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Abstract: Organophosphorus compounds have been investigated for agricultural and medicinal
applications for decades, and a considerable number of phosphorus-containing drugs have achieved
commercial success. A recent review by P. Finkbeiner et al. has shown that phosphine oxides and
related phosphorus-containing functional groups are valuable polar structural elements and that they
deserve to be considered as a routine part of every medicinal chemist’s toolbox. A new approach
to the synthesis of previously hard-to-obtain 3-alkyl-1H-phospholanes oxides was developed by us.
In order to assess the potential of five-membered cyclic organophosphorus compounds in cancer
therapy, we carried out docking 3-buthyl-1H-phospholanes oxide and 2,3-dihydrophosphole in the
binding site of 24 human proteins involved in oncogenesis processes. Proteins were selected using
the PharmMapper in-house pharmacophore model database. The results are presented in the article.
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1. Introduction

It is well known that organophosphorus compounds are used in medicine, moreover, a
significant number of phosphorus-containing drugs have achieved commercial success [1].
Recently, a review by P. Finkbeiner has shown [2] that most of the approved phosphorus-
containing pharmaceuticals, for example drugs 1–6, contain a phosphate, a phosphoramide,
or a phosphonate group, while phosphines, phosphinates, and phosphine oxides are
rare (Scheme 1). For example, the phosphinate-based drug used to treat hypertension is
fosinopril (7). Recently, ridaforolimus (12), a dimethylphosphinic ester containing inhibitor
of mammalian target of rapamycin (mTOR), progressed into phase III clinical studies for
the treatment of sarcoma, and the anaplastic lymphoma kinase (ALK) inhibitor brigatinib
(13) became the first drug containing a phosphine oxide motif that was approved for the
treatment of patients with metastatic non-small-cell lung cancer (NSCLC) [3,4].

At the same time, new approaches to the synthesis of previously undescribed cyclic
phospholane oxides are being developed.
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Scheme 1. Selected examples of phosphorus-containing drugs. 

We have accumulated significant experience in the development of effective one-pot 
methods for the synthesis of five-membered phosphacarbocycles via transmetalation of 
aluminacarbocycles, obtained by catalytic cycloalumination [5–7] of olefins with AlEt3 in 
the presence of Cp2ZrCl2 as a catalyst, by PCl3 (Scheme 2). 
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Scheme 2. Synthesis of the 3-alkyl(aryl)-1H-phospholane oxides via transmetalation of alumolanes 
by PCl3. 

The synthesized compounds are chemically stable and may be promising in cancer 
therapy. In order to predict the biological properties for oncotherapy of a number of 
phospholane oxides, we screened using the PharmMapper. Then docking was employed 
using AutoDock to find out the mechanism of binding of the macromolecular targets to 

Scheme 1. Selected examples of phosphorus-containing drugs.

We have accumulated significant experience in the development of effective one-pot
methods for the synthesis of five-membered phosphacarbocycles via transmetalation of
aluminacarbocycles, obtained by catalytic cycloalumination [5–7] of olefins with AlEt3 in
the presence of Cp2ZrCl2 as a catalyst, by PCl3 (Scheme 2).
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Scheme 2. Synthesis of the 3-alkyl(aryl)-1H-phospholane oxides via transmetalation of alumolanes
by PCl3.

The synthesized compounds are chemically stable and may be promising in cancer
therapy. In order to predict the biological properties for oncotherapy of a number of
phospholane oxides, we screened using the PharmMapper. Then docking was employed
using AutoDock to find out the mechanism of binding of the macromolecular targets to



Chem. Proc. 2022, 12, 49 3 of 6

small active components under consideration, which made it possible to determine the role
of the P=O(H) group in the interaction with targets.

2. Methods

A search for potential protein targets for the studied ligands was carried out using
the PharmMapper in-house pharmacophore model database [8]. For this, the optimized
ligand structures were saved as SDF files, which were then uploaded to a web server
available at http://www.lilab-ecust.cn/pharmmapper/ (accessed on 22 October 2022).
Pharmacophore mapping was carried out for the human protein targets set. From the
resulting list of the potential human protein targets, only those involved in the processes
of oncogenesis were selected for further study. AutoDock Tools (ADT) version 4.2.6 was
used to carry out protein-ligand docking simulations [9]. The Discovery Studio Visualizer
(version 21.1.0.20298, Dassault Systèmes, San Diego, CA, USA) [10] software was used to
visualize the docking results.

3. Results and Discussion

The potential human protein targets were identified for model compound 15a. Two
diastereomers were taken into consideration with energy energetically lowest twist con-
formation (Scheme 3). The screening results showed 17 ranked targets listed in Table 1,
confirming the possibility of interaction between the model compound and some indica-
tions. The highest fit scores for both isomers was characterized the androgen receptor,
which is a member of the steroid/nuclear receptor superfamily and which functions as
a transcription factor [11]. This receptor is activated by binding to androgenic hormones
that regulate male sex development [12]. Reactivation of the androgen receptor occurs in
recurrent prostate cancer [13], making this protein a potential target for prostate cancer
therapy.
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Scheme 3. Diastereomers of phospholane.

Table 1. Potential targets and indications of compound 2a (RR configuration) by PharmMapper.

Target PDBID Normalized Fit Score

Androgen receptor 2ao6 0.7474

Progesterone receptor 1sqn 0.7377

Placenta growth factor-1 1fzv 0.5995

α-Catenin 1h6g 0.5987

α-Tocopherol transfer protein 1oiz 0.5734

Proto-oncogene tyrosine-protein kinase Src 1o4j 0.5167

Glyoxalase I 1qin 0.492

Prostatic acid phosphatase 1nd5 0.4819

Glycogen synthase kinase-3 β 1q4l 0.4192

Retinoic acid receptor beta 1xap 0.3296



Chem. Proc.2022, 12, 49 4 of 6

Table 1. Cont.

Target PDBID Normalized Fit Score

Glucocorticoid receptor 1p93 0.3283

Growth factor receptor 1 � 0n 0.3272

Leukotriene A(4) hydrolase 1hs6 0.2997

Vitamin D nuclear receptor 1s0z 0.2799

Growth factor receptor-bound protein 2auh 0.256

Cysteine aspartyl protease-3 1nms 0.2223

The receptor was selected for the molecular docking simulation (Figure 1). Accordingly,
the bioactive molecule in lowest conformation forms intermolecular interactions between
the P=O group and the residues. The active sites of binding region in the receptor for the
co-crystallized structure, which taken for comparison, were differ.

Figure 1. 2-D diagram showing the intermolecular interactions with the active site residues of the
androgen receptor of (a) co-crystallized ligand and ( b) RR phospholane. Hydrophobic interactions
are colored in light pink, unfavorable positive-positive interaction is colored in red, van der Waals
interactions is colored in mint green, conventional hydrogen bonding is colored in green.

An free binding energy and final intermolecular energy, as well as an inhibition constant
for each of the docked bioactive molecules, were estimated (Table 2). In terms of inhibitory
activity, phospholane is clearly lower to the co-crystalized ligand (FBE = � 10.04 kcal/mol ,
Ki = 43.69 nM).

Table 2. The lowest energy docked conformation of studied phospholanes.

Ligand FBE, kcal/mol FIE, kcal/mol Ki

15aRR_S � 5.13 � 6.02 174.02� M

15aSS_N � 5.19 � 6.09 155.83� M

15b RR_S � 5.47 � 6.96 97.98� M

15b SS_N � 5.69 � 7.18 67.23� M

15cRR_S � 6.00 � 8.09 39.75� M

15cSS_N � 6.07 � 8.16 35.53� M

15d RS_S � 6.18 � 6.77 29.71� M

15d SR_N � 6.30 � 6.89 24.19� M

15a' RR_S � 5.05 � 6.24 199.21� M

15a' SS_N � 5.80 � 6.99 55.93 mM
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In the case of RR phospholane interaction with the active site of the androgen receptor,
the hydrogen bonds were formed with the P=O functional group. Out of the total inter-
actions, there was a lack of hydrophobic contacts, obviously; therefore, with an increase
in chain length of the alkyl substituent, an increase in the binding energy was observed.
It should be noted that the effect of stereochemistry on the energy parameters was also
manifested. Moreover, we have docked the tautomeric form P-OH [ 14], which can exist at
the equilibrium concentration (denoted as 15 0) known for phosphine oxides (Table 2).

4. Conclusions

In summary, the potential anticancer activity for new 1H-phospolane oxides was
identi�ed. The androgen receptor was selected for the molecular docking simulation, as a
result a binding site between the P=O and protein was shown. It was found that the design
of the substituent in position 3 helped to model the binding activity.
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