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Abstract: The data obtained by the authors in the field of chemistry of 1,3,5-cycloheptatrienes and
1,3,5,7-cyclooctatetraenes with the participation of complexes of transition metals are summarized.
The reactions of cyclocodimerization of 1,3,5-cycloheptatrienes and 1,3,5,7-cyclooctatetraenes with
alkenes, dienes and alkynes in the presence of transition metal complexes, carried out by the type of
[6π + 2π]- and [4π + 2π]-cycloaddition, are considered. Special attention is paid to the application of
these reactions in the synthesis of practically important bi-, tri- and polycyclic strained compounds,
as well as in the development of stereoselective methods for the synthesis of natural compounds.
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1. Introduction

Among the large number of possible ways of constructing medium cycles, the most
preferred are those based on cycloaddition reactions using metal complex catalysis meth-
ods [1–3]. Classical ring-closure methods are effective for small ring systems, but problem-
atic for medium-sized ring systems owing to entropic and transannular penalties incurred
when bringing the two ends of a reactant together [4]. For this reason, significant advances
in the design of medium cycles have been achieved through new cycloaddition reactions
catalyzed by transition metal complexes [1–3].

The development of reactions of catalytic cycloaddition with obtaining medium cycles
is one of the most urgent and demanded areas of modern organic synthesis, in view
of the high prevalence of these compounds in the composition of a large number of
biologically active substances and drugs [1]. For example, eight-membered carbocycles
form the structural backbone of a number of important medicinal compounds (Figure 1).
Currently, the natural compound taxol is an effective anticancer agent widely used in
medical practice [5]. In 2008, pleuromutilin was approved as an antibacterial drug [6].

According to the analysis of the world literature, one of the promising directions in the
synthesis of medium cycles is directed catalytic conversions of available cyclic polyunsatu-
rated monomers—1,3,5-cycloheptatrienes (CHT) and 1,3,5,7-cyclooctatetraene (COTT) [3].
Catalytic cycloaddition reactions involving these cyclopolyenes lead to the formation of
practically important eight-membered carbocycles, bicyclo[4.2.1]nonadi(tri)enes and bi-
cyclo[4.2.2]decatri(tetra)enes [1–3]. The bicyclo[4.2.1]nonane skeleton is a key structural
element of biologically active terpenoids with pronounced antitumor properties [7–9]
(Figure 2).
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In the literature, there are preferably publications devoted to the study of reactions 
of thermally and photochemically induced cycloaddition of alkenes, 1,2-, 1,3-dienes and 
alkynes to Fe-, Ru- and Cr-containing carbonyl complexes CHT [10–14]. The catalytic var-
iants of these transformations are represented by Ti-, Co-, Cr-, Mo- and Rh-catalyzed cy-
clodimerization of CHT [15–21].  

2. Results and Discussion 
To date, we have accumulated significant experience in the development of effective 

one-pot methods for the synthesis of various classes of previously undescribed bi-, tri- 
and polycyclic compounds based on cycloaddition reactions CHTs and COTT catalyzed 
by complexes of transition metals [3]. As a result of research carried out over the past 5–
10 years, we have proposed effective preparative methods for the synthesis of a wide 
range of substituted bicyclo[4.2.1]nona-2,4-dienes and bicyclo[4.2.1]nona-2,4,7-trienes 
based on reactions of titanium- and cobalt-catalyzed cycloaddition of 1,2-dienes and al-
kynes to CHT and its derivatives. So, in 2013, we developed a two-component catalytic 
system TiХ2Cl2-Et2AlCl (X = Cl, acac, i-PrO), which was used for the first time in the [6π + 
2π] cycloaddition of 1,2-dienes 2 to CHT and 7-alkyl(phenyl,allyl)-1,3,5-cycloheptatrienes 
1 to form substituted bicyclo[4.2.1]nona-2,4-dienes 3 as a single regioisomer [22] (Scheme 
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In the literature, there are preferably publications devoted to the study of reactions
of thermally and photochemically induced cycloaddition of alkenes, 1,2-, 1,3-dienes and
alkynes to Fe-, Ru- and Cr-containing carbonyl complexes CHT [10–14]. The catalytic
variants of these transformations are represented by Ti-, Co-, Cr-, Mo- and Rh-catalyzed
cyclodimerization of CHT [15–21].

2. Results and Discussion

To date, we have accumulated significant experience in the development of effective
one-pot methods for the synthesis of various classes of previously undescribed bi-, tri-
and polycyclic compounds based on cycloaddition reactions CHTs and COTT catalyzed
by complexes of transition metals [3]. As a result of research carried out over the past
5–10 years, we have proposed effective preparative methods for the synthesis of a wide
range of substituted bicyclo[4.2.1]nona-2,4-dienes and bicyclo[4.2.1]nona-2,4,7-trienes based
on reactions of titanium- and cobalt-catalyzed cycloaddition of 1,2-dienes and alkynes to
CHT and its derivatives. So, in 2013, we developed a two-component catalytic system
TiX2Cl2-Et2AlCl (X = Cl, acac, i-PrO), which was used for the first time in the [6π + 2π]
cycloaddition of 1,2-dienes 2 to CHT and 7-alkyl(phenyl,allyl)-1,3,5-cycloheptatrienes 1 to
form substituted bicyclo[4.2.1]nona-2,4-dienes 3 as a single regioisomer [22] (Scheme 1).
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In the development of research on the synthesis of new bicyclo[4.2.1]nonanes, as
well as in order to expand the scope of application of the developed titanium-containing
catalytic system, we carried out the cyclocodimerization of CHTs with alkynes [23]. It was
found that [6π + 2π] cycloaddition of nitrogen- 4 and silicon-containing alkynes 5 to CHTs
1 under the action of the Ti(acac)2Cl2-Et2AlCl catalytic system in benzene for 8–24 h at
80 ◦C leads to the formation of bicyclo[4.2.1]nona-2,4,7-trienes 6 (61–88%) and 7 (79–88%)
(Scheme 2):
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Of particular interest are the works [24,25] on the reactions of cyclocodimerization
of bis(1,3,5-cycloheptatriene-7-yl)alkanes—monomers containing in their structure simul-
taneously two cycloheptatriene fragments, which means two reaction centers. We found
that as a result of the interaction of bis(1,3,5-cycloheptatriene-7-yl)alkanes 8 with a twofold
excess of 1,2-dienes 2 or Si-containing alkynes 5 under the action of the catalytic system
Ti(acac)2Cl2-Et2AlCl (benzene, 12 h, 80 ◦C) the corresponding [6π + 2π] cycloadducts
are formed—bis(bicyclo[4.2.1]nona-2,4-diene)alkanes 9a,b and bis(bicyclo[4.2.1]nona-2,4,7-
triene)alkanes 10a,b [24,25] (Scheme 3):
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In 2019, we studied the cyclocodimerization reactions of 1-substituted CHTs [26]. We
found 1-methyl(benzyl)-1,3,5-cycloheptatrienes 11 enter into a [6π + 2π]-cycloaddition
reaction with Si-containing alkynes 5 under the action of the catalytic system Ti(acac)2Cl2-
Et2AlCl (5 mol% Ti(acac)2Cl2, Ti/Al = 1:20, C6H6, 80 ◦C, 8 h) to form substituted bicyclo
[4.2.1]nona-2,4,7-trienes 13 as a single regioisomer. Similarly, under the developed con-
ditions (15 mol% Ti(acac)2Cl2, Ti/Al = 1:20, C6H6, 80 ◦C, 8 h), we managed to carry
out the cyclodimerization of 1-methylcycloheptatriene 11 with propargylamines 4 to ob-
tain nitrogen-containing bicyclo[4.2.1]nona-2,4,7-trienes 14 in high yields (76–88%) [26]
(Scheme 4).

The reaction of 1-substituted CHTs 11 with terminal alkynes 12 takes place in the pres-
ence of a three-component cobalt-containing catalytic system Co(acac)2(dppe)/Zn/ZnI2
with the formation of functionally substituted bicyclo[4.2.1]nona-2,4,7-trienes 15, 16 as two
regioisomers (72–86%) (Scheme 4).
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In the development of ongoing studies on the synthesis of middle cycles based on
cyclocodimerization of cyclic polyenes with unsaturated compounds of various structures,
as well as with the aim of developing effective preparative methods for the synthesis of new
classes of bicyclo[4.2.2]decatri(tetra)enes, we paid attention to COTT. In 2015, for the first
time, we carried out the [6π + 2π]-cycloaddition of 1,2-dienes to COTT in the presence of a
four-component catalytic system CoI2/dppe/Zn/ZnI2 with the formation of substituted
(E)-bicyclo[4.2.2]deca-2,4,7-trienes 17 in high yields (76–87%) [27] (Scheme 5).
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an effective catalytic system—Co(acac)2/dppe/Zn/ZnI2, using which we have synthe-
sized a wide range of functionally substituted bicyclo[4.2.2]deca-2,4,7,9-tetraenes 18–20
based on the reaction of [6π + 2π]-cycloaddition of alkynes and 1,3-diynes to COTT [28,32]
(Scheme 6):

Chem. Proc. 2021, 6, 2 5 of 6 
 

 

 
Scheme 6. Cycloaddition of alkynes with COTT. 

3. Conclusions 
Thus, in the course of our studies, we have developed effective one-pot methods for 

the synthesis of a large assortment of previously undescribed and hard-to-reach function-
ally substituted bicyclo[4.2.1]nonadi(tri)enes and bicyclo[4.2.2]decatri(tetra)enes, which 
can act in as key precursors in the synthesis of modern drugs and valuable biologically 
active compounds. 

Author Contributions: Conceptualization, U.M.D. and G.N.K.; methodology, validation, and exe-
cution of chemistry experiments, G.N.K.; manuscript preparation, U.M.D. and G.N.K. All authors 
have read and agreed to the published version of the manuscript.  

Funding: The work was done within approved plans for research projects at the IPC RAS State 
Registration No. AAAA-A19-119022290008-6 (2019–2021), Grant of Russian Foundation for Basic 
Research (19-03-00393). 

Acknowledgments: The structural studies of the synthesized compounds were performed with the 
use of Collective Usage Centre “Agidel” at the Institute of Petrochemistry and Catalysis of RAS.  

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Petasis, N.A.; Patane, M.A. The Synthesis of Carbocyclic Eight-Membered Rings. Tetrahedron 1992, 48, 5757–5821. 
2. Yu, Z.X.; Wang, Y.; Wang, Y. Transition-metal-catalyzed cycloadditions for the synthesis of eight-membered carbocycles. Chem. 

Asian J. 2010, 5, 1072–1088. 
3. D’yakonov, V.A.; Kadikova, G.N.; Dzhemilev, U.M. Transition Metal Complex-Mediated Chemistry of 1,3,5-Cycloheptatrienes. 

Russ. Chem. Rev. 2018, 87, 797–820. 
4. Galli, C.; Mandolini, L. The role of ring strain on the ease of ring closure of bifunctional chain molecules. Eur. J. Org. Chem. 2000, 

2000, 3117–3125. 
5. Kingston, D.G.I. A natural love of natural products. J. Org. Chem. 2008, 73, 3975–3984. 
6. Daum, R.S.; Kar, S.; Kirkpatrick, P. Retapamulin. Nat. Rev. Drug Discov. 2007, 6, 865–866. 
7. Francisco, C.; Banaigs, B.; Valls, R.; Codomier, L. Mediterraneol a, a novel rearranged diterpenoid-hydroquinone from the ma-

rine alga Cystoseira mediterranea. Tetrahedron Lett. 1985, 26, 2629–2632. 
8. Suryawanshi, S.N.; Nayak, U.R. Novel lead tetraacetate oxidation of longicycline: Formation and reactions of the elusive true 

longicamphor. Tetrahedron Lett. 1977, 18, 2619–2620. 
9. Francisco, C.; Banaigs, B.; Teste, J.; Cave, A.J. Mediterraneols: A novel biologically active class of rearranged diterpenoid me-

tabolites from Cystoseira mediterranea (Pheophyta). Org. Chem. 1986, 51, 1115–1120. 
10. Green, M.; Heathcock, S.M.; Wood, D. Reactions of Co-ordinated Ligands. Part ӀӀ. The reaction of 

tricarbonylcycloheptatrieneiron and tricarbonyl(methy1-, bromo-, and phenylcyclo-Octatetraene)iron with hexafluoroacetone, 
dicyanobis-(trif1uoromethyl)ethylene, and tetracyanoethylene. J. Chem. Soc. Dalton Trans. 1973, 15, 1564–1569. 

11. Cunningham, D.; Hallinan, N.; Moran, G.; McArdle, P. Reaction of tetracyanoethene with tricarbonyliron complexes of some 
substituted 7-methylenecycloheptatrienes and the subsequent isomerization of the initial addition products. J. Organomet. Chem. 
1987, 333, 85–95. 

12. Goldschmidt, Z.; Genizi, E.; Gottlieb, H.E.; Hezroni-Langermann, D. Pericyclic organometallic reactions. Cycloaddition 
reactions of (η4-cycloheptatriene)Ru(CO)3. Crystal structure of tricarbonyl[(2,3,4,9-η)-bicyclo[4.2.l]non-2-ene-4,9-diyl-7,7,8,8-
tetracarbonitrile]ruthenium. J. Organomet. Chem. 1991, 420, 419–429. 

Scheme 6. Cycloaddition of alkynes with COTT.



Chem. Proc. 2021, 6, 2 5 of 6

3. Conclusions

Thus, in the course of our studies, we have developed effective one-pot methods for
the synthesis of a large assortment of previously undescribed and hard-to-reach function-
ally substituted bicyclo[4.2.1]nonadi(tri)enes and bicyclo[4.2.2]decatri(tetra)enes, which
can act in as key precursors in the synthesis of modern drugs and valuable biologically
active compounds.
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