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Abstract: Polycyclic aromatic hydrocarbons are versatile building blocks for conjugated materials
and can be applied in molecular electronics. Pyrenes are known as the best organic chromophores,
and pyrene itself is known as an electron donor. Likewise, quinones are promising electrode materials
for lithium-ion batteries. The calculations were performed for pyrene-4,5,9,10-tetrathione, pyrene-
4,5,9,10-tetraselenone and pyrene-4,5,9,10-tetratellurone, and the results were compared with those
for pyrene-4,5,9,10-tetraone. The results obtained indicate that the sulfur derivative is a suitable
candidate for further experimental studies since, although selenium and tellurium compounds
present better prospects than 4,5,9,10-tetraoxopyrene, they require the improvement of available
synthetic techniques or even the discovery of new ones.

Keywords: pyrene-4,5,9,10-tetrachalcogenones; battery; organic electrode; DFT; reduction potential;
sulfur; selenium; tellurium; cathode

1. Introduction

Powered by the rising demand for large-scale electrochemical energy storage devices
such as smart grids and electric vehicles, low-cost batteries with high energy density have
become a major interest among sustainable energy research [1]. Within this field, organic
electrode materials have become rather promising candidates for lithium-ion batteries,
since organic constituents usually have the advantages of higher recyclability and easier
synthesis against inorganic compounds [2]. The lithium storage mechanism of organic
carbonyl compounds relies on the redox reactions of the oxygen atom on the carbonyl group,
which is able to undergo a reversible one-electron reduction to generate a radical anion that
combines with lithium ions [3]. Among other candidates, quinone derivatives have been
studied experimentally as promising organic electrode materials, given that the reversible
redox reactions occur between Li atoms and the carbonyl group. While discharging, the
oxygen atom on each carbonyl group obtains an electron along with a lithium ion to form a
lithium enol salt. While charging, lithium ions are released with electrons from the enol salts
and return to the carbonyl groups. The reversible insertion and extraction of the lithium
ions are achieved through the conversion between the carbonyl and enol structures. The
main merits of the quinone compound cathode materials are their great theoretical capacity
(902 mA h g−1) and high redox potential (3.0 V vs. Li/Li+) [3]; in particular, pyrene-4,5,9,10-
tetraketone (1, PTO) has a capacity of 409 mA h g−1 [4–6] and has been studied in depth both
experimentally and theoretically [7]. This communication presents the theoretical study of
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reduction potential for chalcogen analogs of PTO, namely pyrene-4,5,9,10-tetrathione (2,
PTS), pyrene-4,5,9,10-tetraselenone (3, PTSe) and pyrene-4,5,9,10-tetratellurone (4, PTTe)
and compares the results with those of pyrene-4,5,9,10-tetraone (Figure 1).
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Figure 1. Pyrene-4,5,9,10-tetraketone (1, PTO), pyrene-4,5,9,10-tetrathione (2, PTS), pyrene-4,5,9,10-
tetraselenone (3, PTSe) and pyrene-4,5,9,10-tetratellurone (4, PTTe).

2. Results and Discussion

Density functional theory (DFT) calculations were performed with the Gaussian
16 program package [8] at the B3LYP/LANL2DZ level. For the solution calculations,
dimethyl sulfoxide (DMSO) was chosen (using a polarizable continuum model), due to its
low toxicity and because it is a non-hazardous solvent that can solubilize a vast variety of
organic compounds [9]. The vibrational frequency analysis was performed at the same level
of theory and the obtained positive frequencies confirmed that the optimized geometries
were found at the real minima on the potential energy surfaces.

Electron transfer during an electrochemical process leads to the reduction/oxidation
of the compound. The redox ability of the compound can be quantitatively described by
the redox potential. Consequently, the performance of organic electrical devices is highly
dependent on the oxidation potential (EOX) and the reduction potential (ERED) of the used
materials. These potentials govern the materials’ capability to capture (or inject) holes and
electrons, respectively, in the devices.

The thermodynamic cycle for the Gibbs free energy of the oxidation and reduction
reaction of the molecule (A) is displayed in Scheme 1 [10].
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Scheme 1. Thermodynamic cycle for the Gibbs free energy of the (a) oxidation and (b) reduction
reactions of a molecule.

The ∆Gsol is evaluated as the electronic energy difference of the molecule in the gas
phase and the solvated one using the equilibrium geometry obtained in vacuum.

To estimate the charge transfer properties, the Marcus theory was used, according to
which the reorganization energy (λ) has both intra- and intermolecular contributions. The
former reflects the deformation of molecular geometry in order to accommodate charge
transfer; the latter reflects the electronic polarization of the surrounding molecules, being
much smaller than the intramolecular one, and is usually neglected. The intramolecular
reorganization energy can be evaluated either from the adiabatic potential energy surfaces
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or from normal mode analysis [11]. In this method, the hole and electron reorganization
energies (λh/e) are defined by the following equation:

λh/e = λ1 + λ2

λ1 = EN(Qh/e)− EN(QN)

λ2 = Eh/e(QN)− Eh/e(Qh/e)

where EN(QN) and Eh/e(Qh/e) are the ground-state energies of the optimized neutral and
ionic states, respectively, EN(Qh/e) is the energy of the charged molecules at the optimal
geometry of the neutral molecules, and Eh/e(QN) is the energy of the neutral molecules at
the optimal ionic geometry.

The adiabatic ionization potential IP(a) and adiabatic electron affinity EA(a) are two
important parameters needed to evaluate the oxidation and reduction ability of charged
organic molecules. A large EA(a) is beneficial for stabilizing the organic radical anions
and decreases the electron injection energy barrier and, hence, is helpful for electron
transport [12]. Thus, the corresponding adiabatic IPs and EAs were obtained with the
following equations:

IP(a) = Eh(Qh)− EN(QN)

EA(a) = EN(QN)− Ee(Qe)

In evaluating electron rearrangement energy, the two alternatives are that either the
transfer occurs with the motion of one electron, or it occurs simultaneously with several
electrons at the same time [13]. Figure 2 describes the adiabatic potential energy surface
method, which is used for calculating the reorganization energy for dianion in both cases:
through the monoanion with the transfer of one electron in two stages and when two
electrons are transferred in a single process.
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Figure 2. Schematic plot of reorganization energy for electron transfer for compounds PTO, PTS,
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The redox potentials [Z]0/−, [Z]0/2−, [Z]0/3− and [Z]0/4− of the different species,
resulting in the corresponding mono, di, tri and tetra-anion (Scheme 2), were calculated as
mentioned above, together with the corresponding electron reorganization energies (λ) to
check the feasibility of the reduction process. Lower λ values are related to higher charge
carrier mobility (Table 1).
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Table 1. Reduction potentials and electron reorganization energies for redox processes [Z]0/−, [Z]0/2−,
[Z]0/3− and [Z]0/4−(b3lyp/lanl2dz).

Compound PTO PTS PTSe PTTe

[Z]0/− −4.35 −4.18 −4.17 −6.50
[Z]0/2− −7.55 −9.42 −7.77 −9.69
[Z]0/3− −10.61 −12.91 −11.88 −13.49
[Z]0/4− −12.58 −16.11 −14.96 −16.46
λ0/− 0.14 2.22 0.87 0.58
λ0/2− 0.99 3.51 3.13 2.12
λ0/3− 1.80 4.58 5.39 4.32
λ0/4− 2.92 8.17 8.70 7.04

The results for [Z]0/− calculation are similar, with lower potentials for PTS and PTSe;
only in the case of tellurium was the potential clearly more negative than that of PTS. For
the reduction to the [Z]0/2− species, compound PTS resulted in −9.42 V, demonstrating
an approximately −2 V difference between oxygen and selenium compounds and similar
to the value of the compound with tellurium atoms. The same trend was found for the
potentials [Z]0/3− and [Z] 0/4−. Generally, lower λ values are related to higher charge
carrier mobility, and in the present study, those of PTS, PTSe and PTTe were greater than
that of PTO.

Figure 3 shows the energy of the orbitals in the outer shell for PTO, PTS, PTSe and
PTTe, indicating for each compound the HOMO, LUMO and LUMO + 1 of the neutral
species, where electrons gained throughout the reduction process were located. The energy
difference between the orbitals of each charged species was similar for PTS, PTSe and
PTTe, with the difference between HOMO and LUMO being higher for the PTO than the
other compounds.
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neutral compounds PTO, PTS, PTSe and PTTe, and charged species −1, −2, −3 and −4. In each orbital, 
the occupancy is shown. 

The values for PTS indicated in Table 2 show, as mentioned above, a value for λ(0/-) 
that is high when compared to those obtained for the other compounds. There is at least 
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was 2.32 Kcal/mol more stable in vacuum and 3.70 Kcal/mol in DMSO as a solvent. 

  

Figure 3. Schematic plot of the orbitals energy HOMO (H), LUMO (L) and LUMO + 1 (L + 1) for
neutral compounds PTO, PTS, PTSe and PTTe, and charged species −1, −2, −3 and −4. In each
orbital, the occupancy is shown.

The values for PTS indicated in Table 2 show, as mentioned above, a value for λ(0/-)
that is high when compared to those obtained for the other compounds. There is at least
one additional possible geometry (Figure 4b), which is not as flat as the previous one
(Figure 4a), with the sulfur atoms being out of the plane of the rings, which also meets the
requirement of lacking vibrations with a negative value and therefore corresponds to a
minimum on the potential energy surface. The neutral non-planar conformation of PTS
was 2.32 Kcal/mol more stable in vacuum and 3.70 Kcal/mol in DMSO as a solvent.

Table 2. Reduction potentials and electron reorganization energies for redox processes [Z]0/−, [Z]0/2−,
[Z]0/3− and [Z] 0/4−(b3lyp/lanl2dz) for PTS and its conformer with sulfur atoms out of the plane of
the carbon skeleton.

Compound PTS Out-of-Plane PTS

[Z]0/− −4.18 −4.59
[Z]0/2− −9.42 −8.54
[Z]0/3− −12.91 −12.61
[Z]0/4− −16.11 −15.91
λ0/− 2.22 0.26
λ0/2− 3.51 0.91
λ0/3− 4.58 1.92
λ0/4− 8.17 3.30

This out-of-plane structure for PTS (Figure 4b) was used to calculate the reduction
potentials in order to obtain the corresponding anions ([Z]0/−, [Z]0/2−, [Z]0/3−, [Z]0/4−), as
well as their electronic rearrangement energies (λ). The new values for the reduction poten-
tials turned out to be less negative, and the rearrangement energies suffered a significant
reduction, as shown in Table 2.
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This new spatial arrangement for PTS also influenced the energy of the orbitals
involved in the transfer of electrons in LUMO + 1, LUMO and HOMO, which are indicated
comparatively in Figure 5. This fundamentally affects the energy of the neutral molecule
and the monoanion. Thus, for the neutral molecule, the energy difference was clear for the
three orbitals (LUMO + 1, LUMO and HOMO, 0.53 eV, 0.72 eV and 0.52 eV) and decreased
for the monoanion (LUMO + 1, LUMO and HOMO, 0.10 eV, 0.28 eV and 0.28 eV). For the
di-, tri- and tetra-anion, this difference decreased almost completely since, with the gain of
electrons, the sulfur atoms moved to the plane of the pyrene rings.
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3. Conclusions

The computational results obtained highlight that pyrene-4,5,9,10-tetrathione is a
suitable candidate for further experimental studies verifying its suitability as a material for
electrodes in batteries, since although pyrene-4,5,9,10-tetraselenone and pyrene-4,5,9,10-
tetratellurone present better prospects than 4,5,9,10-tetraoxopyrene, they require the im-
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provement of available synthetic techniques or even the discovery of new ones. Meanwhile,
plenty of methods for the thionation of carbonyl compounds are available in the literature [14].
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