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Abstract: In this paper, we first optimized the structures of Cl benzaldehydes using Gaussian 09
software with the B3LYP/631-G’ (d,p) basis set. The title compound’s polarizability and hyperpolariz-
abilities values have been computed, along with an examination of its nonlinear optical characteristics.
The title molecule’s total initial static hyperpolarizability as determined by DFT studies may be a
topic for future NLO content that is appealing.
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1. Introduction

Due to potential future uses in photonics and optoelectronics, like optical commu-
nication, optical computing, optical data storage, optical switching, and dynamic image
processing [1–4], nonlinear optical (NLO) materials have received a large amount interest
in recent years [5–9]. Organic NLO materials are excellent because of their adaptability and
ability to become modified for specific device applications. In comparison with inorganic
NLO materials, organic NLO materials exhibit a higher nonlinear figure-of-merit for fre-
quency conversion, a higher laser damage threshold, and a faster optical reaction time [10].
The structure of organic NLO materials is based on the bond system extended over a
large length scale of the molecule. This system, known as the push–pull system, is easily
manipulated by substituting electron-donating and electron-withdrawing groups to the
aromatic moieties. This results in increased optical nonlinearity of the system [11]. Future
optoelectronic and nonlinear optical applications hold great promise for chloro-substituted
benzaldehyde derivatives with strong optical nonlinearities.

Benzaldehyde, due to its important role, and its derivatives have attracted a high
degree of attention in both chemistry and biology [12–14]. Many spectroscopic investiga-
tions have been performed on benzaldehyde and its derivatives [15–42], and people have
become interested in spectroscopies of halogen-derived benzaldehydes. By using matrix
isolation IR spectroscopy, it has been demonstrated that trans and cis conformers of o- and
m-chlorobenzaldehydes exist [43]. Although there has been a lot of research conducted
on substituted benzaldehydes, a thorough analysis of chloro-benzaldehydes on electronic
structure properties is still lacking. Using B3LYP/6-31G’ (d,p) basic set, the molecular
structure, geometric parameters, and chloro-benzaldehyde are estimated in this current
work. It has been possible to determine information about charge transport inside the
molecule using HOMO-LUMO research. The molecular electrostatic potential (MEP) has
also been investigated.
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2. Computational Details

The DFT computation of chloro-benzaldehydes was carried out using the Gaussian 09
program package at B3LYP 6-31G’ (d,p) basic set. The optimized structural characteristics
were assessed for use in various parameters.

3. Results and Discussion
3.1. Molecular Geometry

The titled compound’s optimized geometric structure is shown in Figure 1, and a–c in
Table 1 shows the optimized bond lengths, bond angles, and dihedral angles determined
using the DFT-B3LYP level with 6-31G’(d,p) basic sets. All compounds have a C1 point
group symmetry element.
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Figure 1. Molecular structure with atom numbering of o, m, and p-Cl benzaldehydes.

Table 1. (a) Optimized geometrical parameters of o-chlorobenzaldehyde. (b) Optimized ge-
ometrical parameters of m-chlorobenzaldehyde. (c) Optimized geometrical parameters of p-
chlorobenzaldehyde.

(a)

Bond Bond Length (Å) Bond Angle Value (in 0) Torsional Angle Value (in 0)

R(1,2) 1.3892 A(2,1,6) 121.242 D(6,1,2,3) 0.0
R(1,6) 1.4055 A(2,1,10) 121.7052 D(6,1,2,11) 180.0001
R(1,10) 1.0868 A(6,1,10) 117.0528 D(10,1,2,3) −180.0
R(2,3) 1.3987 A(1,2,3) 119.5208 D(10,1,2,11) 0.0
R(2,11) 1.0867 A(1,2,11) 120.2455 D(2,1,6,5) −0.0001
R(3,4) 1.3949 A(3,2,11) 120.2337 D(2,1,6,8) −180.0001
R(3,12) 1.0873 A(2,3,4) 120.4875 D(10,1,6,5) 180.0
R(4,5) 1.3948 A(2,3,12) 120.2509 D(10,1,6,8) 0.0
R(4,13) 1.0856 A(4,3,12) 119.2615 D(1,2,3,4) 0.0
R(5,6) 1.4043 A(3,4,5) 119.3706 D(1,2,3,12) 180.0
R(5,7) 1.7638 A(3,4,13) 120.9615 D(11,2,3,4) 179.9999
R(6,8) 1.489 A(5,4,13) 119.668 D(11,2,3,12) −0.0001
R(8,9) 1.2133 A(4,5,6) 121.2421 D(2,3,4,5) 0.0
R(8,14) 1.1071 A(4,5,7) 117.5979 D(2,3,4,13) −180.0

A(6,5,7) 121.16 D(12,3,4,5) 180.0
A(1,6,5) 118.137 D(12,3,4,13) 0.0
A(1,6,8) 118.1085 D(3,4,5,6) 0.0
A(5,6,8) 123.7545 D(3,4,5,7) −180.0
A(6,8,9) 123.0545 D(13,4,5,6) −180.0
A(6,8,14) 115.7743 D(13,4,5,7) 0.0
A(9,8,14) 121.1712 D(4,5,6,1) 0.0001

D(4,5,6,8) 180.0001
D(7,5,6,1) 180.0
D(7,5,6,8) 0.0
D(1,6,8,9) 0.0021
D(1,6,8,14) −180.0019
D(5,6,8,9) 180.0021
D(5,6,8,14) −0.0019



Chem. Proc. 2023, 14, 92 3 of 7

Table 1. Cont.

(b)

Bond Bond Length (Å) Bond Angle Value (in 0) Torsional Angle Value (in 0)

R(1,2) 1.3911 A(2,1,6) 119.6855 D(6,1,2,3) −0.0001
R(1,6) 1.4024 A(2,1,10) 121.7567 D(6,1,2,11) −180.0001
R(1,10) 1.0862 A(6,1,10) 118.5579 D(10,1,2,3) 179.9999
R(2,3) 1.3993 A(1,2,3) 120.4224 D(10,1,2,11) −0.0001
R(2,11) 1.0871 A(1,2,11) 120.2862 D(2,1,6,5) 0.0001
R(3,4) 1.3957 A(3,2,11) 119.2915 D(2,1,6,8) 180.0001
R(3,12) 1.0857 A(2,3,4) 119.3431 D(10,1,6,5) −180.0
R(4,5) 1.3927 A(2,3,12) 120.8467 D(10,1,6,8) 0.0001
R(4,7) 1.7585 A(4,3,12) 119.8101 D(1,2,3,4) 0.0001
R(5,6) 1.4003 A(3,4,5) 121.0311 D(1,2,3,12) 180.0001
R(5,13) 1.0872 A(3,4,7) 119.4578 D(11,2,3,4) 180.0001
R(6,8) 1.4847 A(5,4,7) 119.5111 D(11,2,3,12) 0.0001
R(8,9) 1.2113 A(4,5,6) 119.1364 D(2,3,4,5) 0.0
R(8,14) 1.1145 A(4,5,13) 120.3919 D(2,3,4,7) −180.0

A(6,5,13) 120.4717 D(12,3,4,5) 180.0
A(1,6,5) 120.3815 D(12,3,4,7) 0.0
A(1,6,8) 120.2737 D(3,4,5,6) 0.0
A(5,6,8) 119.3448 D(3,4,5,13) −180.0001
A(6,8,9) 124.351 D(7,4,5,6) 180.0
A(6,8,14) 114.4592 D(7,4,5,13) 0.0
A(9,8,14) 121.1898 D(4,5,6,1) 0.0

D(4,5,6,8) −180.0
D(13,5,6,1) −180.0
D(13,5,6,8) 0.0
D(1,6,8,9) -0.0004
D(1,6,8,14) 180.0009
D(5,6,8,9) −180.0004
D(5,6,8,14) 0.0009

(c)

Bond Bond Length (Å) Bond Angle Value (in 0) Torsional Angle Value (in 0)

R(1,2) 1.3896 A(2,1,6) 120.3956 D(6,1,2,3) −0.0001
R(1,6) 1.4034 A(2,1,10) 121.0573 D(6,1,2,11) −180.0001
R(1,10) 1.0867 A(6,1,10) 118.5472 D(10,1,2,3) 180.0
R(2,3) 1.3997 A(1,2,3) 118.9399 D(10,1,2,11) −0.0001
R(2,11) 1.0856 A(1,2,11) 121.1629 D(2,1,6,5) 0.0
R(3,4) 1.3963 A(3,2,11) 119.8973 D(2,1,6,8) 180.0001
R(3,7) 1.7547 A(2,3,4) 121.6657 D(10,1,6,5) −180.0
R(4,5) 1.3933 A(2,3,7) 119.1476 D(10,1,6,8) 0.0
R(4,12) 1.0854 A(4,3,7) 119.1867 D(1,2,3,4) 0.0001
R(5,6) 1.4005 A(3,4,5) 118.6961 D(1,2,3,7) −179.9999
R(5,13) 1.0887 A(3,4,12) 120.0761 D(11,2,3,4) 180.0001
R(6,8) 1.4813 A(5,4,12) 121.2278 D(11,2,3,7) 0.0001
R(8,9) 1.2123 A(4,5,6) 120.6123 D(2,3,4,5) 0.0
R(8,14) 1.1148 A(4,5,13) 119.7285 D(2,3,4,12) −180.0

A(6,5,13) 119.6591 D(7,3,4,5) 180.0
A(1,6,5) 119.6904 D(7,3,4,12) 0.0
A(1,6,8) 120.1889 D(3,4,5,6) 0.0
A(5,6,8) 120.1207 D(3,4,5,13) −180.0
A(6,8,9) 124.4964 D(12,4,5,6) 180.0
A(6,8,14) 114.3928 D(12,4,5,13) 0.0
A(9,8,14) 121.1107 D(4,5,6,1) 0.0

D(4,5,6,8) −180.0
D(13,5,6,1) −180.0
D(13,5,6,8) 0.0
D(1,6,8,9) −0.0005
D(1,6,8,14) 180.0009
D(5,6,8,9) −180.0004
D(5,6,8,14) 0.0009

3.2. NLO

First-order hyperpolarizability (βtot) and its components, as well as the total molecule
polarizability (αtot) and its components, were calculated using the DFT/B3LYP/6-31G’
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level of theory. Nonlinear optical (NLO) effects can be measured using first-order hyper-
polarizability. A common molecule employed in the NLO characteristics of molecular
systems is urea. As a result, it is widely utilized as a comparison threshold value. Accord-
ing to DFT calculations as shown in Table 2, the titled compound’s dipole moment and
first-order hyperpolarizability are calculated to be 3.1243, 1.8918, and 2.1276 Debye, respec-
tively, and 155.86 × 10−30 cm5/esu, 240.86 × 10−30 cm5/esu, and 820.22 × 10−30 cm5/esu,
respectively.

Table 2. (a) Dipole moment (µtot), polarizability (αtot), and hyperpolarizability (βtot) of o-Cl ben-
zaldehyde. (b) Dipole moment (µtot), polarizability (αtot), and hyperpolarizability (βtot) of m-Cl
benzaldehyde. (c) Dipole moment (µtot), polarizability (αtot), and hyperpolarizability (βtot) of p-Cl
benzaldehyde.

(a)

Dipole Moment Polarizability Hyperpolarizability

µx −2.7695 αxx 111.140 βxxx 40.2453
µy −1.4438 αyy −0.255 βyyy 133.6728
µz 0.0824 αzz 103.61 βzzz −11.011
µ 3.1243 αxy −0.00066 βxyy 43.186

αxz −0.0010 βxxy 0.789
αyz 32.396 βxxz −0.558
α0 71.49 βxzz −2.142

βyzz −2.189
βyyz −2.265
βxyz −0.0012
β0 155.86

(b)

Dipole Moment Polarizability Hyperpolarizability

µx 1.4781 αxx 124.426 βxxx 239.0
µy 1.1778 αyy −0.6923 βyyy −47.06
µz 0.0825 αzz 93.120 βzzz −95.58
µ 1.8918 αxy −0.0022 βxyy −22.57

αxz 0.0005 βxxy −1.57
αyz 32.4588 βxxz −0.927
α0 72.28 βxzz −0.31

βyzz 6.567
βyyz 0.346
βxyz −0.0004
β0 240.81

(c)

Dipole Moment Polarizability Hyperpolarizability

µx −1.1977 αxx 136.97 βxxx 769.984
µy 1.7566 αyy 0.4221216 βyyy 74.092
µz 0.0824 αzz 85.6294302 βzzz −9.208
µ 2.1276 αxy 0.0019948 βxyy 47.957

αxz −0.0008 βxxy −1.515
αyz 32.4628691 βxxz −1.127
α0 74.34 βxzz −0.737

βyzz −2.664
βyyz 2.678
βxyz −0.0004
β0 820.22

As a result, we observe that the (αtot) and (βtot) values for titled compounds are higher
than the equivalent threshold values for urea. The extent of the first-order hyperpolarizabil-
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ity leads to the conclusion that titled compounds may be considered potential applicants in
the development of NLO material.

3.3. Molecular Electrostatic Potential Analysis

For analyzing and predicting molecular behavior, we used the molecular electrostatic
potential (MEP), which is produced by the nuclei and electrons and is viewed as static
distributions of charge reacting in a particular manner; this investigation benefits greatly
by studies of molecular electrostatic mapping (MEP) in regard to the molecular structure
connecting with its physiochemical properties [44–47]. This has been especially helpful as
an indication of active areas or places on a molecule shown with specific colors. Initially,
electrophile attracts, and it has also been successfully used in the investigation of interac-
tions involving a certain optimal reactants’ relative orientation [48]. MEP usually reflects
its values onto the molecular electron to create a visual density.

The MEP plot of the titled compounds material as shown in Figure 2 demonstrates
that the oxygen atoms of carbonyl have the greatest negative potential and are the main
active nucleophilic centers, respectively, whereas chlorine atoms have a negative potential
(blue color).
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4. Conclusions

The structural characteristics of titled compounds have been explained theoretically
using B3LYP/6-31G’ (d,p) techniques. The NBO outcome displays the transmission of
charges inside the molecules. According to MEP, the hydrogen and chlorine atoms were on
the positive potential site, whereas the oxygen atoms in the aldehyde group were on the
negative potential site.
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