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Abstract: Due to the epidemic of obesity across the world, nonalcoholic fatty liver disease (NAFLD)
has become one of the most prevalent chronic liver disorders in children and adolescents. NAFLD
comprises a spectrum of fat-associated liver conditions that can result in end-stage liver disease and
the need for liver transplantation. Simple steatosis, or fatty liver, occurs early in NAFLD and may
progress to nonalcoholic steatohepatitis, fibrosis and cirrhosis with increased risk of hepatocellular
carcinoma. The mechanism of the liver injury in NAFLD is currently thought to be a “multiple-hit
process” where the first “hit” is an increase in liver fat, followed by multiple additional factors
that trigger the inflammatory activity. At the onset of disease, NAFLD is characterized by hepatic
triglyceride accumulation and insulin resistance. Liver fat accumulation is associated with increased
lipotoxicity from high levels of free fatty acids, free cholesterol and other lipid metabolites. As a
consequence, mitochondrial dysfunction with oxidative stress and production of reactive oxygen
species and endoplasmic reticulum stress-associated mechanisms, are activated. The present review
focuses on the relationship between intra-cellular lipid accumulation and insulin resistance, as well
as on lipid and lipoprotein metabolism in NAFLD.
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1. Introduction

Nonalcoholic fatty liver disease (NAFLD) comprises a spectrum of fat-associated liver conditions
that can result in end-stage liver disease and the need for liver transplantation [1]. Simple steatosis,
or fatty liver, occurs early in NAFLD and may progress to nonalcoholic steatohepatitis (NASH),
fibrosis and cirrhosis with increased risk of hepatocellular carcinoma [1]. The world-wide epidemic
of obesity has led to nonalcoholic fatty liver disease (NAFLD) becoming one of the most prevalent
chronic liver disorders in children and adolescents [2,3]. According to a recent systematic review and
meta-analysis, the pooled mean prevalence of NAFLD in children from general population studies has
been found to be 7.6% (95% confidence intervals (CIs): 5.5% to 10.3%) and 34.2% (95% CIs: 27.8% to
41.2%) in studies based on child obesity clinics [4]. The progression from NAFLD to NASH remains
unclear in both children and adults [5]. Approximately 15%–20% of adult patients with NASH will
subsequently develop liver fibrosis and cirrhosis, but there are no equivalent long-term follow-up
studies in children [6].

The liver is one of the main ectopic sites where lipids accumulate in obese subjects. In particular,
ectopic fat accumulation occurs when the energy storage capacity of the adipose tissue is exceeded,
leading to increased net lipid flux to non-adipose organs, thereby causing lipotoxicity and insulin
resistance [7,8]. As is found in adults, children and adolescents with fatty liver suffer insulin resistance,
glucose intolerance, hypertension, and dyslipidemia (high plasma triglyceride and low levels of high
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density lipoprotein cholesterol) [9,10]. Thus, NAFLD has emerged as the hepatic component of the
metabolic syndrome [11], and a strong cardiovascular risk factor even at a very early age [12,13]. Indeed,
studies have reported associations between NAFLD and subclinical atherosclerosis and between
NAFLD and cardiac function alterations, independently of established risk factors in youth [14–16].

The mechanism of the liver injury in NAFLD is currently thought to be a “multiple-hit process”
where the first “hit” is represented by an increase in liver fat, followed by multiple additional factors
that trigger inflammatory activity [17]. Indeed, at the onset of disease, NAFLD is characterized by
hepatic triglyceride accumulation and insulin resistance, which is markedly influenced by hypercaloric
diets, sedentary lifestyle, and genetic susceptibility. Liver fat accumulation is associated with increased
lipotoxicity from the high levels of free fatty acids (FAs), free cholesterol and other lipid metabolites.
As a consequence, mitochondrial dysfunction with oxidative stress and production of reactive oxygen
species and endoplasmic reticulum (ER) stress-associated mechanisms are activated [18]. The present
review focuses on the relationship between intra-cellular lipid accumulation and insulin resistance,
as well as on lipid and lipoprotein metabolism in NAFLD.

2. Intra-Cellular Lipid Accumulation and Insulin Resistance

Insulin has important metabolic effects in several organ systems. The term “insulin resistance” is
generally utilized to describe impaired insulin-mediated glucose uptake in skeletal muscle. Insulin
resistance associated with obesity and NAFLD also involves the liver and adipose tissue. Hepatic
insulin resistance is characterized by impaired insulin-mediated suppression of glucose production,
whereas adipose tissue insulin resistance is characterized by impaired insulin-mediated suppression
of lipolysis.

Animal studies have shown that just a few days of high fat diet are sufficient to induce hepatic
steatosis and hepatic insulin resistance. In particular, Samuel et al. [19,20] have found that three days
of high fat feeding in rats specifically cause hepatic fat accumulation and hepatic insulin resistance
without significant peripheral fat accumulation or peripheral insulin resistance. Notably, these changes
were not associated with an increase in visceral fat mass or portal vein fatty acid concentrations.
Therefore, fat-induced hepatic insulin resistance may be due to activation of the protein kinase C
(PKC)-epsilon and/or c-Jun N-terminal kinase-1, highly expressed in liver, which may in turn lead to
impaired insulin receptor substrate (IRS)-1 and IRS-2 tyrosine phosphorylation by the insulin receptor
kinase (IRTK). The impairment of the insulin signaling pathway then limits the ability of insulin to
activate glycogen synthase. Additionally, fat accumulation contributes to increased gluconeogenesis
and therefore to total endogenous glucose production [19,20]. These results were confirmed in
human studies. In order to evaluate the cellular mechanisms that link hepatic steatosis to insulin
resistance, Kumashiro et al. [21] have assessed the role of inflammation, ER stress, and accumulation
of hepatocellular lipids in flash-frozen liver biopsies from 37 obese, non-diabetic individuals with
NAFLD. They found that hepatic diacylglycerol (DAG) content within cytosolic lipid droplets best
accounted for insulin resistance, being responsible for 64% variability in insulin sensitivity. Moreover,
the DAG content in lipid droplets was strongly associated with PKC-epsilon activation. These findings
were confirmed in another study showing that DAG content was the best predictor of hepatic insulin
resistance in obese individuals [22] (Figure 1).
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Figure 1. Fatty acid overload in the hepatocyte activates the protein kinase c- epsilon (PKC-ε) and/or 

c-Jun N-terminal kinase (JNK-1), with subsequent impairment of phosphorylation of the insulin 

receptor substrate(IRS)-1 and  IRS-2. This results in impairment of the insulin signaling pathway. 

The decreased insulin action on glycogen synthase  induces increased glucose secretion. Yet, fat 

accumulation stimulates  neoglucogenesis  further increasing the hepatic glucose secretion. The 

hepatocyte’s attempt to dispose of excessive triglyceride accumulation through increased VLDL 

secretion, is ineffective, further contributing to accumulation of liver fat. DNL: de novo lipogenesis. 

In addition to DAG, other lipid species as well as adipose tissue and intrahepatic inflammation 

and ER stress have been suggested to contribute to insulin resistance [23] (Figure 2). 

 

 

Figure 2. Excess fat accumulation promotes increased "de novo lipogenesis“(DNL) and fatty acid (FA) 

beta-oxidation. These mechanisms lead to reactive oxygen species (ROS) generation which induces 

oxidative mitochondrial damage and endoplasmic reticulum (ER) stress. In parallel, the accumulation 

of free (non-esterified) cholesterol and ceramides enhances both mitochondrial dysfunction and ER 

stress, and induces the activation of stellate cells as well as Kupffer cells, thus promoting inflammation 

and fibrosis. Furthermore, tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6) from adipose 

Figure 1. Fatty acid overload in the hepatocyte activates the protein kinase c- epsilon (PKC-ε)
and/or c-Jun N-terminal kinase (JNK-1), with subsequent impairment of phosphorylation of the
insulin receptor substrate (IRS)-1 and IRS-2. This results in impairment of the insulin signaling
pathway. The decreased insulin action on glycogen synthase induces increased glucose secretion.
Yet, fat accumulation stimulates neoglucogenesis further increasing the hepatic glucose secretion.
The hepatocyte’s attempt to dispose of excessive triglyceride accumulation through increased VLDL
secretion, is ineffective, further contributing to accumulation of liver fat. DNL: de novo lipogenesis.

In addition to DAG, other lipid species as well as adipose tissue and intrahepatic inflammation
and ER stress have been suggested to contribute to insulin resistance [23] (Figure 2).
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Figure 2. Excess fat accumulation promotes increased “de novo lipogenesis” (DNL) and fatty acid (FA)
beta-oxidation. These mechanisms lead to reactive oxygen species (ROS) generation which induces
oxidative mitochondrial damage and endoplasmic reticulum (ER) stress. In parallel, the accumulation
of free (non-esterified) cholesterol and ceramides enhances both mitochondrial dysfunction and ER
stress, and induces the activation of stellate cells as well as Kupffer cells, thus promoting inflammation
and fibrosis. Furthermore, tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6) from adipose
tissue enhance the inflammatory process and promotes ceramide accumulation, contributing to insulin
resistance through different pathways. Ultimately, these events trigger the hepatocyte apoptotic
pathway, leading to cell death. PKC: protein kinase; CJNK-IRS: c-Jun N-terminal kinase-insulin
receptor substrate; PP2A: Protein Phosphatase 2A.
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Increases in hepatic and muscle ceramide content have been associated with insulin resistance in
obese animals [24]. Ceramides may directly interact with protein kinase B and therefore have an effect
on insulin signaling [25].

Adipose tissue and intrahepatic inflammation may also be involved in insulin resistance in
subjects with NAFLD. Overexpression of tumor necrosis factor-alfa (TNF-α) in adipose tissue is
a common correlate of TNF-α and insulin resistance in animal models [26]. In parallel, studies
have demonstrated that obese individuals express 2.5-fold more TNF-αmRNA in fat tissue relative
to lean controls [27]. A strong positive correlation has been observed between TNF-α mRNA
expression levels in fat tissue and the extent of hyperinsulinemia, an indirect marker of insulin
resistance [27]. On the other hand, in rodent models, high-fat diets and obesity have been shown
to activate hepatic nuclear factor (NF)-κB [28,29], which cause hepatic inflammation, an increase
in local and circulating interleukin (IL)-6, IL-1β, and TNF-α, with consequent hepatic and skeletal
muscle insulin resistance [29]. In addition, administration of an antibody neutralizing IL-6 in mice
on high-fat diets upregulates skeletal muscle glucose transport and modulates production of adipose
tissue adipokines, resulting in improvement of hepatic insulin resistance and steatosis [30]. Taken
together, these observations suggest that steatosis may activate intrahepatic inflammatory pathways
that upregulate the production of proinflammatory cytokines leading to both hepatic and peripheral
insulin resistance.

The ER stress response has recently been proposed to play a critical role in hepatic lipid
accumulation, as well as in the pathogenesis of hepatic insulin resistance [31]. Activation of the
ER-stress response can lead to hepatic steatosis by activating lipogenic pathways through its ability to
stimulate several genes involved in lipid synthesis [31,32]. Moreover, this activation can cause hepatic
insulin resistance through activation of the c-Jun N-terminal kinase (JNK) pathway, which inhibits
insulin signaling through inactivation and/or degradation of IRS-1 [33]. It is known that ER stress
is increased in the liver of obese individuals with NAFLD [34], and decreased in those with weight
loss in parallel with an improvement in hepatic insulin sensitivity and the resolution of steatosis [35].
Yet, in both rodent models and human subjects [36,37], studies have demonstrated that treating obese
mice as well as obese subjects with tauroursodeoxycholic acid, which acts as a chemical chaperone that
reduces ER stress in liver and adipose tissue, results in improved insulin sensitivity in liver, muscle,
and adipose tissue.

3. Lipid and Lipoprotein Metabolism in Nonalcoholic Fatty Liver Disease

Fat accumulation in the liver occurs when the rate of hepatic triglyceride synthesis (as a result of
increased hepatic FA uptake and esterification into triglycerides as well as of “de novo lipogenesis” of
triglycerides from carbohydrate and protein metabolism) exceeds the rate of hepatic triglyceride
catabolism (which depends upon FA oxidation and export of triglycerides as very low density
lipoproteins (VLDLs)).

3.1. Fatty Acid Uptake

Hepatic lipid uptake is a function of substrate delivery and transport into the hepatocyte.
The major source of FAs for the liver is the systemic plasma FAs pool, mainly derived from the lipolysis
of subcutaneous adipose tissue triglycerides, and, to a small extent, from lipolysis of triglycerides in
circulating lipoproteins [38,39]. In contrast, only about 5% and 20% of portal vein FAs originate from
visceral fat lipolysis in lean and obese subjects, respectively [40]. It has been shown that the rate at
which FAs are released into the systemic circulation increases with increasing fat mass in both men
and women [41].

Regional mobilization of circulating triglycerides has been demonstrated to be altered in obese
patients with NAFLD. Lipoprotein lipase (LpL) hydrolyzes circulating triglycerides, followed by tissue
uptake through FA transport proteins. LpL activity appears to be blunted, in response to insulin,
in adipose tissue of obese patients. In contrast, NAFLD is associated with increased LpL as well as FA



Children 2017, 4, 46 5 of 14

transport proteins [38,39]. Taken together, these data suggest that alterations in adipose tissue lipolytic
activity, regional hepatic lipolysis of circulating triglycerides and FA transport proteins are involved in
the pathogenesis of hepatic steatosis and ectopic fat accumulation.

3.2. Hepatic de Novo Lipogenesis

The contribution of hepatic de novo lipogenesis in healthy individuals is minor. In fact, in healthy
subjects, hepatic de novo lipogenesis in the fasting and postprandial states has been reported to
account for less than 5% and 10% of FAs incorporated into intra-hepatic triglycerides (IHTG) and
VLDL-triglyceride, respectively [42]. In patients with NAFLD, the rate of hepatic de novo lipogenesis
in the fasting state is also quite small and therefore is unlikely to be primarily responsible for the
excessive liver fat accumulation. However, in these patients the rate increases in the postprandial
state [42,43]. In particular, large increases in de novo lipogenesis following meal ingestion have been
shown to precede excessive liver fat accumulation [44]. Importantly, specific dietary habits such as
high carbohydrate meal and increased consumption of fructose, have been implicated in this increased
rate and therefore in the development of NAFLD and its progression to NASH.

3.3. Fatty Acid Oxidation

The liver derives its source of energy mainly from oxidation of FAs. The oxidation of intra-hepatic
FAs occurs primarily within mitochondria beta-oxidation and, to a much smaller extent, in peroxisomes
and microsomes. Beta-oxidation requires FAs to be transported from the cytoplasm to the mitochondrial
matrix, i.e., across the mitochondrial double membrane. This process needs the “activation” of FAs
by co-enzyme A, which is accomplished by fatty acyl-CoA synthetase in the cytoplasm [45]. Then,
carnitine palmitoyl transferase (CPT1) converts fatty acyl-CoA to fatty acyl carnitine in the outer
mitochondrial membrane, which is eventually shuttled across the inner mitochondrial membrane by
carnitine translocase [46]. Of great interest, targeting mitochondrial FAs oxidation through CPT1 in
mouse models has been suggested as a strategy to treat obesity-related disorders including NAFLD [47].
Hepatic beta-oxidation/ketogenesis has been suggested to occur in patients with NAFLD [38,39,42,43].
Studies performed in rodent models have demonstrated that modulation (up- or down-regulation) of
intra-hepatic oxidation of FAs by various stimuli influences IHTG content. Accordingly, genetic or
experimentally-induced deficiency of hepatic enzymes involved in mitochondrial beta-oxidation may
cause accumulation of IHTG [48], while an increase in the expression or activity of hepatic enzymes
responsible of oxidation of FAs may decrease the accumulation of IHTG [49]. However, human studies
have not led to consistent conclusions. In fact, while subjects with NAFLD have been reported to have
hepatic mitochondrial structural and functional abnormalities (such as loss of mitochondrial cristae and
paracrystalline inclusions [50,51], decreased mitochondrial respiratory chain activity [52], impaired
ability to resynthesize ATP following a fructose challenge [53], and increased hepatic uncoupling
protein 2 [54]), all of these abnormalities could affect the production of hepatic energy but not oxidation
of FAs, possibly representing an adaptive uncoupling of oxidation of FAs and ATP production, which
allows the liver to oxidize excessive fatty acid substrates, without generating unneeded ATP [51–54].

3.4. Very Low Density Lipoproteins Secretion

Hepatic secretion of triglycerides in the form of VLDL particles for delivery to peripheral tissues
(including skeletal muscle, cardiac muscle and adipose tissue) is an important pathway for the
mobilization of liver fat. The VLDL secretion rate appears to depend, not only on the availability of
hepatic triglycerides, but also on the overall capacity for VLDL assembly. Hepatic VLDL assembly
comprises two steps, both of which require the action of microsomal triglyceride transfer protein [55].
The first step involves the partial lipidation of a newly synthesized apolipoprotein (apo) B-100 molecule
to form a small and dense VLDL precursor. In the second step, this small and dense precursor combines
with a large triglyceride droplet to form a mature and triglyceride-rich VLDL, which is subsequently
secreted into plasma [55–57]. Each VLDL particle contains one molecule of apoB100, which is required
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to export VLDL from the liver. The mechanisms responsible for the inadequate export of hepatic
VLDL-triglyceride in patients with NAFLD are unknown. In such patients, the secretion rate of
VLDL-triglyceride is much higher than that encountered in subjects without NAFLD [58], while VLDL
particles (VLDL-apoB100) have been found to be either not different [58] or only slightly greater [59].
This suggests that VLDL particles produced by NAFLD patients may contain more triglycerides
and may be larger than those produced by normal subjects. Animal studies have demonstrated that
very large VLDL particles cannot be secreted from the liver because they exceed the diameter of the
sinusoidal endothelial pores. Therefore, this inability can result in excessive IHTG accumulation,
leading to hepatic steatosis [60]. In a very recent study, Fabbrini et al. [61] evaluated the physiologic
mechanisms of weight gain-induced steatosis in 27 subjects. They found that weight gain increased
the export of triglycerides from the liver by secreting a higher number of triglyceride-rich VLDL
particles. However, this increase was not sufficient to fully compensate for the increased rate of IHTG
production [61].

4. Role of Cholesterol in the Pathogenesis of Nonalcoholic Fatty Liver Disease/
Nonalcoholic Steatohepatitis

Recent data suggest that disturbed hepatic cholesterol homeostasis and liver free cholesterol
accumulation are important for the pathogenesis of NAFLD/NASH [62–64]. Hepatic free cholesterol
accumulation in NAFLD results from alterations in intracellular cholesterol transport as well as from
unbalanced cellular cholesterol homeostasis, characterized by the activation of cholesterol biosynthetic
pathways, increased cholesterol de-esterification and attenuation of cholesterol export and bile acid
synthesis pathways [65]. In this respect, ER stress triggers the release of transcription factors, such as
sterol regulatory element binding protein-1c (SREBP-1c) and SREBP-2 in insulin-resistance, playing a
relevant role in the synthesis of FAs and cholesterol, respectively [66–69].

Free cholesterol accumulation leads to liver injury through the activation of intracellular signaling
pathways in Kupffer cells (KCs), Stellate cells (HSCs) and hepatocytes. The activation of KCs and
HSCs promotes inflammation and fibrogenesis [70]. In addition, free cholesterol accumulation in
the liver mitochondria induces mitochondrial dysfunction due to changes in membrane dynamics
and direct interaction with proteins, which alters its activity. Increases in mitochondrial cholesterol
disrupt membrane fluidity or dynamics and impair mitochondrial GSH transport [62]. This results in
increased production of reactive oxygen species, and triggers the unfolded protein response in the ER,
with consequent ER stress and apoptosis [71]. These events create a vicious circle contributing to the
maintenance of steatosis and promoting ongoing hepatocyte death and liver damage, which in turn
may lead to disease progression [72].

5. Role of Ceramides in Nonalcoholic Fatty Liver Disease

Ceramides are members of the sphingolipid family of lipids, and constitute an integral part of
the structure of the cell membrane lipid bilayer [73]. However, ceramides also have cell signaling
properties, and their accumulation in the liver, especially during periods of increased hepatic influx
of free FAs, may contribute to insulin resistance [25]. Ceramides are important second messengers
that interact with several pathways affecting insulin signaling, mitochondrial function, FA oxidation,
and therefore promoting more inflammation, oxidative stress, inflammation, and cell death, all of
which are linked to NAFLD [74]. Several risk factors for the progression of NAFLD, such as increased
inflammatory cytokines (i.e., TNF-α and IL-6) along with oxidative stress, and decreased adiponectin
have been associated with ceramide production in hepatocytes [75]. It is likely that the increase
in inflammatory cytokines and oxidative stress is conducive to the generation of ceramides. Then,
ceramides could further fuel the cellular damage caused by inflammation, promoting mitochondrial
dysfunction, thus facilitating the development of NASH [76,77].
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6. Medical Therapy

Medical treatments currently available in pediatric NAFLD are mainly aimed at (1) reducing
body weight; (2) improving or preventing hepatic steatosis, inflammation and fibrosis; and (3) treating
dyslipidemia [17]. For the purposes of this review, we will focus on pharmacological treatment
of dyslipidemia.

6.1. Orlistat

It is the only Food and Drugs Administration (FDA)-approved drug labelled for weight loss in
children above 12 years of age [78]. Orlistat inhibits pancreatic lipase to induce fat malabsorption.
Common side effects are abdominal cramps, flatulence (due to unabsorbed fat in the fecal mass),
interference with absorption of fat-soluble vitamins [17,79,80], and chronic kidney disease (due to
secondary hyperoxaluria) [81].

6.2. Omega-3 Fatty Acids

Omega-3 are polyunsaturated (PU) FAs that regulate transcription factors related to hepatic
lipid metabolism, leading to increased FA oxidation and down-regulation of pro-inflammatory
genes [82]. Omega-3 FAs have been reported to lower circulating triglycerides, by decreasing the
hepatic secretion of VLDL cholesterol or by increasing chylomicron metabolism. The effect of omega-3
FAs on triglycerides chiefly involves the suppression of hepatic VLDL apoB production and apoB pool
size. Chan et al. [83] showed that fish oil supplementation comprising 45% eicosapentaenoic acid and
39% docosahexaenoic acid (DHA) lowered triglycerides (−18%) and VLDL apo B (−20%) and the
hepatic secretion of VLDL apo B (−29%) compared with placebo. The percentage of conversions of
VLDL apo B to intermediate-density lipoprotein (IDL) apo B, VLDL apoB to low density lipoprotein
(LDL) apoB, and IDL apoB to LDL apoB also increased significantly. This effect determines a 35%
reduction in triglyceride synthesis and an increase in FA mitochondrial oxidation. In particular,
omega-3 FAs induce the aggregation of apoB after its exit from the ER, but before it leaves the Golgi.
Upon exit from the Golgi, this aggregate material becomes extensively oxidized, and converted into
large aggregates. The aggregates slowly degrade by an autophagic process [84]. In a study using
cultured hepatocytes, the effects of incubation with palmitic acid, oleic acid, and DHA on ER stress
and apoB-100 secretion were compared [85]. The investigators found that both oleic acid and palmitic
acid decrease the secretion of apoB-100 by inducing ER stress; palmitic acid was more potent, both in
terms of dose and time of exposure, most likely due to its ability to increase the synthesis of ceramide.
In contrast, DHA which was the most potent of the three FAs in terms of inhibiting apoB-100 secretion
via stimulation of autophagy, did not induce ER stress. Furthermore, it has been shown that DHA may
interfere with apoCIII gene transcription, thereby potentially decreasing the negative effect of apoCIII
on LpL activity [86].

A few studies have investigated the effects of n-3 long chain-PUFAs on pediatric NAFLD [87,88].
Nobili et al. reported a short-term (six months) [87] and long-term (up to 24 months) [88] effects of
DHA, after 6, 12, 18, and 24 months of treatment with different concentrations (DHA 250 mg/day
and 500 mg/day) combined with diet and exercise. In these studies, algae DHA supplementation
improved liver steatosis and was able to reduce the levels of serum alanine aminotransferase and
triglycerides. More recently, Nobili et al. found that treatment with DHA (250 mg/day) for 18 months
improved histopathological parameters such as hepatocyte steatosis, ballooning, and NAFLD activity
score but was ineffective on fibrosis [89]. Pacifico et al. investigated the effect of six months of DHA
on liver fat in 58 children with biopsy-proven NAFLD [90]. Hepatic fat fraction as measured by
magnetic resonance imaging decreased significantly in the group receiving DHA in comparison with
that receiving placebo.
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6.3. Ezetimibe

The FDA has recently approved ezetimibe use for treatment of hypercholesterolemia in children
above 10 years. Ezetimibe selectively inhibits cholesterol absorption from intestine by binding to
the brush border, and consistently lowers LDL-cholesterol [91]. Ezetimibe has also been shown to
decrease hepatic lipid synthesis and favor lipid removal from the liver by preventing the degradation
of microsomal triglyceride transfer protein, with a consequent inhibition of the development of NAFLD
in animal models [92,93]. These results suggest that ezetimibe can increase lipoprotein assembly in the
liver and perhaps in the intestine. Studies in adult patients with NAFLD have shown improvement
in hepatic histology but with worsening or no effects on insulin sensitivity [94,95]. Promising results
have been demonstrated when ezetimibe has been used in combination with statins [92]. No studies
are available in children with NAFLD.

6.4. Statins

Statins are specific inhibitors of 3-hydroxy-3methylglutaryl coenzyme A reductase,
the rate-limiting enzyme in cholesterol biosynthesis [96]. They also promote the synthesis of
LDL-receptor (LDL-r) acting on the LDL-r gene, ultimately increasing the expression of membrane
LDL-r [91]. In addition to their cholesterol-lowering effects, statins also possess pleiotropic properties
that account for their anti-inflammatory, anti-proliferative, anti-thrombotic, anti-oxidative, anti-cancer,
and immuno- modulatory actions in vitro and in vivo [97]. Statins can reduce liver triglycerides [98]
and ameliorate severe hepatic steatosis [99]. The American Association for the Study of Liver Disease
Guidelines recommends that statins can be used for treatment of dyslipidemia in patients with NAFLD
and NASH [100]. Statins are now considered as a first line pharmacological intervention for pediatric
patients with severe dyslipidemias [101]. However, no data are available in pediatric NAFLD.

6.5. Farnesoid X Receptor (FXR) Agonists

The farnesoid X receptor (FXR) is a bile acid-activated nuclear receptor. When bound to the
FXR, lipophilic bile acids improve insulin sensitivity and decrease hepatic gluconeogenesis and
circulating triglycerides [102]. These effects are mediated by decreased hepatic lipid synthesis and
increased peripheral clearance of VLDL [103–105]. Thus, targeting FXR may offer new perspectives
for the treatment of NAFLD. Support comes from studies investigating the effects of FXR activation
by 6-ethyl-chenodeoxycholic acid, a potent activator of FXR, in rats with diabetes mellitus, obesity,
insulin resistance, and liver steatosis [106]. FXR activation protected against body weight gain and
liver and muscle fat deposition, and reversed insulin resistance. Activation of FXR reduced liver
expression of genes involved in FA synthesis, lipogenesis and gluconeogenesis. Preliminary data in
adult patients with NAFLD treated with 6-ethyl-chenodeoxycholic acid (obeticholic acid) have shown
promising results [107], but its long-term benefits and safety need clarification. There are no data in
pediatric populations.

7. Conclusions

NAFLD is one of the most prevalent chronic liver disorders in children and adolescents.
The disease develops when the rate of hepatic triglyceride synthesis (as a result of increased hepatic
fatty acid uptake and esterification into triglycerides as well as of “de novo lipogenesis” of triglycerides
from carbohydrate and protein metabolism) exceeds the rate of hepatic triglyceride catabolism (which
depends upon fatty acid oxidation and export of triglycerides as VLDLs). Genetic and physiological
mechanisms regulating these processes become deregulated in the presence of nutritional oversupply,
leading to development of NAFLD and hepatic insulin resistance. Hepatic insulin resistance is
associated with increases in intra-hepatic triglyceride and DAG concentrations, with the latter
being responsible for activation of PKC-epsilon and the subsequent inhibition of IRTK activity.
Furthermore, in addition to DAG, other lipid species as well as adipose tissue and intrahepatic
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inflammation and ER stress have been suggested to contribute to hepatic insulin resistance. Therapies
targeted to lipid and lipoprotein metabolism would be effective options for treating NAFLD and its
cardiometabolic complications.
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