such technologies holds substantial significance for environmental monitoring and marine
ecological protection.

This review outlines the principles of in situ heavy metal voltammetric analysis
technology, its main research directions, and the advantages of in situ measurements. It
provides detailed introductions and comparisons of various in situ voltammetric analyzers,
followed by a systematic analysis of electrode development. Finally, the paper examines
the main development trends of current voltammetric analyzers, summarizing the research
status, achievements, and existing challenges in this field (Figure 1). To date, only the
voltammetric in situ profiling system has achieved commercial application in this field. Our
review aims to provide a valuable reference for researchers by summarizing the current
state of technology, highlighting the critical challenges, and offering insights into future
research directions.
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Figure 1. Instruments that have been developed include VIP/VGME/PG004. Advancements in
electrode technology are of paramount importance for enhancing detection accuracy and efficiency.
The main types of electrodes currently include microelectrode arrays, screen-printed, carbon, bismuth,
antimony, and lab-on-a-chip electrodes.

2. Research Directions and Advantages of Voltammetry

Voltammetry is a pivotal technique for real-time, on-site, and in situ monitoring of
trace metals, and there is increasing recognition of its importance in heavy metal ion
analysis [30–34]. Research in this field is guided by the “6S” principle: Sensitivity, Selec-
tivity, Size, Speed, Stability, and Safety [35]. Sensitivity, crucial for sensor performance, is
enhanced by stripping voltammetry, which pre-concentrates target ions on the electrode
surface, achieving detection levels in the parts-per-billion (ppb) range [36,37]. Advances
focus on electrode modifications to improve electrochemical properties. Selectivity, essen-
tial for distinguishing different metal ions, is improved by modifying electrode surfaces
with sensitive materials and using machine learning to analyze voltammograms [38].
Size affects instrument portability, with technologies like microelectrodes, screen-printed
electrodes, and lab-on-a-chip enabling miniaturization and real-time field monitoring [39].
Speed, both an advantage and challenge, is advanced with techniques like Fast Scan
Cyclic Voltammetry, although improvements in sensitivity and selectivity are needed [40].
Stability, challenged by natural water compositions, is maintained using disposable sen-
sors and renewable surface electrodes [41]. Safety concerns over mercury electrodes have
led to the development of mercury-free materials such as carbon, bismuth, and antimony,
which enhance sensitivity and selectivity while meeting environmental standards.

Compared to traditional analytical methods, underwater in situ heavy metal voltam-
metry analyzers offer the following significant technical advantages.

Real-time monitoring enables immediate detection of heavy metals on-site, avoiding
delays associated with laboratory analysis. This capability allows researchers to track
dynamic fluctuations of heavy metals in water bodies accurately, providing a detailed
understanding of pollutant dispersion patterns [42].

Portability is a major highlight; with compact and lightweight designs, these analyzers
facilitate easy setup and use in various aquatic environments. This enhances the applicability
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of the instrument in field studies, making it a powerful tool for environmental monitoring
and scientific exploration [43].

Economic efficiency is achieved by reducing labor, material, and time costs, as sample
transport and processing in the laboratory are eliminated. Additionally, this minimizes the
risk of sample contamination during transit and storage [44].

3. In Situ Voltammetry Analyzer
3.1. From Voltage In Situ Profiling System to Submersible Integrated Multi-Channel Trace Metal
Sensing Probe

In the 1990s, the Tercier-Waeber research group pioneered the development of on-chip
micro-electrochemical sensors (GIMEs) [45], marking a significant advancement in electro-
chemical sensor technology. In 2005, these sensors, comprising an array of iridium-based
microdisks coated with mercury film, were termed mercury film micro-electrochemical
sensors (Hg-GIMEs) [46]. They enabled efficient in situ dynamic analysis of Cu(II), Pb(II),
Cd(II), and Zn(II) at sub-nanomolar levels (2009, 2011, 2015). Subsequently, these Hg-GIMEs
were integrated into the voltammetric in situ profiling (VIP) system, which demonstrated
high-resolution in situ monitoring across various aquatic environments [47–49].

Recent advancements include the development of a new generation of GIME elec-
trodes that further enhance sensing performance (2021). These electrodes employ more
interconnected iridium-based microdisk arrays and utilize mercury or gold nanoparti-
cles/filaments as the electrochemical coating, enhancing both sensitivity and detection
range. Recent studies indicate that these new electrodes can accurately quantify inorganic
arsenic (III) and mercury (II) in environmental samples with minimal pretreatment [50].

Creffield et al. (2023) effectively employed VIP systems with GIME electrodes to
conduct in situ high-resolution quantification of the bioavailable nickel fraction in natural
waters (Figure 2) [51].
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Figure 2. Picture of the (A) in-house flowthrough plexiglass cell with the mini-electrodes (1, 2, and 3)
and the shielded Plexiglas holder (4) enabling incorporation of the flowthrough cell into the bottom of
the VIP electronic housing; (B) mini-reference electrode (1), the working microelectrode (2), and the mini-
counter electrode (3); and (C) the VIP system made up of the peristaltic pump (1), the chirurgical bag
containing the nioxime and buffer solutions (2), the voltammetric probe with the in-house flowthrough
plexiglass cell at the bottom (3), and the chirurgical bag to collect the waste (4) [51].

The latest development from the Tercier-Waeber team, TracMetal (2021), is an advanced
multichannel in situ electrochemical sensor. This compact, low-power sensor integrates
the newly designed Hg-GIME and AuNF-GIME into a three-channel flow cell connected
to a multichannel peristaltic pump, allowing for the automatic, real-time, simultaneous
monitoring of multiple harmful metals in situ [52].

TracMetal has been successfully deployed for high-resolution monitoring in Arcachon
Bay, an ecologically and economically significant area on the southwestern Atlantic coast of
Europe. Comprehensive water sample analysis provides fundamental data on the dynamic
concentrations and temporal variations of the bioavailable fractions of specific harmful metals,
offering solid technical support for environmental impact studies (2021) [53,54]. However,
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the instrument’s underwater in situ continuous operation duration has not exceeded 10 days,
indicating a need for improved stability and reliability for long-term operation.

3.2. Vibrating Gold Microwire Electrode Voltammetric Analyzer

Gibbon-Walsh et al. (2011) introduced an electrochemical method for determining
manganese and zinc concentrations in coastal waters using a vibrating gold microwire
electrode (VGME) (Figure 3) [55]. Chapman et al. (2012) further explored the use of VGME
by designing an apparatus for in situ copper monitoring in coastal waters [56]. Additionally,
Domingos et al. (2016) applied VGME in the AGNES technique to quantify free copper
concentrations directly [57]. This method facilitates metal detection in seawater without the
need for reagents, making it ideal for in situ monitoring applications. The device integrates
a VGME, an energy supply module, a potentiostat, and an advanced data acquisition
system, enabling effective detection in areas up to 40 m deep.
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Figure 3. Photographs of the instrumentation. (A) The electronics of the instrument. (B) Instrument
and sensor on the buoy just before deployment. (C) The sensor’s protective housing. (D) The
electrodes and the vibrator [56]. Copyright 2012 Elsevier.

For the quantitative analysis of copper, the system employs square-wave anodic strip-
ping voltammetry to ensure high-precision measurements. To monitor dissolved oxygen
(DO) levels in real time, the system utilizes negative potential linear sweep voltammetry.
The system maintains electrode activity and measurement accuracy by reactivating the
working electrode with a specific potential sequence during measurement intervals.

The VGME measurement system’s introduction into environmental monitoring, specif-
ically for copper detection, is notable. This system efficiently detects low copper concen-
trations without requiring pumping equipment or chemical reagents. The introduction of
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a new potential sequence significantly enhances the stability and reliability of long-term
measurements. With a continuous measurement cycle of up to six weeks and automatic
data collection every 12 h, the device provides consistent and efficient data support for
environmental monitoring.

To verify the system’s stability and suitability for long-term copper monitoring, a
several-week autonomous buoy deployment test was conducted in the Irish Sea, yielding
preliminary data. Although the buoy’s vertical movement introduced approximately
15% measurement error, normalizing the copper response to the DO response effectively
reduced the long-term variability of the electrode [57]. The system successfully detected
active copper concentrations ranging from 1.5 to 4 nM, with a total copper concentration of
approximately 10 nM, aligning closely with laboratory voltammetry measurements [57].

3.3. An Electrochemical Analyzer for On-Site Flow Measurement

Bezerra Dos Santos et al. (2014, 2015) developed an electrochemical analyzer utilizing
a potentiostat/galvanostat (PG004) as its core technology, integrated with online data
transmission and global positioning systems (GPS). This integration allows for accurate
geolocation of monitoring sites (Figure 4). The analyzer employs square-wave anodic
stripping voltammetry (SWASV), supplemented by a flow batch analysis (FBA) system
and a thermally stabilized electrochemical flow cell (EFC). Additionally, the use of a boron-
doped diamond electrode (BDD) enables high-precision on-site quantitative analysis of
Pb2+ and Cd2+ ions in water samples [58,59].
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The team systematically explored the influence of temperature on the field analysis 
results of Pb2⁺ and Cd2⁺ ions and conducted a comprehensive performance evaluation of 
the PG004 analyzer. The experimental results show that the analyzer’s detection limits for 
Pb2⁺ and Cd2⁺ are as low as 0.08 and 0.18 mg L−1, respectively, indicating high sensitivity 
and the capability to analyze both ions simultaneously. 

Figure 4. The PG004. (A) 1: GPS, 2: touchscreen, 3: panel with an optional keyboard, keys, and
command buttons, 4: flow module, and 5: solar boards. The internal view of the PG004. (B) 1: 12 V
batteries, 2: actuator of the flow system, 3: galvanostat board, 4: potentiostat board, 5: thermostatted
control, 6: fan, 7: USB hub, 8: CPU, and 9: microcontrolled board to control the batteries. The
Wi-Fi and Bluetooth board is inserted in the CPU. Flow module, with 1: EFC, 2: SVs, 3: solutions
compartment, and 4: mPs [58]. Copyright 2015 Elsevier.

The team systematically explored the influence of temperature on the field analysis
results of Pb2+ and Cd2+ ions and conducted a comprehensive performance evaluation of
the PG004 analyzer. The experimental results show that the analyzer’s detection limits for
Pb2+ and Cd2+ are as low as 0.08 and 0.18 mg L−1, respectively, indicating high sensitivity
and the capability to analyze both ions simultaneously.

In field applications for environmental monitoring, the PG004 analyzer has been
successfully deployed for on-site analysis of lake water samples, producing high-resolution
voltammetric spectra with minimal noise interference. The recovery rate stabilizes within
the range of 93.3% to 109%, with the waste generated from a single measurement at merely
700 mL, significantly reducing the environmental impact.
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To further verify the analyzer’s accuracy, a t-test (n = 3) was conducted by measuring
the Cd2+ and Pb2+ contents in standard certified water (NIST). The results showed that at a
95% confidence level, the measured data were highly consistent with the standard values,
validating the analyzer’s accuracy. The instrument, equipped with a GPS receiver and
solar panels for sustainable energy, facilitates fast, online, and environmentally friendly
monitoring of Pb2+ and Cd2+.

3.4. Electrochemical Sensors Based on Flexible Liquid Crystal Polymers

Wang et al. developed an electrochemical sensor based on a flexible liquid crystal
polymer (LCP). The core component is a bismuth (Bi) thin film electrode on an LCP
substrate, designed for direct in situ measurement of zinc (II) ions. The choice of LCP as
the substrate material enhances the sensor’s operational stability, durability, and flexibility,
making it adaptable to various installation environments. Through square-wave anodic
stripping voltammetry experiments, the sensor achieved a detection limit of 1.22 nM for
Zn(II) within a deposition time of 180 s [60,61].

This sensor exhibits several technical advantages, including high analytical sensitivity
(1.55 nA·nM−1·mm−2), a wide linear detection range (4.59 to 1071 nM), and low relative
standard deviations for repeated measurements. Additionally, the sensor’s efficacy in real-
time in situ detection applications has been validated by monitoring Zn(II) concentrations
in seawater.

To explore diverse applications, the research team integrated a flexible array com-
prising four LCP-based sensors into the hull of an autonomous kayak, enabling remote
operation and control. This sensor array successfully captured significant fluctuations in
zinc (II) concentrations in seawater, corroborated by inductively coupled plasma mass
spectrometry (ICP-MS) analysis. This study supports the potential application of flexible
LCP electrochemical sensors in on-site environmental monitoring.

3.5. Deep-Sea Mercury Sensor

Yamamoto et al. developed a deep-sea mercury sensor based on anodic stripping
voltammetry [62]. This sensor utilizes a large gold annular disk electrode with a surface
area of 402 mm2, significantly enhancing its sensitivity to mercury in seawater. To improve
electrodeposition efficiency, a propeller screw is installed in front of the working electrode,
generating stable water flow and enhancing mercury electrodeposition efficiency.

This sensor accurately captures the peak current signal corresponding to the mercury
concentration in water samples. In a 0.6 M NaCl solution, following a 20 min deposition
process, the sensor achieves a minimum detection limit of 0.94 ng L−1 (ppt), surpassing
previous detection limits. The sensor has been effectively deployed for in situ measure-
ments of ppt-level mercury concentrations in the marine environment, corroborated by
comparative analysis with cold vapor atomic fluorescence spectrometry.

However, precise calibration remains challenging under strict laboratory conditions.
Future research should focus on developing novel calibration techniques to reduce reliance
on large volumes of standard solutions. Additionally, in environments with high hydrogen
sulfide content (e.g., near hydrothermal vents), the sensor may experience interference,
necessitating performance improvements. Nonetheless, this sensor presents significant
potential for monitoring mercury pollution in seawater on a broad scale.

3.6. In Situ Electrochemical Analyzer

Luther III et al. developed an in situ electrochemical analyzer (ISEA) utilizing solid
microelectrode technology [63]. This analyzer enables simultaneous monitoring of various
redox species and trace metals across diverse environments, including sediments, microbial
mats, cultures, and hydrothermal vent-rich water columns. The ISEA can perform continu-
ous environmental monitoring in both crewed and uncrewed modes, making it suitable for
probing intricate heterogeneous environments like salt marsh sediment root zones. Data
collected by the system demonstrate minimal overlap between the distribution of O2 and
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Mn2+ in marine sediment pore water and microbial biofilms on metal surfaces, indicating
that O2 is not a direct oxidant of Mn2+. During the analysis of hydrothermal vent water
samples, the ISEA detected Fe2+, H2S, and soluble FeS clusters (FeSaq), providing evidence
for the roles of H2S and FeSaq in pyrite formation. Utilizing fixed-position electrodes, a
three-day continuous data collection in the Riftia pachyptila habitat revealed no significant
correlation between O2 and H2S but a general correlation between H2S and temperature.

In summary (Table 1), the current in situ heavy metal detection instruments based on
electrochemical stripping voltammetry have a solid research foundation and have been
deployed in various waters, from offshore to deep-sea environments. These instruments
are calibrated using the standard addition method either in the laboratory or on-site, and
the chemical cleaning method is employed for instrument maintenance. The reuse of the
instrument mainly depends on the renewal of the electrodes; after electrode renewal, these
instruments can be reused. However, these instruments still exhibit certain limitations.
VIP systems lead in terms of technological maturity, with commercial products already
available, yet their technology requires further improvement and optimization to cater
to broader applications. For instance, while the VIP and its upgraded version TracMetal
can detect elements such as Cu(II), Pb(II), Cd(II), Zn(II), and As(III), their operational
depth is limited to 100 m, restricting deeper water applications. The advantage of the
VGME lies in its short enrichment time of only 5 min, suitable for detecting Cu(II) with
low concentration requirements. However, its operational depth is limited to 40 m, thus
restricting its application range. The PG004 can rapidly detect Pb(II) and Cd(II) in surface
waters, but its detection limits of 0.39 and 1.6 mM do not meet the requirements for trace
metal detection. Both the LCP and the deep-sea mercury sensor currently detect only one
element, limiting their functionality. The ISEA can operate at depths of 6000 m in deep-sea
environments; however, its detection limits for Mn(II) and Fe(II) are as high as 5 and 10 µM,
suitable primarily for hydrothermal/cold spring areas and challenging for detecting trace
metals in conventional seawater environments.

Table 1. Summary of in situ voltammetry analyzers.

Instrument Analyte of Interest Pre-Concentration
Time/min Limit of Detection Working Depth Ref.

VIP Cu(II)/Pb(II)/Cd(II)/Zn(II) 15 0.5 nM/0.25 nM/0.03 nM/0.04 nM 100 m [49]
TracMetal As(III) 10 1.5 nM 100 m [50]

VGME Cu(II) 5 4 nM 40 m [55]
PG004 Pb(II)/Cd(II) 5 0.39 mM/1.6 mM Surface [57]
LCP Zn(II) 3 1.22 nM Surface [60]

Deep-sea mercury
sensor Hg(II) 20 4.69 nM 1000 m [62]

ISEA Mn(II)/Fe(II) 10 5 µM/10 µM 6000 m [63]

4. Development of Electrodes
4.1. Microelectrode Arrays

Microelectrode array technology has become a central focus in electroanalytical chem-
istry, particularly for detecting trace metals. This technology enhances mass transfer on
the electrode surface by leveraging the hemispherical diffusion characteristics of microelec-
trodes, mimicking a convective environment. This allows for the rapid acquisition of stable
non-zero current readings, reducing the need for stirring and making it highly suitable
for in situ sensing applications. Additionally, the low iR drop and high signal-to-noise
ratio inherent to microelectrode arrays ensure accurate measurements in high-resistance
environments, such as low ionic strength media, without the need for additional supporting
electrolytes or complex sample pretreatment steps [46–48].

The Tercier-Waeber team has been instrumental in advancing microelectrode array
(MEA) technology for the detection of heavy metals in natural waters [64]. Over the
years, their innovative approaches and applications have significantly contributed to the
field of environmental monitoring. Noël et al. (2003) laid the groundwork by integrating
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complexing gels with MEAs to directly detect free metal ion concentrations in natural wa-
ters. This early work highlighted the potential of MEAs in providing accurate and real-time
data on metal ion dynamics, establishing a foundation for future innovations [65]. In 2009,
Tercier-Waeber, Hezard, and Masson advanced the application of MEAs by monitoring
the diurnal evolution of dynamic metal species in the Riou-Mort River and bioavailable
inorganic mercury in marine systems. This study demonstrated the capability of MEAs to
capture temporal variations in metal concentrations, essential for understanding environ-
mental processes and impacts [47]. Tercier-Waeber et al. (2021) made notable progress in
environmental monitoring through their development of a gel-integrated nanostructured
gold-based interconnected microelectrode array (MEA) designed for continuous in situ
arsenite monitoring in aquatic environments (Figure 5) [50]. This advanced sensor allowed
for high-resolution and real-time tracking of arsenite levels, significantly improving the
accuracy of measurements in dynamic aquatic systems. Additionally, they applied similar
gel-integrated nanostructured gold-based MEAs for the detection of bioavailable inorganic
mercury in marine environments. The sensors demonstrated high sensitivity and speci-
ficity, crucial for evaluating mercury bioavailability and understanding its ecological risks.
These innovations represent a significant leap forward in the monitoring and assessment
of hazardous substances in water systems [50,54]. Most recently, Creffield et al. (2023) fo-
cused on addressing the challenge of sensor fouling. They designed an on-chip antifouling
gel-integrated MEA for high-resolution quantification of the nickel fraction available for
bio-uptake in natural waters. This advancement ensures the reliability and accuracy of
MEAs in complex and biofouling-prone environments [51].
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Microelectrode arrays (MEAs) are pivotal in heavy metal detection due to their high
sensitivity and spatial resolution (Table 2), enabling trace-level detection and localized moni-
toring in complex environmental matrices. They facilitate real-time, continuous monitoring,
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crucial for understanding temporal variations and responding promptly to environmental
changes. MEA miniaturization allows integration into compact, portable devices, enhancing
accessibility and applicability in diverse environmental settings. Advances in electrode
materials enable selective detection amidst complex matrices, reducing interference and
improving accuracy [64,65]. Challenges include fouling from environmental species, complex
and costly fabrication, and the need for improved durability in harsh conditions. Future
improvements must focus on robust antifouling strategies, novel materials, nanotechnology
applications, integration with data analytics for real-time processing, standardized protocols
for reliability, and expanding environmental applications beyond laboratories. Address-
ing these challenges will enhance the effectiveness of MEAs in environmental monitoring,
emphasizing continued research and innovation in sensor technology and data integration.

Table 2. Typical microelectrode arrays.

Electrode Analyte of Interest Technique Pre-Concentration
Time/min Limit of Detection Ref.

GIME Cu(II), Pb(II),
Cd(II), Zn(II) SWASV 15 0.04 nM/0.03 nM/0.25 nM/0.5

nM [49]

AuNS-CSPE As(III) SWASV 3 40 nM [50]
Au MEA Cu(II) DPASV 5 0.013 nM [56]

4.2. Screen-Printed Electrodes

Screen-printed electrodes (SPEs) have garnered significant attention in electrochemical
stripping analysis, particularly for detecting trace heavy metals. This technology is pivotal
in environmental monitoring, providing detailed insights into heavy metal ion distribution
and enabling in situ analysis [66–72].

García-González et al. (2014) developed dual screen-printed electrodes featuring ellip-
tic working electrodes arranged either parallel or perpendicular to the strip, demonstrating
improved electrochemical performance for various analytes. This innovative design high-
lights the potential of SPEs in achieving precise and reliable measurements in complex
matrices [73]. In a pioneering study, de Souza et al. (2015) introduced back-to-back screen-
printed electroanalytical sensors specifically designed for heavy metal ion sensing. These
sensors exhibited remarkable performance in the detection of trace metal ions, underscoring
the robustness and versatility of SPEs in environmental and industrial applications [74].
Further exploring the potential of SPEs, Jadav et al. (2018) developed a silver/carbon
screen-printed electrode for the rapid determination of vitamin C in fruit juices. Although
not directly related to heavy metal detection, this study demonstrated the adaptability
and broad applicability of SPEs in diverse analytical contexts, which can be translated to
heavy metal analysis [75]. Ong et al. (2021) provided a critical review highlighting the
electro-reactivity of screen-printed nanocomposite electrodes. Their study emphasized
the role of SPEs in safeguarding the environment from trace metals, underscoring the
electrode’s capability to detect and quantify metals at low concentrations (Figure 6) [76].
Recent innovations have further enhanced SPE performance. Birara et al. (2023) explored
the use of bismuth/poly(bromocresol purple)-modified screen-printed carbon electrodes
for quantifying Cd(II) and Pb(II) in wastewater. Their findings underscored the elec-
trode’s applicability in complex matrices, demonstrating robust analytical performance [77].
Furthermore, Pasakon et al. (2023) investigated screen-printed ionic liquid/graphene
electrodes for simultaneous electrochemical sensing of Cd2+ and Pb2+. This study high-
lighted the electrodes’ versatility in different environmental conditions, offering insights
into optimizing sensor design for enhanced detection capabilities [78]. Zhang et al. (2024)
developed a screen-printed electrode incorporating a bismuth/graphene oxide hybrid,
enabling simultaneous detection of cadmium and lead ions. This modification enhances
the sensitivity and selectivity, which are crucial for accurate environmental monitoring [79].
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However, SPEs face challenges such as batch-to-batch reproducibility (Table 3), limited
stability with prolonged use, and sensitivity to environmental conditions, necessitating
ongoing refinement efforts. Future research, as suggested by Pasakon et al. (2023), aims to
improve SPEs through innovations like ionic liquids and graphene integration to enhance
stability and sensitivity in detection. Advancements in nanomaterials and surface mod-
ifications offer promising avenues for enhancing SPE performance, including increased
sensitivity, selectivity, and operational lifespan [82].

Table 3. Typical screen-printed electrodes.

Electrode Analyte of Interest Technique Pre-Concentration Time/min Limit of Detection Ref.

Bi-P-SPCE Pb(II)/Cd(II) SWASV 3 6.32 nM/13.8 nM [79]
4-CP/SPCE Pb(II)/Cd(II) DPASV 5 0.65 nM/0.882 nM [83]
GN-SPCE Hg(II) SWASV 5 1.65 nM [84]

4.3. Carbon Electrodes

Modified carbon electrodes, particularly glassy carbon electrodes, and carbon paste
electrodes, are pivotal in metal stripping voltammetry for the precise determination of
low-concentration metal ions (Figure 2). The choice of electrode material is crucial for mea-
surement accuracy. Carbon electrodes have emerged as versatile tools in electrochemical
sensing due to their excellent conductivity, surface area, and compatibility with various
modifications aimed at enhancing sensitivity and selectivity [85–88].

Zhang et al. (2016) investigated size-dependent electrochemical detection of trace
heavy metal ions using nano-patterned carbon sphere electrodes. Their study demonstrated
that the size and surface properties of carbon spheres significantly influence the sensitivity
and detection limits of heavy metals, emphasizing the importance of electrode nanostruc-
turing in enhancing analytical performance (Figure 7) [89]. Xhanari et al. (2018) presented
the validation and optimization of an in situ copper-modified glassy carbon electrode.
This work highlighted the enhanced electrochemical performance for heavy metal detec-
tion achieved through modification with copper, which facilitated better electron transfer
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kinetics and improved detection limits [90]. Tüzün and Atun (2023) investigated the use of
carbon paste electrodes modified with titania nanoparticles for individual and simultane-
ous determination of heavy metal ions. Their study emphasized the role of nanostructured
materials in improving electrode performance, offering insights into the optimization of
detection methods for environmental monitoring [91]. Finšgar and Rajh (2023) employed
a factorial design and simplex optimization approach to develop a bismuth film glassy
carbon electrode for Cd2+ and Pb 2+ determination. Their work underscored the impor-
tance of electrode surface modification and optimization strategies in achieving reliable
and accurate heavy metal sensing [92]. Roushani et al. (2024) explored an aminoclay-based
porous covalent organic polymer/multi-walled carbon nanotube-modified glassy carbon
electrode for the detection of Pb2+, Cu2+, and Hg2+. Their research highlighted the use of
novel polymer–nanotube composites to enhance the electrode’s sensitivity and stability,
which are crucial for multi-metal ion detection [93].
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Carbon electrodes are widely used in heavy metal detection due to their excellent con-
ductivity and chemical stability, ensuring reliable electrochemical responses (Table 4). Their
high surface area allows effective modification with nanomaterials and polymers, enhanc-
ing selectivity and sensitivity for specific analytical needs. Additionally, carbon materials
are cost-effective and easy to prepare, facilitating scalable deployment in environmental
monitoring and industrial applications. However, challenges such as sensitivity limitations
for trace heavy metal ions require advanced modification strategies to improve detection
limits. Issues like electrode lifespan and stability under varying chemical conditions also
impact long-term reliability. Complex sample matrices in environmental samples pose chal-
lenges to accurate real-time monitoring using carbon-based sensors. Future research should
focus on enhancing sensitivity through optimized surface modifications with graphene,
metal nanoparticles, or conducting polymers to improve signal-to-noise ratios and lower
detection limits. Improving electrode stability and lifespan can be achieved by exploring
new carbon composites or protective coatings resistant to harsh conditions. Integrating
advanced signal processing techniques and selective recognition elements can mitigate
matrix effects and enhance specificity in heavy metal detection. These advancements are
crucial for expanding the application of carbon electrodes in environmental monitoring and
industrial quality control, reinforcing their pivotal role in electrochemical sensing [94–98].
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Table 4. Typical carbon electrodes.

Electrode Analyte of Interest Technique Pre-Concentration
Time/min Limit of Detection Ref.

GCE/KHEP Pb(II)/Cu(II) SWASV 3 1.07 µM/1.94 µM [88]
TMCP Pb(II)/Cu(II)/Hg(II) ASV 5 1.65 nM/0.56 Nm/15.26 nM [91]
CuFE Pb(II) SWASV 1.5 9.65 nM [92]

4.4. Bismuth Electrodes

Bismuth electrodes are increasingly utilized in electrochemical sensing due to their
unique attributes, such as low toxicity, high hydrogen evolution overpotential, and wide
potential window [99].

Promsuwan et al. (2024) developed a novel single-drop electrodeposition method to
fabricate nanoneedle-like bismuth on disposable graphene electrodes. Their work demon-
strated efficient on-site electrochemical detection of cadmium and lead, leveraging the
enhanced electrocatalytic properties of bismuth nanoneedles for sensitive and selective
detection [100]. Muluneh et al. (2023) investigated the use of a bismuth-modified glassy
carbon electrode for the determination of lead (II) and cadmium (II) in water-based paints.
This highlighted the applicability of anodic stripping voltammetry for accurate quantifi-
cation of heavy metal ions, showcasing the electrode’s effectiveness in complex sample
matrices (Figure 8) [101]. In a different application, Liu et al. (2024) developed integrated
equipment utilizing smartphone control and machine-learning algorithms for the auto-
mated detection of bioavailable heavy metals in soils. Although not directly focused on
bismuth electrodes, their innovative approach underscores the evolving technologies in
environmental monitoring and heavy metal detection [102]. Martynov et al. (2024) explored
the determination of indium using adsorptive stripping voltammetry at a bismuth film
electrode with a combined electrode system facilitating medium exchange. Published in
Talanta, their study highlighted advancements in electrode design and methodology to
achieve sensitive and reliable analysis of heavy metals [103].

Chemosensors 2024, 12, x FOR PEER REVIEW 14 of 24 
 

 

Promsuwan et al. (2024) developed a novel single-drop electrodeposition method to 
fabricate nanoneedle-like bismuth on disposable graphene electrodes. Their work demon-
strated efficient on-site electrochemical detection of cadmium and lead, leveraging the en-
hanced electrocatalytic properties of bismuth nanoneedles for sensitive and selective de-
tection [100]. Muluneh et al. (2023) investigated the use of a bismuth-modified glassy car-
bon electrode for the determination of lead (II) and cadmium (II) in water-based paints. 
This highlighted the applicability of anodic stripping voltammetry for accurate quantifi-
cation of heavy metal ions, showcasing the electrode’s effectiveness in complex sample 
matrices (Figure 8) [101]. In a different application, Liu et al. (2024) developed integrated 
equipment utilizing smartphone control and machine-learning algorithms for the auto-
mated detection of bioavailable heavy metals in soils. Although not directly focused on 
bismuth electrodes, their innovative approach underscores the evolving technologies in 
environmental monitoring and heavy metal detection [102]. Martynov et al. (2024) ex-
plored the determination of indium using adsorptive stripping voltammetry at a bismuth 
film electrode with a combined electrode system facilitating medium exchange. Published 
in Talanta, their study highlighted advancements in electrode design and methodology to 
achieve sensitive and reliable analysis of heavy metals [103]. 

 
Figure 8. Simultaneous determination of lead (II) and cadmium (II) in water paint using a bismuth-
modified gassy carbon electrode with anodic stripping voltammetry [101]. Copyright 2014 Elsevier. 
Copyright 2023 Elsevier. 

The bismuth electrode represents an ideal alternative to traditional mercury elec-
trodes due to its outstanding electrocatalytic performance, particularly in the realm of 
heavy metal detection (Table 5). It enables the sensitive and selective detection of ions like 
cadmium and lead, facilitated by nanostructured forms such as nanoneedles that enhance 
surface area and electron transfer efficiency. Moreover, bismuth electrodes demonstrate 
robust chemical stability across varying conditions, ensuring reliable performance in pro-
longed analytical use. However, challenges include susceptibility to fouling and surface 
passivation in complex sample matrices, compromising long-term stability and sensor ef-
fectiveness. Achieving consistent reproducibility in electrode fabrication remains critical 
for reliable analytical results. While sensitivity to trace levels of heavy metals has im-
proved, further enhancements are needed for ultra-trace detection applications. Future 
research should focus on innovative approaches to overcome these challenges. These in-
clude refining the bismuth electrode design through advanced nanostructuring tech-
niques like controlled deposition of bismuth nanomaterials to enhance surface morphol-
ogy and electrochemical activity. The integration of novel materials or hybrid structures 
can mitigate fouling effects and enhance stability in challenging environmental condi-
tions. Optimizing surface modification strategies with functional nanomaterials or con-
ducting polymers holds promise for enhancing sensitivity and selectivity, enabling real-
time and precise monitoring of heavy metals in diverse environmental samples [104–109]. 

  

Figure 8. Simultaneous determination of lead (II) and cadmium (II) in water paint using a bismuth-
modified gassy carbon electrode with anodic stripping voltammetry [101]. Copyright 2014 Elsevier.
Copyright 2023 Elsevier.

The bismuth electrode represents an ideal alternative to traditional mercury electrodes
due to its outstanding electrocatalytic performance, particularly in the realm of heavy metal
detection (Table 5). It enables the sensitive and selective detection of ions like cadmium and
lead, facilitated by nanostructured forms such as nanoneedles that enhance surface area
and electron transfer efficiency. Moreover, bismuth electrodes demonstrate robust chemical
stability across varying conditions, ensuring reliable performance in prolonged analyt-
ical use. However, challenges include susceptibility to fouling and surface passivation
in complex sample matrices, compromising long-term stability and sensor effectiveness.
Achieving consistent reproducibility in electrode fabrication remains critical for reliable
analytical results. While sensitivity to trace levels of heavy metals has improved, further
enhancements are needed for ultra-trace detection applications. Future research should
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focus on innovative approaches to overcome these challenges. These include refining the
bismuth electrode design through advanced nanostructuring techniques like controlled
deposition of bismuth nanomaterials to enhance surface morphology and electrochemical
activity. The integration of novel materials or hybrid structures can mitigate fouling effects
and enhance stability in challenging environmental conditions. Optimizing surface modifi-
cation strategies with functional nanomaterials or conducting polymers holds promise for
enhancing sensitivity and selectivity, enabling real-time and precise monitoring of heavy
metals in diverse environmental samples [104–109].

Table 5. Typical bismuth electrodes.

Electrode Analyte of Interest Technique Pre-Concentration
Time/min Limit of Detection Ref.

P-GE Pb(II)/Cd(II) SWASV 3 10.14 nM/31.2 nM [100]
BGCE Pb(II)/Cd(II) SWASV 2 60 nM/130 nM [101]

Bismuth film electrode Pb(II) SWASV 3 0.04 nM [104]

4.5. Lab-on-a-Chip (LOC)

Lab-on-a-chip (LOC) technology has emerged as a revolutionary approach in chemical
and biological analysis, providing miniaturized, automated, and highly efficient platforms
for diverse applications. This review synthesizes recent advancements and seminal contri-
butions in LOC technology, drawing insights from key references [110–117].

Jung et al. (2011) developed a polymer-based LOC sensor with microfabricated planar
silver electrodes for continuous and on-site heavy metal measurement. Their research
focused on achieving real-time monitoring capabilities, emphasizing the scalability and cost-
effectiveness of polymer-based microfluidic platforms [118]. Zhao et al. (2014) introduced
a portable LOC system for gold-nanoparticle-based colorimetric detection of metal ions
in water. Their work demonstrated the integration of nanoparticle-based assays for rapid
and sensitive detection, suitable for field deployment and environmental monitoring [119].
Chałupniak and Merkoçi (2017) presented a graphene oxide-poly(dimethylsiloxane)-based
LOC platform for heavy metal preconcentration and electrochemical detection. Their study
highlighted the advantages of graphene oxide in enhancing preconcentration efficiency and
sensitivity in complex environmental samples (Figure 9) [120]. Wang et al. (2021) developed
an electrochemical paper-based microfluidic device for online isolation of proteins and
direct detection of lead in urine. Their work demonstrated the feasibility of integrating
sample preparation and detection in a portable format, emphasizing the potential for
point-of-care applications [121].

Lab-on-a-chip (LOC) electrodes revolutionize heavy metal detection with their com-
pact integration of multiple analytical functions, reducing sample volume and analysis time
(Table 6). This miniaturization enhances efficiency and portability, catering to on-site and
point-of-care applications. Optimized microfluidic channels and electrode configurations
enable LOC electrodes to achieve high sensitivity and selectivity, crucial for accurately
detecting trace levels of heavy metals. However, despite these strengths, LOC technol-
ogy faces significant challenges that limit its widespread adoption. Complex fabrication
processes and high initial costs remain major barriers, impeding accessibility for many
potential users and applications. Moreover, integrating complex sample matrices into
microfluidic systems without interference poses a substantial hurdle, affecting the reli-
ability and accuracy required for real-world applications. Addressing these challenges
requires continuous improvement of microfabrication techniques to streamline production
and reduce costs. Exploring novel materials and enhancing microfluidic control systems
are essential steps towards enhancing the reliability, scalability, and versatility of LOC
devices. These advancements are crucial for expanding the capabilities of LOC electrodes in
environmental monitoring, healthcare diagnostics, and industrial quality control, ensuring
they can effectively meet the demands of diverse analytical challenges in the field of heavy
metal detection [122–124].
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Figure 9. (a) Microfluidic channels of the graphene oxide–polydimethylsiloxane (GO-PDMS) chip. 
A—inlet section of the chip, B—middle section, C—outlet section. (b) GO-PDMS chip device. De-
spite the high content of GO, the composite maintains typical physical properties of PDMS like me-
chanical durability and elasticity [120]. Copyright 2017 Elsevier. 

Lab-on-a-chip (LOC) electrodes revolutionize heavy metal detection with their com-
pact integration of multiple analytical functions, reducing sample volume and analysis 
time (Table 6). This miniaturization enhances efficiency and portability, catering to on-site 
and point-of-care applications. Optimized microfluidic channels and electrode configura-
tions enable LOC electrodes to achieve high sensitivity and selectivity, crucial for accu-
rately detecting trace levels of heavy metals. However, despite these strengths, LOC 

Figure 9. (a) Microfluidic channels of the graphene oxide–polydimethylsiloxane (GO-PDMS) chip.
A—inlet section of the chip, B—middle section, C—outlet section. (b) GO-PDMS chip device. Despite
the high content of GO, the composite maintains typical physical properties of PDMS like mechanical
durability and elasticity [120]. Copyright 2017 Elsevier.

Table 6. Typical lab-on-a-chip devices.

Electrode Analyte of Interest Technique Pre-Concentration Time/min Limit of Detection Ref.

µPAD Pb (II) SWASV 2 43.4 nM [119]
GO–PDMS Pb(II) SWASV 5 2.14 nM [120]

LODs Pb(II)/Al(III) SWASV 3 144.8 nM/3.3 nM [121]

In summary (Table 7), MEAs offer high sensitivity and low detection limits, making
them suitable for in situ measurements, but they are complex to fabricate, expensive, and
are typically reusable. SPEs are low-cost, easy to produce, portable, and disposable, though
they generally have lower sensitivity and shorter lifespans. Carbon Electrodes are stable,
have a wide potential window, and can be enhanced with nanomaterials, but they may
require surface modification, have higher detection limits, and are reusable. Bismuth
electrodes are an environmentally friendly, non-toxic alternative to mercury electrodes,
offering good sensitivity and low detection limits, but they can be less stable, and are also
reusable. Lab-on-a-Chip (LOC) devices integrate multiple functions and require small
sample volumes, making them portable and suitable for on-site analysis, but they involve
complex and costly fabrication processes and can be either single-use or reusable depending
on the design.

Table 7. Comparison table of different types of electrodes.

Electrode Type Advantages Disadvantages Re-Use

Microelectrode Arrays (MEA)
High sensitivity, low detection

limits, suitable for
in-situ measurements.

Complex fabrication, higher
cost, potential for
electrode fouling.

Yes, several days to two
weeks, long-term

functionality can be
maintained by regenerating

the modification.

Screen-Printed Electrodes (SPE)
Low cost, easy to

mass-produce,
portable, disposable.

Lower sensitivity, higher
detection limits,
shorter lifespan.

No, few hours, single-use.

Carbon Electrodes (CE)
Stable, wide potential window,
good conductivity, modifiable

with nanomaterials.

May require modification,
higher detection limits,
potential for fouling.

Yes, several weeks to
months, long-term
functionality can be

maintained by regenerating
the modification.
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Table 7. Cont.

Electrode Type Advantages Disadvantages Re-Use

Bismuth Electrodes
Environmentally friendly,
non-toxic, good sensitivity,

low detection limits.

Less stable in
some conditions.

Yes, several weeks to
months, long-term
functionality can be

maintained by regenerating
the modification.

Lab-on-a-Chip (LOC)

Integration of multiple
functions, small sample

volume, portable,
on-site analysis.

Complex fabrication, higher
costs, limited robustness

and reproducibility.

Varies, few hours to
several weeks.

5. Trends and Future Directions
5.1. Advancements in Electrode Research

Extensive research is dedicated to advancing electrode materials to enhance analyzer
performance. Carbon nanomaterials, including carbon nanotubes and graphene, are at
the forefront of current research due to their expansive specific surface area and supe-
rior conductivity [125]. Composite materials that combine metal oxides with conductive
polymers also exhibit significant electrochemical activity and stability [126,127]. Recent
years have seen the emergence of biosensor materials exhibiting heightened selectivity and
sensitivity through various biomolecule applications. Moreover, emerging nanomaterials
like metal–organic frameworks (MOFs) and quantum dots garner attention for their distinc-
tive advantages as electrode materials [128–133]. This underscores the need for continued
in-depth research into high-performance electrode materials to advance the innovation and
application of underwater in situ heavy metal monitoring technology.

5.2. Intelligent Monitoring and Data Analytics

Technological advancements are enabling intelligent monitoring and data analytics in
underwater in situ heavy metal voltammetry analyzers. The advent of Internet of Things
(IoT) technology facilitates real-time, precise monitoring of underwater heavy metal con-
centrations alongside remote data transmission. This advancement streamlines operational
processes, ensuring heightened measurement accuracy and operational efficiency. Further-
more, coupling data mining with artificial intelligence (AI) analysis techniques enables
profound data exploration, unveiling pollution sources and trends while enhancing analy-
sis accuracy and efficiency. Integration with geographic information systems (GIS) enables
comprehensive three-dimensional visualization of underwater environmental pollution.
These transformative technologies propel ongoing research, promising more efficient and
precise support for environmental protection and scientific inquiry [26,134].

5.3. Interdisciplinary Collaboration and Technological Innovation

The fusion of environmental science and engineering technology is crucial for ad-
vancing underwater in situ heavy metal voltammetry analyzers. Environmental science
elucidates the mechanisms underlying heavy metal pollution, furnishing crucial insights
for instrument development and material selection. Engineering technologies, encom-
passing sensing, micro/nanotechnology, and the IoT, fuel the optimization of analyzer
performance. Notably, IoT technology enables remote real-time monitoring, amplifying
monitoring efficiency. Interdisciplinary collaboration fosters technological innovation,
exemplified by biosensors inspired by biological systems. This collaborative framework
drives technological progress, facilitating more efficient and precise monitoring of heavy
metal pollution, thereby amplifying contributions to environmental conservation and
human health [43,135–137].
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6. Conclusions

This review systematically examines recent advancements in underwater in situ trace
metal analysis technology. Specifically, it is the first to comprehensively cover nearly
all types of underwater in-situ trace metals voltammetry analyzers currently available,
providing significant reference value for research in the related field.

Despite significant advancements, current in situ trace metals detection instruments
utilizing electrochemical stripping voltammetry have established a robust research founda-
tion and are deployed in diverse aquatic environments, ranging from offshore to deep-sea
settings. However, these instruments still possess inherent limitations. Presently, no in-
struments, including the commercial VIP system, are capable of operating effectively at
depths exceeding 1000 m while achieving accuracy at the parts-per-trillion (ppt) level.
Furthermore, besides the VIP system’s ability to detect multiple metal elements, other
instruments are constrained to identifying no more than three trace metals.

In current electrode technology, microelectrode arrays (MEAs) enable trace detec-
tion and localized monitoring in complex environmental matrices. However, they face
challenges such as environmental species contamination, complex and expensive fabri-
cation processes, and durability under harsh conditions. Carbon electrodes are widely
used for trace metals detection due to their excellent conductivity and chemical stability.
Future research should focus on optimizing surface modifications using graphene, metal
nanoparticles, or conductive polymers to enhance the signal-to-noise ratio and lower the
detection limit. Bismuth electrodes, as ideal substitutes for mercury electrodes, benefit
from nanostructures such as nanoneedles that enhance surface area and electron transport
efficiency. However, challenges include contamination and surface passivation in complex
samples. Future research should explore advanced nanostructuring techniques and the
integration of novel materials to overcome these challenges and improve the sensitivity and
selectivity of bismuth electrodes in trace metals detection. Lab-on-a-chip (LOC) electrodes
have revolutionized trace metals detection through their compact multifunctional integra-
tion. Nonetheless, complex fabrication processes and high costs limit their widespread
application. Future research should aim to improve microfabrication technologies, explore
new materials, and enhance microfluidic control systems to expand the applicability of LOC
electrodes in environmental monitoring, medical diagnostics, and industrial quality control.

In summary, despite the significant potential of electrochemical sensors for in situ
detection of trace metals in seawater, there is still a lack of sufficient in situ experimental
data to validate their practical application. Although there have been relevant research
and development advancements in this field, most achievements remain at the laboratory
stage and have not been widely applied in real-world environments. Currently, only the
VIP system has successfully achieved commercialization, but its market penetration and
application scope are still limited. Electrochemical sensors hold remarkable potential for
driving innovations in seawater analysis technology. However, to realize this goal, it is
essential to clearly define the research and development pathways and conduct specialized
in-depth studies.
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