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Abstract: Derivatives of 1,3,4-thiadiazole are of great interest for scientific and practical human
activities as biologically active substances, dyes, components for creating semiconductors, energy ac-
cumulators, liquid crystals, polymers, nanomaterials, etc. Here we report the synthesis of 2,4-dichloro-
N-(2,2,2-trichloro-1-((5-(phenylamino)-1,3,4-thiadiazol-2-yl)amino)ethyl)benzamide based on N,N’-
disubstituted hydrazinecarbothioamide—2,4-dichloro-N-(2,2,2-trichloro-1-(2-(phenylcarbamothioyl)-
hydrazine-1-carbothioamido)ethyl)benzamide. The method for obtaining the target product is based
on the dehydrosulfurization reaction of the starting hydrazinecarbothioamide under the action of a
mixture of iodine and triethylamine in a DMF medium. A new derivative of 1,3,4-thiadiazole was
obtained in 84% yield, and its structure was confirmed by 1H and 13C NMR spectroscopy data. Molec-
ular docking studies were carried out with the structure of the resulting compound and dihydrofolate
reductase (DHFR) in the AutoDock Vina program. The resulting compound is a potential inhibitor of
DHFR and surpasses several known analogues in terms of the strength of the complex formed with
the active site of this enzyme.

Keywords: synthesis; 1,3,4-thiadiazole; dehydrosulfurization; dihydrofolate reductase; molecular
docking

1. Introduction

Derivatives of 1,3,4-thiadiazole are widely used in medicine, agriculture, materials
science, and other areas of science and technology [1]. These compounds are of particular
interest as biologically active compounds [2]. Among the derivatives of 1,3,4-thiadiazole
are substances with antitumor [3–11], antiviral [11–17], antimicrobial [10,18–30], antiox-
idant [29,30], neuroprotective [31], antiprotozoal [32], and anti-inflammatory [33,34] ac-
tivity. In addition, these substances act as inhibitors of acetylcholinesterase [35,36], α-
glucosidase [37], and carbonic anhydrase [38]. Substances containing the 1,3,4-thiadiazole
ring are also of interest as pesticides [39–41].

Derivatives of 1,3,4-thiadiazoles are widely used in coordination chemistry as lig-
ands [42–44], in the synthesis of polymers [45], and the creation of polymer films [46,47].
The prospects of using 1,3,4-thiadiazoles in optoelectronics [48], in the purification of water
from heavy metal ions [49], for the separation of minerals by the flotation method [50],
and the creation of corrosion-resistant coatings [51] are discussed in the literature. A large
number of works are devoted to the development of dyes and fluorescent markers based
on 1,3,4-thiadiazoles [46,52,53].

In this paper, we report the synthesis of a new member of the class of 1,3,5-thiadiazoles,
which contains an alkylamide fragmen—2,4-dichloro-N-(2,2,2-trichloro-1-((5-(phenylamino)-
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1,3,4-thiadiazol-2-yl)amino)ethyl)benzamide, as well as molecular docking investigations
of the obtained compound with the enzyme dihydrofolate reductase (DHFR).

2. Materials and Methods
2.1. Chemistry

1H NMR (400 MHz) and 13C NMR (100 MHz) spectra were measured for solutions
in DMSO-d6 on a Varian VXR-400 spectrometer. Elemental analysis was performed on a
LECO CHNS-900 instrument (see Supplementary Materials). The reaction and purity of the
compounds were monitored by TLC on Silufol UV-254 plates using a chloroform/acetone
mixture (3:1) as an eluent.

Synthesis of 2,4-dichloro-N-(2,2,2-trichloro-1-(2-(phenylcarbamothioyl)hydrazine-
1-carbothioamido)ethyl)benzamide (3). An equimolar amount (1.67 g) of N-phenylhydra
zinecarbothioamide (2) [54] was added to 10 mmol (3.78 g) of 2,4-dichloro-N-(2,2,2-trichloro-
1-isothiocyanatoethyl)benzamide (1) [55,56] in 35 mL of acetonitrile. The mixture was
refluxed for 1–3 min and then left for 24 h. The precipitate formed was filtered, washed
with acetonitrile (2 × 10 mL), and dried. The product was purified by recrystallization
from acetonitrile. White solid; yield 87% (4.75 g); mp 198–200 ◦C (MeCN); Rf = 0.28. 1H
NMR: δ 10.28 (brs, 1H, NH), 9.99 (brs, 1H, NH), 9.86 (brs, 1H, NH), 9.49 (brs, 1H, NH), 7.97
(brs, 1H, NH), 7.76–7.31 (m, 8H, arom.), 7.16 (dd, J = 6.4, 6.4 Hz, 1H, CH). 13C NMR: δ 182.8
(C=S), 182.3 (C=S), 164.6 (C=O), 138.9, 135.4, 134.1, 131.4, 130.5, 129.5, 128.1, 127.4, 125.2,
122.7 (arom.), 101.1 (CCl3), 69.9 (CH). Anal. Calcd (%) for C17H14Cl5N5OS2 (545.70): C,
37.42; H, 2.59; N, 12.83; S, 11.75. Found: C, 37.45; H, 2.56; N, 12.87; S, 11.79.

Synthesis of 2,4-dichloro-N-(2,2,2-trichloro-1-((5-(phenylamino)-1,3,4-thiadiazol-2-
yl)amino)ethyl)benzamide (4). Ten mmol (5.46 g) of N,N’-disubstituted hydrazinecarboth-
ioamide (3) was dissolved in 20 mL of DMF, a solution of 11 mmol (2.79 g) of iodine and
30 mmol (4.2 mL) of triethylamine in 10 mL of DMF was added in portions to the resulting
solution with stirring. The reaction mixture was left at room temperature for 1–1.5 h.
The precipitated sulfur was filtered. The product was precipitated from the filtrate with
1% aqueous sodium thiosulfate (250 mL). The precipitate formed was filtered, washed
with water (2 × 50 mL), and dried. The product was purified by recrystallization from
acetonitrile. Beige solid; yield 84% (4.30 g); mp 162–164 ◦C (MeCN); Rf = 0.38. 1H NMR:
δ 9.73 (s, 1H, NH), 9.59 (brs, 1H, NH), 8.12 (d, J = 7.8 Hz, 1H, NH), 7.70 (s, 1H, arom.),
7.52–7.50 (m, 3H, arom.), 7.43–7.41 (m, 1H, arom.), 7.30–7.26 (m, 2H, arom.), 6.93–6.89 (m,
1H, arom.), 6.76 (dd, J = 9.3, 7.8 Hz, 1H, CH). 13C NMR: δ 165.4 (C=O), 157.9 (C=N), 156.6
(C=N), 141.2, 134.9, 134.6, 131.3, 130.4, 129.1, 128.9, 127.2, 120.9, 116.6 (arom.), 101.0 (CCl3),
69.7 (CH). Anal. Calcd (%) for C17H12Cl5N5OS (511.63): C, 39.91; H, 2.36; N, 13.69; S, 6.27.
Found: C, 39.88; H, 2.33; N, 13.72; S, 6.30.

2.2. Molecular Docking Studies

The dihydrofolate reductase enzyme, whose structure was downloaded from the
Protein Data Bank (PDB ID: 1DLS) [57], was used as a potential biological target for
molecular docking. The preparation of the enzyme structure for docking was carried
out using the Chimera 1.14 program [58], while water and Methotrexate molecules were
removed. The ligand structures were constructed and optimized by the PM3 method [59]
in the ArgusLab 4.0.1 program [60–64]. Molecular docking was performed using the
AutoDock Vina program [65] implemented in PyRx 0.8. During the docking procedure,
the center of the grid, whose coordinates were: X = 23.4 Å, Y = 16.7 Å, and Z = 1.7 Å, was
centered on the amino acids Ile 5, Ala 6, Ala 7, Asp 27, Leu 28, Phe 31, Lys 32, Ser 49, Ile
50, Arg 52, Leu 54, Arg 57, Ile 94, Tyr 100, and Thr 113 [66]. The grid dimensions were
25.0 × 25.0 × 25.0 Å.
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3. Results and Discussion
3.1. Chemistry

The starting 2,4-dichloro-N-(2,2,2-trichloro-1-(2-(phenylcarbamothioyl)hydrazine-1-
carbothioamido)ethyl)benzamide (3) was obtained by the addition reaction of N-phenylhy
drazinecarbothioamide (2) [54] to 2,4-dichloro-N-(2,2,2-trichloro-1-isothiocyanatoethyl)ben
zamide (1) [55,56] (Scheme 1). The reaction was carried out in an acetonitrile medium,
bringing the reaction mass to a boil, and then leaving it for 24 h. Hydrazinecarboth-
ioamide (3) precipitated quantitatively from the reaction mass. The yield of the product
purified by recrystallization from acetonitrile was 87%. Under the action of iodine on
hydrazinecarbothioamide (3) in a DMF medium, sulfur was eliminated, HI was formed,
and the target 1,3,4-thiadiazole cycle was closed. The resulting sulfur precipitated, and
HI bound to the corresponding salt with triethylamine. After removing the precipitated
sulfur by filtration, the target product, 2,4-dichloro-N-(2,2,2-trichloro-1-((5-(phenylamino)-
1,3,4-thiadiazol-2-yl)amino)ethyl)benzamide (4), was precipitated from the filtrate with
1% aqueous sodium thiosulfate solution. The target derivative of 1,3,4-thiadiazole was
quantitatively precipitated with water, and after recrystallization from acetonitrile, the
yield was 84%.
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The 1H NMR spectrum of the starting hydrazinecarbothioamide (3) showed five
broadened singlet NH proton signals at 10.28–7.97 ppm (Figure S1), while the spectrum of
compound 4 showed three NH proton signals, a singlet at 9.73 ppm, a broadened singlet at
9.59 ppm, and a doublet at 8.12 ppm (Figure S2). The 13C NMR spectrum of compound
3 was characterized by two closely located C=S carbon signals at 182.8 and 182.3 ppm
(Figure S3). In turn, in the spectrum of compound 4, there were no C=S carbon signals, but
two C=N carbon signals could be observed at 157.9 and 156.6 ppm (Figure S4). All of the
above points to the formal elimination of H2S and the closure of the 1,3,4-thiadiazole ring.

3.2. Molecular Docking Studies

Recently, a large number of works have appeared, devoted to the inhibition of dihydro-
folate reductase (DHFR) enzyme by 1,3,4-thiadiazole derivatives, which makes these com-
pounds potential agents for combating malignant tumors [66–70]. Therefore, we chose this
enzyme as a potential biological target for molecular docking. We took N-(4-((Z)-1-(((Z)-5-(4-
methoxyphenyl)-3-phenyl-1,3,4-thiadiazol-2(3H)-ylidene)hydrazono)ethyl)phenyl)-4-methyl
benzenesulfonamide (Figure 1a) [66] and (E)-5-benzylidene-1-(5-(3,5-dinitrophenyl)-1,3,4-
thiadiazol-2-yl)-3-phenyl-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (Figure 1c) [70]. Ac-
cording to the results of molecular docking, N-(4-((Z)-1-(((Z)-5-(4-methoxyphenyl)-3-phenyl-
1,3,4-thiadiazol-2(3H)-ylidene)hydrazono)ethyl)phenyl)-4-methylbenzenesulfonamide formed
a complex with the DHFR active site with a ∆G value of -8.2 kcal/mol. The inhibitor
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molecule was effectively fixed in the cavity of the active site due to four intermolecular
hydrogen bonds, three of which were formed with the participation of the sulfamide group
and the amino acid Glu 30 (bond lengths—3.1, 3.2, and 3.6 Å), and one more with the
participation of the methoxy group and Gln 35 (bond length—3.0 Å) (Figure 1b). In turn,
the molecule (E)-5-benzylidene-1-(5-(3,5-dinitrophenyl)-1,3,4-thiadiazol-2-yl)-3-phenyl-2-
thioxodihydropyrimidine-4,6(1H,5H)-dione formed six intermolecular hydrogen bonds
with the DHFR active site (Figure 1d), three of which involved the thiopyrimidinone frag-
ment and amino acids Leu 28 and Gln 35 (bond lengths—2.7, 2.7, and 3.2 Å), and the
remaining three hydrogen bonds were formed by the nitro group with the amino acids Asp
21 and Ser 59 (bond lengths—2.9, 3.1, and 3.3 Å). The value of ∆G was −8.4 kcal/mol.

Based on the results of molecular docking, the resulting 2,4-dichloro-N-(2,2,2-trichloro-1-
((5-(phenylamino)-1,3,4-thiadiazol-2-yl)amino)ethyl)benzamide (4) (Figure 1e) surpasses the
reference compounds in the strength of the complex formed with DHFR (∆G = −9.0 kcal/mol).
The compound 4 molecule is fixed in the active site of the enzyme via three intermolecular
hydrogen bonds, two of which are formed with the participation of the thiadiazole ring
and the amino acids Asp 21 and Ser 59 (bond lengths are 3.1 and 2.8 Å, respectively) and
the third hydrogen bond 3.2 Å long is formed by the secondary amino group and Tyr 22
(Figure 1f).
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According to the results of molecular docking, the resulting 1,3,4-thiadiazole derivative
is a potential inhibitor of DHFR and can be recommended for further in vitro investigations.
Further work in the development of DHFR inhibitors based on 1,3,4-thiadiazole derivatives
containing an alkylamide fragment seems to be very promising.

4. Conclusions

In this work, we have obtained a new representative of the series of 1,3,4-thiadiazoles -2,4-
dichloro-N-(2,2,2-trichloro-1-((5-(phenylamino)-1,3,4-thiadiazol-2-yl)amino)ethyl)benzamide
based on 2,4-dichloro-N-(2,2,2-trichloro-1-(2-(phenylcarbamothioyl)hydrazine-1-carbothioa
mido)ethyl)benzamide. The structure of the target and starting compounds has reliably
been confirmed by 1H and 13C NMR spectroscopy data. The obtained 1,3,4-thiadiazole
derivative is promising as a potential inhibitor of dihydrofolate reductase.
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