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Abstract: The assessment of catechin content stands as a pivotal determinant of tea quality. In tea
production and quality grading, the development of accurate and non-destructive techniques for the
accurate prediction of various catechin content is paramount. Near-infrared spectroscopy (NIRS) has
emerged as a widely employed tool for analyzing the chemical composition of tea. Nevertheless, the
spectral information obtained from NIRS faces challenges when discerning different types of catechins
in black tea, owing to their similar physical and chemical properties. Moreover, the vast number of
NIRS wavelengths exceeds the available tea samples, further complicating the accurate assessment
of catechin content. This study introduces a novel deep learning approach that integrates specific
wavelength selection and attention mechanisms to accurately predict the content of various catechins
in black tea simultaneously. First, a wavelength selection algorithm is proposed based on feature
interval combination sensitivity segmentation, which effectively extracts the NIRS feature information
of tea. Subsequently, a one-dimensional convolutional neural network (CNN) incorporating channel
and spatial–sequential attention mechanisms is devised to independently extract the key features
from the selected wavelength variables. Finally, a multi-output predictor is employed to accurately
predict the four main catechins in tea. The experimental results demonstrate the superiority of
the proposed model over existing methods in terms of prediction accuracy and stability (R2 = 0.92,
RMSE = 0.018 for epicatechin; R2 = 0.96, RMSE = 0.11 for epicatechin gallate; R2 = 0.97, RMSE = 0.14
for epigallocatechin; R2 = 0.97, RMSE = 0.32 for epigallocatechin gallate). This innovative deep
learning approach amalgamates wavelength selection with attention mechanisms, provides a new
perspective for the simultaneous assessment of the major components in tea, and contributes to the
advancement of precision management in the tea industry’s production and grading processes.

Keywords: accurate prediction of catechin content; near-infrared spectroscopy; wavelength selection;
convolutional neural network; attention mechanism

1. Introduction

Black tea is one of the most widely consumed beverages globally, captivating the
taste buds of two-thirds of the world’s population [1–3]. The content of tea polyphenols is
directly related to the quality of black tea. Tea polyphenols, mainly consisting of catechins,
have various positive effects on the body, such as regulating gut microbiota, reducing
obesity, and exhibiting antiviral and antibacterial properties [4–6]. Due to these positive
effects, there is an increasing consumer demand for tea products with a high catechin
content, as they are associated with improved health outcomes. Consequently, the ability to
accurately assess catechin content is crucial to ensure that tea products deliver the expected

Chemosensors 2024, 12, 184. https://doi.org/10.3390/chemosensors12090184 https://www.mdpi.com/journal/chemosensors

https://doi.org/10.3390/chemosensors12090184
https://doi.org/10.3390/chemosensors12090184
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/chemosensors
https://www.mdpi.com
https://doi.org/10.3390/chemosensors12090184
https://www.mdpi.com/journal/chemosensors
https://www.mdpi.com/article/10.3390/chemosensors12090184?type=check_update&version=1


Chemosensors 2024, 12, 184 2 of 14

health benefits, making it essential for producers to meet market demands and maintain
quality standards.

Traditional methods for evaluating tea quality primarily rely on professional tea eval-
uators who use sensory information to judge the quality of tea based on five aspects:
appearance, liquor color, aroma, taste, and leaf residue [7]. However, these sensory evalu-
ations are subjective and prone to human error, leading to inconsistencies and potential
biases in quality assessments. This subjectivity poses a significant challenge in standardiz-
ing tea quality evaluation across different evaluators and regions. The traditional method
for detecting catechin content in tea usually involves a high-performance liquid chromatog-
raphy (HPLC) [8]. Although HPLC can effectively separate the various components of tea
polyphenols and accurately detect their content, this method is often very time-consuming
in practical testing [9,10]. Additionally, HPLC requires extensive sample preparation,
complex procedures, and expensive equipment, making it less suitable for rapid, on-site
analysis, limiting its widespread applicability for real-time quality control in the tea indus-
try. Therefore, proposing an accurate and rapid detection method for catechin content is of
great significance for evaluating the quality of black tea.

Near-infrared spectroscopy (NIRS) [11] technology utilizes chemometric techniques to
analyze the chemical information obtained from the near-infrared spectra of samples about
the content or properties of the substances within them, thereby establishing quantitative
or qualitative analysis models. These models enable the rapid prediction of the content or
properties of specific substances. NIRS has been applied in areas such as tea origin tracing,
quality grade identification, and the quantitative prediction of intrinsic components [12].
Turgut et al. successfully predicted the sensory quality (appearance, shape, color, and
overall quality) and other important component indicators (bulk density, cellulose, water
extract, and moisture) of black tea samples by combining NIRS with partial least squares
(PLS) regression [13]. Dong et al. established an ELM discrimination model, achieving
100% accuracy in identifying black tea adulterated with exogenous sucrose [14]. Chen et al.
used NIRS to detect the caffeine, EGC, EGCG, EC, ECG, and total catechin content in
fresh green tea leaves, developing effective quantitative prediction models with accuracies
exceeding 0.9 [15]. Liu et al. proposed the FICSS-ELM model to simultaneously predict
the contents of EGC, EGCG, EC, and ECG in black tea. FICSS is used to extract the
effective features of each catechin, while ELM is used for simultaneous prediction [16].
Despite its advantages, chemometric modeling approaches in NIRS face challenges when
handling complex, nonlinear relationships between spectral data and catechin content.
These methods often require extensive preprocessing and feature selection to improve the
model’s accuracy. Moreover, the presence of noise and irrelevant information in the spectral
data can affect the reliability and robustness of the predictions.

In recent years, the rapid advancement of deep learning has opened new avenues
for research in chemometric modeling. The integration of convolutional neural networks
(CNNs) with NIRS analysis techniques has found extensive application in the domain of
food quality control. Li et al. devised a one-dimensional convolutional neural network,
optimized using a grid search algorithm, and fused it with NIRS to estimate the sugar
content in Huangshan Maofeng tea leaves [17]. Liu et al. developed an ensemble learning
approach based on CNN estimation to identify two types of adulterants, hydrolyzed leather
protein and melamine, in infant formulas [18]. Yang et al. introduced a series of innovative
NIR-based CNNs tailored for tea leaf data, namely TeaNet, TeaResnet, and TeaMobilenet,
achieving a classification accuracy rate of 100% in tea-grade classification [19]. Additionally,
Luo et al. presented a tea polyphenol prediction model utilizing a CNN to extract spectral–
spatial deep features, surpassing the limitations associated with traditional shallow features.
This groundbreaking approach integrates deep learning methodologies into the realm of
non-destructive tea leaf testing [20].

Despite the notable advancements made by deep learning models in NIRS analysis,
challenges persist due to the relatively small sample size and the vast number of wave-
length variables present in tea NIRS data, particularly when aiming for the simultaneous



Chemosensors 2024, 12, 184 3 of 14

evaluation of multiple active ingredient contents in tea leaves. These models can also suffer
from overfitting and their performance can be limited by the lack of interpretability and
the need for substantial computational resources. Previous studies have highlighted that
the integration of attention mechanisms [21] into deep learning models can significantly
enhance their accuracy in quantitatively analyzing near-infrared spectroscopy data [22–24].
However, there remains a paucity of research on the amalgamation of NIRS, CNNs, and
attention mechanisms for the simultaneous prediction of multiple catechin contents in
black tea.

To tackle these challenges and enhance the accuracy of simultaneously predicting
multiple catechin contents in black tea, a deep learning model named FICSS-CNN-CSAM
is proposed, which integrates wavelength selection and attention mechanisms. This model
comprises four key components: a wavelength selector, a feature extractor, attention
mechanisms, and a catechin content predictor. Leveraging deep learning models equipped
with wavelength selection and attention mechanisms enables adaptation to small-sample
NIRS data learning, circumvents the need for intricate feature engineering, and facilitates
the construction of a more precise mapping relationship between the content of different
catechins and the unique NIRS spectra. The primary innovations are outlined as follows:

(1) A wavelength selection method named FICSS is introduced, which systematically
screens wavelength variables through partitioning. FICSS eliminates overlapping
intervals of various catechin spectra, selects the most representative wavelength
variables for each type of catechin, reduces the prediction model’s complexity, and
enhances the stability of the selection process.

(2) A novel deep learning model named CNN-CSAM is introduced to predict the content
of four catechins in tea simultaneously. CNN-CSAM integrates a channel and spatial
dimensions attention mechanism into its feature-extraction process. The CSAM
selectively emphasizes the relevant features while diminishing the impact of the
unimportant ones, thereby improving the accuracy of the catechin content prediction.

2. Materials
2.1. Black Tea Sample Preparation

In this study, we collected tea samples from Anshun City, Guizhou Province, including
Jinjunmei, Maojian, Yunwu Tea, and others, totaling 105 experimental samples. The 105 tea
samples were then randomly divided into two groups: a calibration set of 70 samples and a
prediction set of 35 samples, with a ratio of 2:1.

2.2. NIR Spectra Acquisition

In this study, we collected tea samples from Anshun City, Guizhou Province, including
varieties such as Jinjunmei, Maojian, and Yunwu Tea, totaling 105 experimental samples.
We utilized an Antaris Fourier Transform Near-Infrared Spectrometer (Thermo Fisher
Scientific Inc., Waltham, MA, USA) as our primary experimental equipment. Prior to the
commencement of the experiment, the spectrometer was turned on and preheated for
30 min to achieve a stable operational state, ensuring the accuracy and reliability of the
spectral measurements. The scanning wavenumber range was set to 4000–10,000 cm−1

with a resolution of 8 cm−1 and a scanning frequency of 64 scans per sample. Each tea
sample was carefully weighed using a high-precision analytical balance (XPR226CDR/AC,
Mettler Toledo, Columbus, OH, USA) to ensure an exact mass of 10 g and placed in a
standardized culture dish to maintain uniformity across all measurements. The tea sample
was compacted using a compactor to minimize air gaps and ensure a consistent packing
density, which is critical for accurate spectral readings.

The NIR spectra acquisition was conducted in a controlled laboratory environment
with a stable temperature of 25 ◦C and relative humidity of approximately 50%. These
conditions were maintained to minimize the impact of environmental fluctuations on
the spectral data quality. For each sample, three spectra were collected to account for
any variability in the measurements, and the average of these three spectra was used
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as the representative spectral data. This detailed procedure was designed to maximize
the reproducibility of our experiments, ensuring that future studies can replicate our
methodology and validate our findings.

2.3. The Actual Value of Catechin Content Acquisition

The catechin content in tea samples was determined according to GB/T 8313-2008 [25,26].
The detection process involved using a LC-20A HPLC instrument (Shimadzu Corporation,
Kyoto, Japan). For the analysis, a Waters C18 column (4.6 mm × 250 mm, 5 µm) was
utilized. The mobile phases consisted of 2% acetic acid (phase A) and pure acetonitrile
(phase B). The conditions set were an injection volume of 10 µL, a flow rate of 1 mL/min, a
detection wavelength of 280 nm, and a column temperature of 35 ◦C.

The elution sequence was the following: mobile phase B increased from 6.5% to
15% over the first 16 min; from 16 to 25 min, it increased further to 25%; from 25 to
25.5 min, it decreased back to 6.5%; and from 25.5 to 30 min, phase B remained at 6.5%. The
quantification of catechins was performed using the external standard method.

3. Methods

Figure 1 depicts the detailed architecture of our proposed FICSS-CNN-CSAM model
for predicting the content of four catechins in fresh black tea. The FICSS-CNN-CSAM
model comprises four modules: a NIRS wavelength selector, a feature extractor, a channel
and spatial attention mechanism, and a catechin content predictor.
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Figure 1. The flow chart of the proposed model for predicting the content of black tea catechins.
(a) represents the process of wavelength variable selection, (b) provides the framework of the feature
extractor, (c) depicts the training process of the predictor, and (d) shows the predictor simultaneously
predicting the content of the four catechins.
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3.1. The Wavelength Variable Selector

Due to the substantial overlap in the spectral information of EC, ECG, EGC, and EGCG
stemming from their similar chemical compositions, significant nonlinear relationships
arise. The entire spectrum comprises 3100 wavelength variables, many of which contain
redundant non-feature information. Therefore, before establishing a prediction model for
catechin content, it is necessary to perform feature engineering on the spectral data. In
this study, we used a wavelength variable selection method termed FICSS (feature interval
combination sensitivity segmentation) [16].

FICSS initially partitions and combines the wavelength variables, utilizing the root
mean square error (RMSE) and determination coefficient (R2) as criteria to identify the
characteristic wavelength intervals for each component to be measured. Subsequently,
sensitivity factors are introduced to swiftly eliminate mis-selected wavelengths resulting
from evenly partitioned intervals. FICSS achieves a rapid elimination of mis-selected
wavelength variables, thereby enhancing the precision of wavelength variable selection.
The algorithm’s detailed steps are illustrated in Figure 2.
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Figure 2. The details of the FICSS method as a NIRS wavelength selector.

3.2. The NIRS Feature Extractor

In this study, a shallow CNN is utilized in conjunction with the channel and spatial
attention mechanism (CSAM) for the NIRS feature extraction. Embedding the CSAM
enhances the ability of the CNN to recognize more important features while filtering out
the meaningless ones.

The NIRS feature extractor includes convolutional layers, a CSAM layer, pooling
layers, and a flattening layer, as shown in Figure 2. The output of the second convolutional
layer is processed by the CSAM layer. The features extracted are then converted into a 1D
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vector through a flattening layer, making them suitable for input into the catechin predictor.
More specifics about the NIRS feature extractor are provided in Table 1.

Table 1. The structure parameters of the proposed CNN model.

Layer Input Size Kernel Size Stride Output Dropout

Conv 1 4 × 64 3 × 1 1 × 2 2 × 32 -
Pool 1 2 × 32 1 × 2 1 × 1 2 × 31 -
FC 1 62 × 1 - - 48 × 1 0.1
FC 2 48 × 1 - - 24 × 1 0.1
FC 3 24 × 1 - - 4 -

3.3. The Attention Mechanisms

The CSAM used in this study is depicted in Figure 3 and consists of two parts: a
channel attention module and a spatial attention module.
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Within the feature extractor, the channel attention module (CAM) exploits the unique
channel structure of the CNN to adjust the amount of catechin content information acquired
from each channel in the input feature [27]. Meanwhile, the spatial attention module (SAM)
adjusts the significance of the catechin content information across various regions within
each channel of the input feature [28]. This combined approach enables the feature extractor
to effectively focus on the information that is pertinent to catechin content and discard
any extraneous data. Indeed, the CSAM optimizes the feature extraction process, thereby
enhancing the accuracy and effectiveness of predicting black tea catechin content.

3.3.1. The Channel Attention Module

The detailed structure of the CAM is shown in Figure 4. When the feature map
F ∈ RD×W×C is passed to the CAM, first, the spatial information of each channel in
F ∈ RD×W×C is condensed through a max pooling and average pooling, respectively, to
generate two 1D feature vectors: FC

m ∈ R1×1×C and FC
a ∈ R1×1×C.
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Next, the two 1D feature vectors are separately input into a multi-layer perceptron
(MLP) to calculate the attention weights for each channel. Finally, by adding the computed
weights and normalizing them to the range [0, 1] using a sigmoid function, the channel
attention map MC is obtained. The operation of the CAM on the input NIRS features can
be represented by the following equation:

MC(F) = σ(ϕ(M(F) +A(F)))
= σ

((
W2

(
W1

(
FC

max
)
+ B1

)
+ B2

)
+

(
W2

(
W1

(
FC

avg

)
+ B1

)
+ B2

)) , (1)

where ϕ(·) is the MLP, M(·) is the max pooling, and A(·) is the average pooling.

3.3.2. The Spatial Attention Module

The detailed structure of the SAM is shown in Figure 5. First, the SAM receives the
feature map F′ output by the CAM, and generates the 2D feature vectors FS

m ∈ RD×W×1 and
FS

a ∈ RD×W×1 in the spatial dimension through a max pooling and average
pooling, respectively.
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Next, the two concatenated feature vectors
[
FS

m; FS
a
]

are input into a 2D convolutional
layer to calculate the weights for each region in the feature map. Finally, the computed
weights are normalized to the range [0, 1] using a sigmoid function, generating the final
spatial attention feature map MS. The operation of the SAM on the input NIRS features
can be represented by the following equation:

MS
(

F′) = σ
(
↕
(
ϑ
(
M

(
F′);A

(
F′)))), (2)

where σ represents sigmoid function, ϑ(·) represents a feature map concatenation, and ↕(·)
is the convolutional operation.

3.4. The Catechin Content Predictor

In this study, fully connected (FC) layers were utilized to build the catechin content
predictor. This predictor estimates catechin content using the feature vectors from the
feature extractor. During training, the RMSE was used as the loss function to quantify the
difference between the predicted and actual values. By minimizing this loss, the predictor
continuously updates its weights, ultimately achieving an optimal set. In the testing
phase, the predictor with optimal weights directly estimates the content of four catechins
in black tea leaves. The catechin content predictor consists of three FC layers. Dropout
regularization was applied during the training to reduce overfitting and ensure the model’s
generalizability. The specific structure is depicted in Figure 1d.

3.5. The Performance Evaluation

The commonly used metrics for evaluating the performance of a FICSS-CNN-CSAM
model in predicting catechin content are R2 and the RMSE. The normal value range of R2 is
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[0, 1]. The closer it is to 1, the stronger the estimation ability of the model. The calculation
formulas for R2 and the RMSE are as follows:

RMSE =

√√√√√ n
∑

i=1
(ŷi − yi)

2

n
, (3)

R2 = 1 −

n
∑

i=1
(ŷi − yi)

2

n
∑

i=1
(yi − yi)

2
(4)

4. Results and Discussion

To verify the predictive performance of the proposed method for catechin content,
we conducted the following four experiments: catechin content prediction with different
models of full-spectrum data; wavelength selection based on FICSS; the simultaneous pre-
diction of catechin content with various deep learning models; and an attention mechanism
ablation experiment. These four experiments comprehensively and objectively demon-
strate the effectiveness of the FICSS algorithm in spectral feature extraction, the CSAM in
enhancing the prediction accuracy of simultaneous predictions of four catechins, and the
superior performance of the FICSS-CNN-CSAM model, compared to other chemometric
and existing deep learning models for predicting catechin content.

4.1. Catechin Content Prediction with Different Models of Full-Spectrum Data

Due to the similar physical and chemical properties of different types of catechins
in tea leaves, their respective near-infrared spectral features significantly overlap, greatly
reducing the prediction accuracy of chemometric models. Fortunately, some studies have
preliminarily addressed this issue by leveraging the powerful feature extraction capabilities
of deep learning models and harnessing their inherent advantages in nonlinear mapping for
multi-input and multi-output scenarios. This study conducted a comparative experiment
on the simultaneous prediction performance of four catechins in black tea using the CNN
(the structure is illustrated in Figure 1c) and PLSR models. Figure 6 shows the prediction
results of the content of four catechins in black tea using the PLSR and CNN models.

From Figure 6, it is evident that, compared to the PLSR, the CNN achieved the highest
prediction accuracy for the contents of EC, ECG, EGC, and EGCG, respectively. Compared
to the PLSR, for the EC catechin, the CNN improved R2 and the RMSE by 12.70% and
14.81%, respectively; for the ECG catechin, the CNN’s R2 and RMSE improved by 10.14%
and 12.06%; for the EGC catechin, the improvements in R2 and the RMSE were 6.94% and
32.39%; for the EGCG catechin, the CNN’s R2 and RMSE improved by 4.84% and 27.34%.
This improvement is primarily attributed to the CNN model’s ability to capture complex
nonlinear relationships in the spectral data, which are often missed by linear models, like
the PLSR. Additionally, we can observe that the average R2 values predicted by the PLSR
and the CNN for four types of catechins simultaneously are 0.61 and 0.67, respectively,
which only increased by 8.96% and is not a satisfactory result. This is because the sample
size and input data dimensions have a much greater impact on the prediction performance
of the CNN model compared to the PLSR. In this experiment, the full-spectrum data of
black tea leaves were used, with 1500 wavelength variables, while the training sample size
was only 65. Even under such unfavorable conditions, the CNN model still demonstrated
a significant advantage compared to the PLSR model. Additionally, this indicates that
wavelength selection is crucial for further improving the performance of the CNN.
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4.2. Wavelength Selection Based on the FICSS Algorithm

Wavelength selection not only enhances the stability of the model but also makes
the model more parsimonious. The wavelength selector proposed in this study is based
on the FICSS algorithm, and the selection process consists of two steps. The first step is
feature interval combination (FIC), and the second step is sensitivity factor segmentation
(SS). FICSS is used to select wavelength variables from the full-spectrum data that are the
most independently expressive of the four black tea catechins (EC, ECG, EGC, EGCG).
This provides stable and high-quality input data for the subsequent deep learning models.
Following the steps in Figure 2, the full-spectrum data is evenly divided into 20 sub-
intervals, and a PLSR model is established and predicted for each sub-interval. The RMSE
values for each interval are obtained, and the average RMSE value for each interval is used
as the threshold for feature interval combination. Sub-intervals with RMSE values greater
than the threshold are eliminated and the remaining sub-intervals are combined to the
optimal interval combination.

Subsequently, sensitivity factors are introduced based on these combined feature inter-
vals, and the average sensitivity factor for the optimal combination interval is computed
as the segmentation value. The wavelength variables with sensitivity factors below the
threshold are segmented and adjusted. The process of selecting the wavelength variables
for black tea NIRS using the FICSS algorithm is illustrated in Figure 7. When comparing
the wavelength selection results in Figure 7a,b, it was observed that sensitivity segmenta-
tion effectively eliminated the wavelengths mistakenly selected in the FIC method due to
uniform partitioning.
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As shown in Figure 7, the FICSS selected a total of 64 wavelength variables, while
the FIC selected 115 variables. The FICSS reduced the number of wavelength variables
by 44.35%, significantly reducing the model’s computational complexity and information
redundancy. Additionally, compared to the wavelength variables selected by the FIC, the
PLSR model, established based on the wavelength variables chosen by FICSS, achieved an
average R2 value of 0.73 for the prediction of the four catechins, representing an 8.22% im-
provement. Moreover, according to the RMSE values, the FICSS consistently outperformed
the FIC method in terms of prediction performance.

The FICSS algorithm optimizes this process by retaining the most informative spectral
features. This results in a more parsimonious and stable model, as the reduction in the
wavelength variables decreases the model’s computational complexity and reduces the
risk of overfitting. The targeted selection of wavelengths leads to higher-quality input
data, which improves the model’s predictive accuracy for catechin content, with an 8.22%
improvement in the R2 values compared to the FIC method. Additionally, FICSS effectively
eliminates any irrelevant wavelengths, reducing noise and increasing the signal–to–noise
ratio, thus enhancing the model’s robustness. By providing high-quality data, FICSS
supports efficient learning and generalization in the overall model, further boosting
overall performance.

4.3. The Simultaneous Prediction of Catechin Content with Various Deep Learning Models

To validate the higher accuracy of the FICSS-CNN-CSAM model to simultaneously
predict the various catechin contents in tea, we compared it with the CNN model, the
CNN-CSAM model, and the FICSS-CNN model. All models in this study followed the
same training strategy, with consistent structure and parameters for the CNN, as shown in
Table 2. To mitigate the impact of random initialization in deep learning models, we used
10-fold cross-validation. The prediction results of the above four deep learning models for
the contents of four catechins in tea are shown in Figure 8 and Table 3. Compared to the
other three models, the FICSS-CNN-CSAM model demonstrate a significant advantage in
simultaneously predicting the contents of the four catechins, as evidenced by the RMSE
and R2 metrics.

For the EC, compared to the baseline models, the FICSS-CNN-CSAM model achieves
reductions in the RMSE value by 68.42%, 61.70%, and 56.09%, respectively. For the ECG,
compared to the baseline models, the FICSS-CNN-CSAM model achieves reductions in the
RMSE value by 78.43%, 73.81%, and 69.44%. For the EGC, compared to the baseline models,
the FICSS-CNN-CSAM model achieves reductions in the RMSE value by 70.83%, 65.85%,
and 60.00%. For the EGCG, compared to the baseline models, the FICSS-CNN-CSAM
model achieves reductions in the RMSE value by 65.59%, 59.49%, and 56.16%.
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Table 2. A comparison of the evaluation metrics for prediction performance among the four models.

Catechin Model
RMSE R2

Mean STD Mean STD

EC

CNN 0.057 0.021 0.65 0.19
CNN-CSAM 0.047 0.014 0.71 0.14
FICSS-CNN 0.041 0.011 0.76 0.12

FICSS-CNN-CSAM 0.018 0.005 0.92 0.07

ECG

CNN 0.51 0.11 0.69 0.15
CNN-CSAM 0.42 0.07 0.75 0.12
FICSS-CNN 0.36 0.05 0.81 0.08

FICSS-CNN-CSAM 0.11 0.02 0.96 0.05

EGC

CNN 0.48 0.011 0.72 0.13
CNN-CSAM 0.41 0.07 0.81 0.08
FICSS-CNN 0.35 0.04 0.83 0.07

FICSS-CNN-CSAM 0.14 0.02 0.97 0.04

EGCG

CNN 0.93 0.17 0.62 0.18
CNN-CSAM 0.79 0.13 0.75 0.11
FICSS-CNN 0.73 0.11 0.79 0.08

FICSS-CNN-CSAM 0.32 0.05 0.97 0.04
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Table 3. The prediction results of the ablation experiment.

Model

Catechin EC ECG EGC EGCG

RMSE R2 RMSE R2 RMSE R2 RMSE R2

FICSS-CNN-CSAM 0.018 0.92 0.11 0.96 0.14 0.97 0.32 0.97
FICSS-CNN-CAM 0.022 0.87 0.22 0.89 0.23 0.91 0.48 0.88
FICSS-CNN-SAM 0.026 0.83 0.25 0.87 0.29 0.87 0.56 0.85

FICSS-CNN-SCAM 0.025 0.84 0.17 0.91 0.25 0.9 0.42 0.89
FICSS-CNN 0.041 0.76 0.36 0.81 0.35 0.83 0.73 0.79



Chemosensors 2024, 12, 184 12 of 14

Additionally, as shown in Figure 8, the FICSS-CNN-CSAM model exhibits a lower
standard deviation and a more stable performance compared to other models in terms
of prediction stability. These results indicate that the CNN models with attention mech-
anisms outperform the pure CNN models in the simultaneous prediction of catechin
content. Moreover, the CNN models with attention mechanisms following wavelength
selection by the FICSS algorithm outperform those without wavelength selection but with
attention mechanisms.

4.4. The Attention Mechanism Ablation Experiment

In the previous experimental analysis, it has been demonstrated that the proposed
FICSS-CNN-CSAM model can accurately predict various catechin contents in tea. To objec-
tively compare the impacts of different attention mechanisms on the model’s predictive per-
formance, we conducted an ablation experiment. This experiment compared the predictive
performance of four models, nonattention (FICSS-CNN), CAM only (FICSS-CNN-CAM),
SAM only (FICSS-CNN-SAM), and CAM placed after SAM (FICSS-CNN-SCAM), against
our proposed model.

Table 3 compares the predictions of tea catechin content made by the five models.
Compared to other models, the FICSS-CNN-CSAM model achieved the highest prediction
accuracy. Based on the average R2 value predicted by these models for four types of
catechin simultaneously, the FICSS-CNN-CSAM model outperformed the FICSS-CNN-
CAM model by 7.05%, the FICSS-CNN-SAM model by 10.46%, the FICSS-CNN-SCAM
model by 7.61%, and the FICSS-CNN model by 16.50%. Additionally, based on the RMSE,
the FICSS-CNN-CSAM model’s predictive performance consistently surpassed that of the
other four models.

In contrast to the experimental findings, our observations indicate that in CSAMs, the
CAM plays a more crucial role than the SAM in the simultaneous and effective extraction
of NIRS features from multiple catechins. When spatial attention is used alone, capturing
the information interactions between specific channels becomes challenging. Therefore,
the input features must be processed by the CAM before being passed to the SAM. This
arrangement of CSAMs helps recognize the feature channels containing key information,
reduces unnecessary interference, and improves the effectiveness of spatial attention.

5. Conclusions

In this study, we introduce a deep learning model, named FICSS-CNN-CSAM, aimed
at enhancing the simultaneous estimation accuracy of multiple catechins using near-
infrared spectroscopy. The FICSS-based wavelength selector effectively identifies the
wavelength variables that distinctly represent the four catechins, thereby reducing spectral
redundancy and facilitating the deconvolution of overlapping spectra. Additionally, the
integration of channel and spatial attention mechanisms enables the efficient extraction
of the deep features most pertinent to each catechin while mitigating unnecessary inter-
ference. Subsequently, this feature information is inputted into a CNN-based catechin
content predictor, facilitating the simultaneous estimation of EC, ECG, EGC, and EGCG in
black tea.

The findings from our experiments reveal that the FICSS-CNN-CSAM model achieves
the highest precision when predicting EC, ECG, EGC, and EGCG content simultaneously,
with R2 values of 0.92, 0.96, 0.97, and 0.97. Meanwhile, the corresponding RMSE values are
0.018, 0.11, 0.14, and 0.32. In comparison to baseline models and traditional chemometric
models, the FICSS-CNN-CSAM model exhibits enhanced stability and predictive precision.
High stability ensures a consistent performance across different datasets and conditions,
making the model reliable for various production environments. Precision when predicting
catechin content allows for more accurate quality control, enabling producers to optimize
the grading and pricing of tea products. However, since the experimental samples only
include naturally grown black tea, the model may perform differently across various types
of tea, particularly those with unique chemical compositions or processing methods not
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represented in our sample set. Additionally, extreme variations in moisture content or
particle size distribution could degrade the model’s predictive accuracy. Therefore, future
research could expand the dataset to include a wider range of tea types, including those
with distinct processing methods, to help improve the generalizability of the model.

Moreover, the CAM helps the model focus on the most informative spectral features
by assigning higher importance to specific channels that are more relevant to predicting
catechin content. By dynamically adjusting the attention weights, the CAM enables the
model to adapt to variations in the spectral data, further enhancing stability. The SAM
contributes to the model’s effectiveness by emphasizing spatially important features in the
spectral data. It allows the model to capture local interactions and dependencies between
the different spectral regions, which improves the model’s ability to generalize across
different tea samples and conditions. The application of deep learning will further drive
the development of new technologies in the field of non-destructive tea detection.
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