Photosynthesis-Inhibiting Activity of Methoxy-Substituted 3-Hydroxynaphthalene-2-Carboxanilides †

Jiri Kos 1,*, Tomas Gonec 2,*, Michal Oravec 3 and Josef Jampilek 1

1 Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic; josef.jampilek@gmail.com
2 Department of Chemical Drugs, Faculty of Pharmacy, Masaryk University, Palackeho 1, 602 00 Brno, Czech Republic
3 Global Change Research Institute CAS, Belidla 986/4a, 603 00 Brno, Czech Republic; oravec.m@czechglobe.cz
* Correspondence: jiri.kos@upol.cz (J.K.); t.gonec@seznam.cz (T.G.)

Abstract: A set of six 3-hydroxynaphthalene-2-carboxanilides, substituted on the anilide ring by combinations of methoxy–methoxy, methoxy–fluoro and methoxy–chloro groups at different positions, was designed. All the molecules were prepared by microwave-assisted synthesis. The compounds were tested for their ability to inhibit photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. The PET-inhibiting activity of the compounds was rather moderate. N-(3,5-Dimehoxyphenyl)-3-hydroxynaphthalene-2-carboxamide demonstrated the highest activity (IC50 = 24.5 µM) within the series. These compounds are supposed to inhibit PET in photosystem II.

Keywords: hydroxynaphthalene-carboxamides; PET inhibition; spinach chloroplasts

1. Introduction

Although approx. 20 various mechanisms of actions of herbicides are known [1–3], over 50% of commercially available herbicides act by reversible binding to photosystem II (PS II) [1,2,4,5], and due to this interaction, the photosynthetic electron transport (PET) is interrupted [6–10]. In addition to allowing interactions with many other biological targets [11,12], the amide (–CONH–) moiety is essential for the effectiveness of many herbicides acting as inhibitors of photosynthesis [10,13–20]. A series of ring-monosubstituted anilides of 3-hydroxy-N-arylnaphthalene-2-carboxylic acid were published by Kos et al. [21,22] as compounds with an interesting spectrum of biological activities. Recently, disubstituted derivatives [23,24] have been published. Since monosubstituted derivatives of 3-hydroxy-N-arylnaphthalene-2-carboxanilides showed PET inhibition in spinach chloroplasts (Spinacia oleracea L.), selected new derivatives variously substituted by dimethoxy, fluoro-methoxy or chloro-methoxy groups were evaluated for their PET-inhibiting activity. Thus, this short paper builds on the previous work [21,23,25–33] aimed at investigating the PET-inhibiting activity of naphthalenecarboxamides. The relationships between structure and activity are briefly discussed.

2. Results and Discussion

All the molecules were prepared according to Kos et al. [21,23,24], see Scheme 1. The reaction of 3-hydroxynaphthalene-2-carboxylic acid with appropriate substituted anilines and phosphorus trichloride in dry chlorobenzene under microwave conditions led to a series of final 3-hydroxy-N-arylnaphthalene-2-carboxanilides 1–6, see Table 1.
Scheme 1. Synthesis of 3-hydroxy-N-aryl-naphthalene-2-carboxanilides 1–6. Reagents and conditions: (a) PCl₃, chlorobenzene, MW, 45 min.

Table 1. Structure of 3-hydroxynaphthalene-2-carboxanilides 1–6, calculated values of log P of compounds, electronic σ parameters of anilide (Ar) substituents and IC₅₀ [µM] values related to photosynthetic electron transport (PET) inhibition in spinach chloroplasts of tested compounds in comparison with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) standard.

<table>
<thead>
<tr>
<th>Comp.</th>
<th>R</th>
<th>log P *</th>
<th>σ(Ar)*</th>
<th>PET Inhibition IC₅₀ [µM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,5-OCH₃</td>
<td>4.77</td>
<td>0.08</td>
<td>183</td>
</tr>
<tr>
<td>2</td>
<td>3,5-OCH₃</td>
<td>4.49</td>
<td>0.93</td>
<td>24.5</td>
</tr>
<tr>
<td>3</td>
<td>3-F-5-OCH₃</td>
<td>4.88</td>
<td>0.99</td>
<td>31.6</td>
</tr>
<tr>
<td>4</td>
<td>2-F-6-OCH₃</td>
<td>4.69</td>
<td>0.16</td>
<td>50.7</td>
</tr>
<tr>
<td>5</td>
<td>2-OCH₃-5-F</td>
<td>4.89</td>
<td>0.14</td>
<td>79.1</td>
</tr>
<tr>
<td>6</td>
<td>2-Cl-5-OCH₃</td>
<td>5.20</td>
<td>1.13</td>
<td>171</td>
</tr>
<tr>
<td>DCMU</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>2.1</td>
</tr>
</tbody>
</table>

* calculated using ACD/Percepta ver. 2012 (Advanced Chemistry Development, Toronto, ON, Canada).

All the predicted molecular descriptors (lipophilicity and electronic σ parameters of individual anilides) were calculated using the ACD/Percepta ver. 2012 program (Advanced Chemistry Development, Toronto, ON, Canada), see Table 1. The lipophilicity of compounds 1–6, expressed as log P values, ranged from 4.49 (compound 2, R = 3,5-OCH₃) to 5.20 (compound 6, R = 2-Cl-5-OCH₃). In general, it can be stated that the lipophilicity is rather high, but for agrochemicals, higher lipophilicity (log P ≤ 5) is recommended [34], because they have to permeate through the hydrophobic cuticle of the plants. As expected, both dimethoxy derivatives 1 and 2 showed lower lipophilicity expressed as log P values than the combinations of fluoro–methoxy substituents (compounds 3–5), and the lipophilicity of the latter was lower than that of chlorinated derivative 6, so that the order of log P values of all the derivatives discussed was as follows: 2 (R = 3,5-OCH₃) < 1 (R = 2,5-OCH₃) < 4 (R = 2-F-6-OCH₃) < 3 (R = 3-F-5-OCH₃) < 5 (R = 2-OCH₃-5-F) < 6 (R = 2-Cl-5-OCH₃).

The PET-inhibiting activity was expressed by negative logarithm of IC₅₀ value (compound concentration in µM causing 50% inhibition of PET). The evaluated disubstituted 3-hydroxynaphthalene-2-carboxanilides showed a wide range of PET inhibition in spinach (Spinacia oleracea L.) chloroplasts with IC₅₀ values ranging from 9.8 to 1123 µM, see Table 1, while in general, the PET inhibition was rather moderate. N-(3,5-Dimethoxyphenyl)-3-hydroxynaphthalene-2-carboxamide (2) demonstrated the highest PET-inhibiting activity (IC₅₀ = 24.5 µM) within the whole investigated series, while positional isomer N-(2,5-dimethoxyphenyl)-3-hydroxynaphthalene-2-carboxamide (1) was completely inactive (IC₅₀ = 183 µM). Also N-(2-chloro-5-methoxyphenyl)-3-hydroxynaphthalene-2-carboxamide (6) and N-(2-fluoro-6-methoxyphenyl)-3-hydroxy-
naphthalene-2-carboxamide (4) did not show PET activity (IC\textsubscript{50} = 171 and 507 µM, respectively).

Due to the limited number of compounds, of which only 3 showed moderate activity, it is not possible to thoroughly evaluate the structure–activity relationships, it is not even possible to formulate trends, see Figure 1A,B, where the dependence of the PET-inhibiting activity expressed as log(1/IC\textsubscript{50} (M)) of compounds 1–6 in spinach chloroplasts on lipophilicity (log P) and electronic σ\textsubscript{(Ar)} properties of the whole anilide substituents is plotted. On the other hand, these limited observations are fully consistent with recently published results [23,28,29]. The position of anilide substitution is critical; the disubstitution of both meta positions, i.e., C\textsubscript{3}' and C\textsubscript{5}', is more preferred for higher PET-inhibiting activity and gives more active compounds than mono-meta-substitutions [23,28,29]. Any other combinations of positions led to a reduction or loss of PET inhibition [23,28,29]. If one methoxy moiety is replaced by fluorine, the PET activity is insignificantly changed, while the substitution by chlorine caused a decrease of PET inhibition [23,28,29]. This fact is also connected with the electron σ parameter, which was approx. 0.96 for active compounds 2 and 3 within this series; in previous studies, σ\textsubscript{(Ar)} of PET active compounds was approx. 1.1 [23,28,29]. Thus, it can be summarized that the complex electronic properties of anilide substituents affecting the electron density at the amide bond have a direct effect on PET-inhibiting activity.

Based on the structural similarity of the tested compounds with previously studied salicylanilides or hydroxynaphthanilides, the same mechanism of action can be supposed, i.e., inhibition on the acceptor side of PS II, at the section between P\textsubscript{680} (primary donor of PS II) and plastoquinone Q\textsubscript{B} [19,21,25–33,35,36].

3. Experimental

3.1. General

All reagents were purchased from Merck (Sigma-Aldrich, St. Louis, MO, USA) and Alfa (Alfa-Aesar, Ward Hill, MA, USA). Reactions were performed using a CEM Discover SP microwave reactor (CEM, Matthews, NC, USA). The melting points were determined on a Kofler hot-plate apparatus HMK (Franz Kustner Nacht KG, Dresden, Germany) and are uncorrected. Infrared (IR) spectra were recorded on a Smart MIRacle™ ATR ZnSe for Nicolet™ Impact 410 Fourier-transform IR spectrometer (Thermo Scientific, West Palm Beach, FL, USA). The spectra were obtained by the accumulation of 256 scans with 2 cm-1 resolution in the region of 4000–650 cm-1. All 1H- and 13C-NMR spectra were recorded on a JEOL JNM-ECA 600II device (600 MHz for 1H and 150 MHz for 13C, JEOL, Tokyo, Japan) in dimethyl sulfoxide-\textit{d}\textsubscript{6} (DMSO-\textit{d}\textsubscript{6}). 1H and 13C chemical shifts (δ) are reported in ppm. High-resolution mass spectra were measured...
3.2. Synthesis

General procedure for synthesis of carboxamide derivatives 1–6: 3-Hydroxynaphthalene-2-carboxylic acid (1.0 g, 5.3 mM) was suspended in dry chlorobenzene (30 mL) at ambient temperature and phosphorus trichloride (0.23 mL, 2.7 mM, 0.5 eq.), and the corresponding substituted aniline (5.3 mM, 1 eq.) was added dropwise. The reaction mixture was transferred to the microwave reactor, where the synthesis was performed (1st phase: 10 min, 100 °C, 100 W; 2nd phase: 15 min, 120 °C, 500W; 3rd phase: 20 min, 130 °C, 500 W). The reaction was cooled to 60 °C, then the solvent was removed to dryness under reduced pressure. The residue was washed with hydrochloric acid and water. The crude product was recrystallized from EtOH.

N-(2,5-Dimethoxyphenyl)-3-hydroxynaphthalene-2-carboxamide (1). Yield 57%; Mp 186–188 °C; IR (cm⁻¹): 3425, 2934, 2836, 1604, 1592, 1538, 1490, 1445, 1434, 1280, 1217, 1183, 1144, 1050, 1024, 872, 862, 785, 751, 737, 711; ¹H-NMR (DMSO-d₆), δ: 11.79 (s, 1H), 11.13 (s, 1H), 8.70 (s, 1H), 8.24 (s, 1H), 7.98 (d, 1H, J = 8.1 Hz), 7.78 (d, 1H, J = 8.1 Hz), 7.52 (t, 1H, J = 7.1 Hz), 7.37 (t, 1H, J = 7.3 Hz), 7.36 (s, 1H), 7.03 (dd, 1H, J = 9.2 Hz, J = 1.5 Hz), 6.66 (ddd, 1H, J = 9.2 Hz, J = 7.7 Hz, J = 1.5 Hz), 3.87 (s, 3H), 3.74 (s, 3H); ¹³C-NMR (DMSO-d₆), δ: 162.78, 153.24, 152.52, 142.74, 135.86, 132.74, 129.04, 128.78, 128.34, 127.23, 125.62, 123.86, 121.25, 111.74, 110.72, 107.52, 106.90, 56.63, 55.33; HR-MS: [M-H]⁺ calculated 322.1078 m/z, found 322.1080 m/z.

N-(3,5-Dimethoxyphenyl)-3-hydroxynaphthalene-2-carboxamide (2). Yield 80%; Mp 179–181 °C; IR (cm⁻¹): 3115, 1645, 1623, 1606, 1558, 1478, 1455, 1431, 1318, 1269, 1227, 1198, 1156, 1061, 948, 838, 811, 799, 767, 678; ¹H-NMR (DMSO-d₆), δ: 11.26 (s, 1H), 10.52 (s, 1H), 8.46 (s, 1H), 7.92 (d, 1H, J = 8.1 Hz), 7.76 (d, 1H, J = 8.4 Hz), 7.51 (t, 1H, J = 7.5 Hz), 7.36 (t, 1H, J = 7.3 Hz), 7.32 (s, 1H), 7.04 (d, 2H, J = 1.8 Hz), 6.31 (t, 1H, J = 1.8 Hz), 3.76 (s, 3H); ¹³C-NMR (DMSO-d₆), δ: 165.69, 160.51, 153.57, 140.16, 135.73, 130.45, 128.69, 128.13, 126.87, 125.77, 123.76, 122.07, 110.53, 97.21, 96.02, 55.16; HR-MS: [M-H]⁺ calculated 322.1078 m/z, found 322.1080 m/z.

N-(3-Fluoro-5-methoxyphenyl)-3-hydroxynaphthalene-2-carboxamide (3). Yield 59%; Mp 228–230 °C; IR (cm⁻¹): 3147, 1644, 1622, 1595, 1557, 1520, 1456, 1448, 1359, 1281, 1224, 1212, 1191, 1141, 1129, 1063, 999, 987, 872, 858, 816, 767, 745, 690; ¹H-NMR (DMSO-d₆), δ: 11.12 (s, 1H), 10.64 (s, 1H), 8.41 (s, 1H), 7.93 (d, 1H, J = 8.4 Hz), 7.76 (d, 1H, J = 8.1 Hz), 7.51 (t, 1H, J = 7.0 Hz), 7.32–7.40 (m, 3H), 7.21 (s, 1H), 6.62 (d, 1H, J = 11.0 Hz), 3.78 (s, 3H); ¹³C-NMR (DMSO-d₆), δ: 165.74, 162.92 (d, J = 238.5 Hz), 160.71 (d, J = 12.9 Hz), 153.28, 140.61 (d, J = 13.7 Hz), 135.70, 130.46, 128.66, 128.11, 126.85, 125.77, 123.77, 122.51, 110.45, 101.95 (d, J = 2.0 Hz), 99.39 (d, J = 27.3 Hz), 96.97 (d, J = 25.0 Hz), 55.58; HR-MS: [M-H]⁺ calculated 310.0874 m/z, found 310.08817 m/z.

N-(2,6-Dimethoxyphenyl)-3-hydroxynaphthalene-2-carboxamide (4). Yield 66%; Mp 140–142 °C; IR (cm⁻¹): 3259, 2836, 1651, 1622, 1596, 1532, 1515, 1506, 1466, 1438, 1279, 1249, 1216, 1167, 1146, 1087, 900, 873, 834, 789, 767, 747, 728; ¹H-NMR (DMSO-d₆), δ: 11.76 (s, 1H), 10.22 (s, 1H), 8.69 (s, 1H), 7.93 (d, 1H, J = 8.8 Hz), 7.78 (d, 1H, J = 8.4 Hz), 7.54 (t, 1H, J = 7.3 Hz), 7.30–7.40 (m, 3H), 6.99 (d, 1H, J = 8.4 Hz), 6.94 (t, 1H, J = 9.0 Hz), 3.84 (s, 3H); ¹³C-NMR (DMSO-d₆), δ: 166.28, 158.06 (d, J = 246.4 Hz), 155.80 (d, J = 5.3 Hz), 154.64, 136.20, 130.97, 128.90, 128.51, 128.22 (d, J = 10.7 Hz), 126.75, 125.82, 123.88, 118.74, 113.67 (d, J = 15.3 Hz), 110.91, 107.91 (d, J = 26.4 Hz), 107.71, 56.25; HR-MS: [M-H]⁺ calculated 310.0874 m/z, found 310.08801 m/z.

N-(5-Fluoro-2-methoxyphenyl)-3-hydroxynaphthalene-2-carboxamide (5). Yield 80%; Mp 199–201 °C; IR (cm⁻¹): 3194, 1640, 1625, 1615, 1601, 1538, 1488, 1432, 1393, 1356, 1346, 1249, 1214, 1176, 1148, 1065, 1038, 975, 866, 838, 786, 731, 711; ¹H-NMR (DMSO-d₆), δ: 11.86 (s, 1H), 11.25 (s, 1H), 8.70 (s, 1H), 8.40 (dd, 1H, J = 11.0 Hz, J = 3.3 Hz), 7.93 (d, 1H, J = 8.1 Hz), 7.93 (d, 1H, J = 8.1 Hz).
7.78 (d, 1H, $J = 8.4$ Hz), 7.53 (t, 1H, $J = 7.5$ Hz), 7.37 (s, 1H), 7.36 (t, 1H, $J = 7.5$ Hz), 7.12 (dd, 1H, $J = 9.2$ Hz, $J = 5.1$ Hz), 6.92 (td, 1H, $J = 8.6$ Hz, $J = 3.3$ Hz), 3.92 (s, 3H), 13C-NMR (DMSO-$_d_6$), δ: 162.96, 156.01 (d, $J = 232.2$ Hz), 152.43, 144.77 (d, $J = 1.8$ Hz), 135.96, 132.88, 129.08, 128.95 (d, $J = 12.9$ Hz), 128.46, 127.23, 125.65, 123.94, 120.95, 111.72 (d, $J = 9.1$ Hz), 110.78, 109.01 (d, $J = 22.8$ Hz), 106.91 (d, $J = 29.6$ Hz), 56.96; HR-MS: [M+H]$^+$ calculated 310.1874 m/z, found 310.0880 m/z

N-(2-Chloro-5-methoxyphenyl)-3-hydroxynaphthalene-2-carboxamide (6). Yield 58%; Mp 187–188 °C; IR (cm$^{-1}$): 3177, 2954, 2834, 1638, 1524, 1498, 1593, 1462, 1447, 1427, 1358, 1305, 1274, 1262, 1220, 1167, 1147, 1135, 1063, 1028, 960, 916, 866, 845, 787, 771, 745, 719; 1H-NMR (DMSO-$_d_6$) δ: 11.97 (s, 1H), 11.17 (s, 1H), 8.73 (s, 1H), 8.25 (d, 1H, $J = 2.9$ Hz), 7.99 (d, 1H, $J = 8.2$ Hz), 7.78 (d, 1H, $J = 8.3$ Hz), 7.53 (ddd, 1H, $J = 8.3$ Hz, $J = 6.8$ Hz, $J = 1.2$ Hz), 7.46 (d, 1H, $J = 8.8$ Hz), 7.38 (ddd, 1H, $J = 8.2$ Hz, $J = 6.8$ Hz, $J = 1.2$ Hz), 7.38 (s, 1H), 6.78 (dd, 1H, $J = 8.8$ Hz, $J = 3.0$ Hz), 3.80 (s, 3H); 13C-NMR (DMSO-$_d_6$), δ: 163.4, 158.5, 152.5, 151.6, 132.9, 129.6, 129.1, 128.6, 127.2, 125.7, 125.4, 120.6, 114.2, 110.8, 110.4, 108.0, 55.5; HR-MS: [M+H]$^+$ calculated 328.0735 m/z, found 328.0737 m/z.

3.3. Study of Photosynthetic Electron Transport (PET) Inhibition in Spinach Chloroplasts

Chloroplasts were prepared from spinach (Spinacia oleracea L.) according to Kralova et al. [37]. Screening was performed as described previously [e.g., 15,17,18,23].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Acknowledgments: This study was supported by the Ministry of Education, Youth and Sports of the Czech Republic (LO1305). The HPLC/HRMS system forms a part of the National Infrastructure CzeCOS ProCES CZ.02.1/0.0/0.0/16_019/0000797; M.O. was supported by SustES (CZ.02.1/0.0/0.0/16_019/0000797).

References

