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Abstract: Allergic diseases represent a global burden. Although the patho-physiological mechanisms
are still poorly understood, epithelial barrier dysfunction and Th2 inflammatory response play
a pivotal role. Barrier dysfunction, characterized by a loss of differentiation, reduced junctional
integrity, and altered innate defence, underpins the pathogenesis of allergic diseases. Epithelial
barrier impairment may be a potential therapeutic target for new treatment strategies Up now,
monoclonal antibodies and new molecules targeting specific pathways of the immune response have
been developed, and others are under investigation, both for adult and paediatric populations, which
are affected by atopic dermatitis (AD), asthma, allergic rhinitis (AR), chronic rhinosinusitis with nasal
polyps (CRSwNP), or eosinophilic esophagitis (EoE). In children affected by severe asthma biologics
targeting IgE, IL-5 and against IL-4 and IL-13 receptors are already available, and they have also been
applied in CRSwNP. In severe AD Dupilumab, a biologic which inhibits both IL-4 and IL-13, the
most important cytokines involved in inflammation response, has been approved for treatment of
patients over 12 years. While a biological approach has already shown great efficacy on the treatment
of severe atopic conditions, early intervention to restore epithelial barrier integrity, and function may
prevent the inflammatory response and the development of the atopic march.

Keywords: children; inflammation; biologics; severe asthma; allergic rhinitis; atopic dermatitis;
eosinophilic esophagitis

1. Introduction

Allergic diseases are a global burden in terms of health-care resources and on patients’
quality of life. They include a broad spectrum of diseases, affecting airways, the skin, and
the gastrointestinal tract, and they present with different clinical manifestations. Patients
with one allergic disease have a higher probability of having other atopic comorbidities,
suggesting that these conditions share common pathways [1,2].

In 2017, Pothoven and Schleimer hypothesized that epithelial barrier dysfunction can
result in the development of allergic diseases, firstly proposing the ‘barrier hypothesis’ for
type 2 inflammatory diseases [3].

This hypothesis has been recently revisited by C. Akdis, who argued that the impair-
ment of the epithelial barrier, caused by different damaging agents linked to industrializa-
tion, urbanization, and modern life, may explain the rise in allergic, autoimmune and other
chronic conditions: the so-called extended ‘epithelial barrier hypothesis’ [4].

The dysfunction of the epithelial barriers in different body sites is characterized by
an impairment in cellular differentiation, junctional integrity, and innate defence. Genetic
predisposition, environmental factors, and abnormal inflammatory cascades can contribute
to the establishment and maintenance of the epithelial barrier dysfunction, leading to expo-
sure to environmental and food allergens with consequent allergic sensitization and chronic
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disease [5]. Several allergens, pathogens and environmental agents, including cigarette
smoke, surfactants, enzymes and emulsifiers, present in processed food nanoparticles and
microplastics, can damage the epithelial barrier [6–8].

Allergen exposure can trigger an abnormal type 2 immunity response, leading to the
recruitment of inflammatory cells in barrier sites with consequent tissue inflammation,
disruption, and remodelling. At first, antigens penetrate through the damaged barrier,
then they trigger the activation of an innate immune response involving epithelial cells
and resident immune cells. In this phase, antigens are captured by dendritic cells (DC) and
presented to naive T cells, inducing their differentiation into T helper 2 (Th2) cells. These
Th2 cells favour the B cells’ production of a specific isotype of immunoglobulin (IgE), and
its receptor is expressed by mast cells and basophils. In this phase, a pool of memory B and
Th2 cells is created [9].

Further exposure to the same antigens causes cross-linking between antigens and IgE
bound-to-mast cells and leads to the immediate activation of an immune cascade, which is
rapid, amplified and effective. Collaterally, this enormous inflammatory response causes
tissue damage and a subsequent repair process, leading to tissue remodelling.

It has been long debated whether inflammation is the first cause of barrier dysfunction
or if the epithelial barrier impairment can promote allergen exposure and then trigger an
abnormal inflammatory response.

On the one hand, an abnormal immune response at barrier sites, due to repeated
allergen exposure, causes perpetual damage to epithelial integrity and to the consequent
repair process, inducing a vicious circle of injury-repair (see Figure 1). Conversely, recent
studies suggest that a pre-existing barrier dysfunction may be demonstrated in most atopic
patients before the appearance of allergic manifestations. Furthermore, mouse models
with defective epithelial homeostasis have showed spontaneous allergic sensitisation.
New evidence supporting the primary role of epithelial damage in the pathogenesis and
progression of allergic diseases has been growing [3].

Figure 1. Barrier dysfunction and type 2 inflammatory response in asthma, CRSwNP, AD, and EoE.
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The alterations in the composition of the microbiota, e.g., a reduced biodiversity, have
been demonstrated in different allergic diseases [10–13]. The status of dysbiosis provokes
tissue inflammation due to an up-regulation of pro-inflammatory environmental, which, in
turn, promotes barrier damage, leading to a vicious circle.

This review aims to give an overview of the pathogenetic role of barrier dysfunction
in allergic diseases in children. We hereby focus on atopic dermatitis (AD), asthma, aller-
gic rhinitis (AR), chronic rhinosinusitis with nasal polyps (CRSwNP), and eosinophilic
esophagitis (EoE). Understanding the central pathways involved in the establishment
of allergic diseases may be essential in developing new strategies for their prevention
and treatment.

2. Methods

This review focuses on epithelial barrier dysfunction and type 2 inflammatory re-
sponse in asthma, allergic rhinitis, chronic rhinosinusitis, atopic dermatitis, and eosinophilic
esophagitis. A comprehensive search was conducted using the electronic databases MED-
LINE via PubMed, Embase databases, and Web of Science. The keywords used were:
asthma, allergic rhinitis, chronic rhinosinusitis, atopic dermatitis, eosinophilic esophagitis,
epithelial barrier dysfunction, type 2 inflammatory diseases, and children.

3. Barrier Dysfunction in Asthma: How Tight Junctions and Altered Mucus Play an
Important Role

Asthma is a chronic inflammatory disease of the airways, characterized by an airflow
obstruction. It’s the most common chronic respiratory disease in childhood, and despite
improvement in its care, asthma remains a significant public health problem [14].

The typical symptoms are coughing, wheezing, shortness of breath, and chest tightness.
They occur episodically due to a sudden, but reversible, airway constriction (an acute
inflammation on a chronic basis). Exacerbation factors include viral infections, exposure to
allergens and irritants, exercise, emotion, change in weather, and humidity.

Recent insights highlight the important role of the airway epithelium as one of the
main factors involved in the development of, but also the maintenance of, asthma.

The airway epithelium is one of the barriers protecting our body from external noxious
agents. In healthy patients, it prevents the penetration of inhaled pathogens such as
allergens, pollution, viruses, bacteria, and fungi [15].

Normally, the epithelium is pseudostratified in the trachea and bronchi and cuboidal
in the bronchioles. This cellular barrier is covered with mucus that contains antimicrobials
peptides and antibodies that trap and transport inhaled particles to the mouth where they
can be swallowed or expectorated [16,17].

In asthma, both these physical barriers are impaired due to endogenous genetic
variations and to chronic inflammation processes.

To begin, asthmatic patients exhibit both quantitative and qualitative alteration of
mucociliary clearance (MCC). On the one hand, mucin content is increased between 8–15%
(normal range 2%). This abnormal amount of mucin changes the quality of mucus, leading
to an impaired function of the cilia [17,18].

On the other hand, we can find an alteration in the ratio of MUC5AC to MUC5B.
Normally, the mucus of healthy individuals predominantly contains MUC5B. In asth-
matic patients, we find a reduced amount of MUC5B and an increased expression of
MUC5AC [19].

This unbalanced process is primarily due to the genetic alteration in the expression of
MUC5AC, KIF3A, and EFHC1 [20], and it causes mucus overproduction, airway obstruc-
tion, and the accumulation of undesired substances, resulting in chronic inflammation.

Notably, patients with type Th2-high signature asthma consistently show an increased
production of MUC5AC,—a process mediated by both IL-13 and epidermal growth factor.

Secondly, it is due to the epithelial barrier efficiency in the three types of junctions
that anchor a cell to its neighbours. These junctions are: the Adherens junction (AJs), the
Tight junction (TJs), and hemidesmosomes. AJs form zonula adherens, in which different
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components are involved (e.g., E-cadherin, actinin, vinculin, alfa-catenin, and beta-catenin).
TJs form a complex called zona occludens that contains claudins, occludins, and junctional
adhesion molecules. In healthy airways, TJs and AJs constitute a dense network that
prevent the movement of basically all molecules.

In asthmatic patients, we typically find a lack of, and a dysfunction of, E-cadherin [21],
alfa-catenin, ZO-1, and occludin [22], leading to an impaired barrier function. This al-
teration is primarily due to a genetic abnormality in different genes such as PCDH1 and
CDHR3 [23,24]. Moreover, viral infections induce epithelial alarmins (IL-25, IL-33, e TSLP),
which cause the activation of type-2 innate lymphoid cells (ILC2) [25–27].

These cytokines, with a variety of direct and indirect mechanisms, interact with Th2
immunity cells and stimulate the production of typical Th2 cytokines (IL-4, IL-5, IL-13)
inducing, once again, a barrier dysfunction [28–30]. In turn, genetic abnormalities cause an
overexpression of alarmins, which represents a strong risk factor for the development of
asthma [31,32].

However, not only genetics impact barrier integrity and function. Infections may
also induce epithelial dysfunction through three different mechanisms: viruses cause
a modification of the junctions’ function; they also destroy epithelial cells due to their
cytotoxic and cytopathic effect; lastly, the antiviral immune response releases Th2-type
cytokines that directly affect epithelial barrier integrity, inducing a downregulation of E-
cadherin, beta-catenin, and occluding [33,34]. In addition, allergens, captured by dendritic
cells (DCs), activate Th2 cells that produce cytokines such as IL-4, IL-5, and IL-13. These
Th2 cytokines drive IgE production by B-lymphocytes (IL-4), eosinophilic infiltration into
the airways (IL-5), goblet cell hyperplasia, and excessive mucus hypersecretion (IL-13),
causing a significant barrier dysfunction, that, in turn, leads into an increased susceptibility
towards pathogens and allergens.

Last but not least, allergens also promote the spread of the inflammatory process and
may contribute to airway remodelling [35].

Another pathogenetic mechanism that has been hypothesized as playing a role in bar-
rier dysfunction is the mesenchymal transition of the epithelial cells, due to infections and
loss of tight junctions causing a reduction in cell repair capacity and cell differentiation [36].

To sum up, chronic exposure to allergens and respiratory viruses causes serious
damage to the barrier, inducing dysfunction and disruption of the epithelial barrier. All
these mechanisms increase the barrier’s permeability, creating a vicious circle between
inflammation and barrier damage. “Which came first?” is a question that currently re-
mains unanswered.

4. Therapeutic Implications and Novel Treatment Strategies

Taking all the above into consideration, we can certainly consider the epithelial barrier
of the airways as a potential therapeutic target for new treatment strategies, in particular
with the aim of strengthening TJ and AJ and controlling mucus production.

Over the last decades, new monoclonal antibodies to bind specific targets of the
immune response, both for the adult and the paediatric population, have been developed.
This has markedly changed the therapeutic approach: in paediatric asthma, this novelty
was initially represented by Omalizumab, a recombinant DNA-derived humanized anti-
IgE monoclonal antibody [37], but subsequently, other biologics have been approved for
use and others are under investigation (see Figure 2).

Omalizumab is indicated as an add-on treatment for children with severe allergic
asthma with elevated serum IgE (>30 and <1500 IU/mL) and serum IgE positivity for at
least one aeroallergen. After binding circulating IgE, Omalizumab decreases IgE levels,
inhibits IgE binding with its receptors, and downregulates the expression of high-affinity
IgE receptors FcεRI on mast cells, basophils, and dendritic cells [38]. Overall, this results in
a decreased release of inflammatory mediators related to the allergic response.



Children 2021, 8, 1165 5 of 25

Figure 2. Biologics approved for the treatment of severe asthma: mechanisms, patient selection criteria, and predictors of
good responses.

Decreased sputum, bronchial eosinophils and T cells were observed in adult bronchial
biopsies after Omalizumab [37]. Omalizumab has been highlighted as having a possible
role in reducing the expression of mediators of tissue remodelling at the bronchial level [39].

The efficacy and safety of Omalizumab in the paediatric population emerged from
several RCTs [40–42].

It was demonstrated that Omalizumab reduces the number and frequency of exacer-
bations when withdrawing ICS and also improves quality of life [41].

Its efficacy in reducing seasonal exacerbations, triggered by respiratory viruses, has
also been reported. The mechanism, not yet fully understood, probably involves the
restoration of antiviral defences (for example, type I interferon production) [43].

Despite the long-term clinical experience in the use of Omalizumab, the optimal
duration of therapy in patients who achieved a good clinical response, and the long-term
effects after discontinuation, still need to be defined. The efficacy and safety of Omalizumab,
even 24 months after its suspension, have recently been demonstrated [44].

Mepolizumab is an anti-IL-5 humanized monoclonal antibody that reduces circulating
eosinophils.

Mepolizumab has demonstrated a favourable efficacy profile in decreasing the number
of asthma exacerbations, improving lung function, controlling asthma, and quality-of-life
(QoL) scores, as well as significantly reducing OCS use [45–47].
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Mepolizumab has shown a good pharmacokinetic, pharmacodynamic, and safety
profile, both in the short and long term, even in the paediatric population between 6 and
11 years, and it has also demonstrated efficacy in improving asthma control [48].

Mepolizumab is currently indicated as an adjunct treatment of severe eosinophilic
asthma (>150 cells/µL) in adults, and in children over 6 years of age.

Reslizumab, an anti-IL-5 humanized monoclonal antibody, has been approved by
the European Medicines Agency as an add-on therapy in adults with uncontrolled severe
eosinophilic asthma (blood eosinophil count ≥400 cells/µL). It is the only drug to be
administered intravenously, with the dosage based on the patient’s weight. It decreases
exacerbations and improves lung function and quality life [49]. Benralizumab binds
both the IL-5 receptor subunit and the FcγRIIIa receptor, expressed in natural killer cells,
inducing a rapid depletion of eosinophils through a mechanism of apoptosis. Benralizumab
has been effective in reducing asthma exacerbations and the use of OCS in adults [50].
Currently, Benralizumab is approved in adults (>18 years) with severe eosinophilic asthma.

Dupilumab is a human monoclonal antibody effective against the IL-4 receptor chain
(IL-4Ra) blocking downstream signalling via both the IL-4 and IL-13 receptors.

Dupilumab is approved for the treatment of severe type 2 asthma characterized by
high levels of serum eosinophils and/or FeNO.

Dupilumab has been effective in reducing both asthma exacerbations and improving
pulmonary function in 107 adolescents (>12 years) with severe asthma [51]. Dupilumab
reduces steroid doses in adults and adolescents [52].

Recently, a phase III trial (NCT02948959), aimed at evaluating the efficacy of Dupilumab
in children aged 6 to 12 years with uncontrolled persistent asthma, was concluded [53,54],
as well as a phase III trial in children aged 6 to 11 affected by severe atopic dermatitis.

There are not enough data on validated biomarkers that predict responses to different
available biological therapies in children. Recent studies have demonstrated that Omal-
izumab is more effective in asthmatic children with comorbidities (multiple sensitizations,
atopic dermatitis, and food allergies), with high peripheral eosinophil counts and with a
high pre-treatment total IgE and high fractional exhaled nitric oxide levels [55]. Further
investigation is needed to highlight the presence of predictors of good responses to spe-
cific pharmacological therapies, which, in turn, could be useful in applying personalized
therapies (see Figure 2).

Moreover, the identification of phenotypic heterogeneity, especially in severe asthma,
in both adults and children, has stimulated the research for phenotype-specific interven-
tions towards precision medicine [56].

Eosinophilic or allergic asthma phenotypes represent the target for biologics, while
there are no approved therapeutic strategies specific for patients with confirmed eosinophil-
low asthma.

An alternative approach may be to target an upstream mediator of the inflammatory
response in order to achieve effective asthma control in different endotypes of severe
asthma. A potential target is thymic stromal lymphopoietin (TSLP), which is activated by
multiple triggers, such as viruses and other irritants. Tezepelumab is a first-in-class human
monoclonal antibody that blocks the activity of TSLP acting, in part, by inhibiting the
production of pathologic mucins. Clinical trials with Tezepelumab have showed promising
results in patients with a variety of asthma phenotypes, demonstrating significant reduc-
tions in exacerbations and improvements in lung function, symptom control, and HRQoL.
Phase 3 trials of Tezepelumab are underway with the aim of assessing the potential efficacy
of Tezepelumab in patients with a broad range of severe asthma phenotypes, evaluating
both the oral corticosteroid-sparing potential of Tezepelumab and the effect of Tezepelumab
on airway inflammation and airway remodelling [57]. Monoclonal antibodies targeting
IL-33 or ST2 are in clinical development, in phase 2 trials (see Table 1). No clinical studies of
anti-IL-25 antibodies are currently in progress, although the potential role in virus-induced
asthma exacerbations [58].
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5. Barrier Dysfunction in Allergic Rhinitis and Chronic Rhinosinusitis: The Important
Role of Mucus Hypersecretion and Goblet Cells Up-Regulation

Allergic Rhinitis (AR) is an IgE-mediated inflammatory disorder of the nasal mucosa
induced by allergens.

It’s one of the most common chronic diseases in children and has a considerable
impact on quality of life. Its incidence depends on age and domicile, and its prevalence is
globally increasing [59].

Clinically, AR is characterized by four major symptoms: rhinorrhoea, sneezing, nasal
itching, and nasal obstruction [60].

In this case, recent studies highlight the essential role of the nasal epithelium in the
development and progression of AR [61].

The nasal epithelium plays a key role in protecting the body. It is often the first tissue
to come into contact with allergens, pollutants, pathogens, and other noxious stimuli.

In healthy patients, the first third of the nasal cavity is formed by a stratified squamous
epithelium lying over a layer of proliferative cells. The further two thirds of the cavity are
lined with a pseudostratified columnar ciliated epithelium, which contains goblet cells
which, in turn, overlie a basement membrane.

Even in AR, this physical barrier is impaired due to genetic variations and chronic
inflammation.

AR is characterized by an impaired nasal epithelial barrier integrity due to dysfunction
and disruption of the Tight Junction (TJ).

Normally nasal epithelial cells are anchored to one other by Tjs, which form a com-
plex called zona occludens (ZO) containing claudins, occludins, and junctional adhesion
molecules [62]. These proteins are essential in regulating the passage of ions and molecules
through the membrane [63].

In patients with AR, we can detect a modified gene expression, which causes a
reduction in ZO-1 [64].

Moreover, the allergens’ protease can disrupt the tight Junctions (specifically ZO-1).
This was evident specifically for Dermatophagoides pteronyssinus and various pollens.
The mechanisms involved are numerous, but they all directly damage TJ proteins increasing
epithelium permeability [65,66].

Finally, the Th2-inflammatory process releases specific cytokines such as IL-4, IL-5,
and IL-13 which directly affect the epithelial barrier inducing a disruption of ZO-1 [64].

In AR, the primum movens is the allergic response. The development of allergic
sensitization that characterizes AR is determined by a strong genetic component; in fact,
atopic patients inherit the predisposition to develop immune responses IgE/mast cells/TH2
lymphocytes [67].

The allergen-driven inflammatory response is led by IgE overproduction causing,
among other mediators, the release of histamine. The synthesis of IgE is driven by the
exaggerated Th2-response and the dysfunction of T-regulatory cell 1 response [68]. More-
over, Th2 inflammation is responsible for the release of cytokines (IL-4 and IL-13), the
recruitment, maturation, and survival of accessory cells such as eosinophils, basophils, and
mast cells.

All these mechanisms (especially histamine and cytokine IL-4 and IL-13 production)
are crucial in altering the epithelial permeability interfering with the expression of TJs [69].

Moreover IL-4, IL-5, and IL-13 induce chronic inflammation creating a self-maintaining
vicious circle.

Chronic Rhinosinusitis with Nasal Polyps (CRSwNP) is a particular phenotype of
chronic rhinosinusitis (CRS) based on endoscopy and computed tomography findings
of nasal polyposis. The diagnosis requires four cardinal symptoms: nasal obstruction,
drainage, loss of smell, and facial pain or pressure that persist over 3 months [70].

It is an undeniable burden for healthcare even if an accurate measure of its incidence
has yet to be determined [71].
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As well as in asthma, abnormalities in the physical barrier, mucociliary clearance,
and local innate antimicrobial responses have been described in CRSwNP. The latter is
characterized by an irregular and decreased expression of the TJ molecules such as occludin
and ZO-1 and weakened desmosomal junctions [72,73]. Moreover, TJ integrity is negatively
affected by inflammation and viral infections [74]. All these factors combine to induce a
functional and structural dysfunction of the epithelial barrier.

CRSwNP patients present a quantitative and qualitative alteration in mucus produc-
tion due to the alteration of pendrin, periostin, and PLUNC family molecules [75]. This
results in an inefficient clearance of the nasal airways and in the accumulation of foreign
antigens contributing to chronic inflammation.

Several external pathogens such as bacteria (especially S. Aureus), fungi, viruses, and
allergens induce nasal epithelial cells to produce epithelial derived cytokines (TSLP, IL-33
and IL-1). Each of these cytokines is able to activate, via both innate and adaptive immunity,
type 2 inflammation. On the one hand TSLP induces Th2 cell differentiation causing the
activation of adaptive type 2 inflammation. On the other hand, TSLP and IL-33 stimulate
ILC2s to produce type 2 cytokines (IL-4, IL-5, IL-13) via an innate type 2 inflammation.
Finally, TSLP, IL-33, and IL-1, stimulating epithelial and mucosal mast cells, produce IL-5
and IL-13 [76–78].

Type-2 cytokines, following the same pathways of asthma, induce IgE production
by B-cells and plasma cells (IL-4), eosinophilic infiltration into the airways (IL-5), goblet
cell hyperplasia and excessive mucus secretion (IL-13) building the foundation for chronic
inflammation and subsequent tissue remodelling [79].

6. Therapeutic Implications and Novel Therapeutic Strategies

In this case, improving the integrity and function of the nasal epithelial barrier repre-
sents the mainstay therapeutic strategy.

The easiest way to preserve barrier efficiency is to control the inflammatory response.
To this purpose, antihistamine drugs and topical glucocorticoids have already been used in
clinical practice as a first line treatment strategy. However, some patients with moderate-
to-severe AR have an inadequate response to currently recommended medications [80].
In particular, in this group, the use of biological therapies, such as Omalizumab, could be
life-changing. Moreover, particular benefits could be derived from asthmatic patients with
comorbidity [81,82].

However, the use of Omalizumab for the treatment of AR has not yet been approved
neither in the adult nor in the paediatric population.

Instead, the use of a biological therapy has already proven its efficacy in adult patients
suffering from CRSwNP and could be of undoubtable interest in the paediatric population
as well.

Omalizumab was the first biological drug approved for treatment in adult patients (18
years and over) with CRSwNP, following the same dosage schedule used in the treatment of
severe asthma. Three phase III trials (NCT03280537, NCT03280550, NCT03478930) showed
that patients treated with Omalizumab achieved a significant reduction in respiratory
symptoms and nasal polyp size as early as after only 4 weeks of treatment [83].

Moreover, Dupilumab has recently been approved for the treatment of CRSwNP,
as several trials have demonstrated its efficacy and safety in adult patients [53]. It led
to a significant reduction in the endoscopic nasal polyp score in CRSwNP, but it also
showed improvement in the self-reported sense of smell in patients without asthma.
Furthermore, 58% of the population studied had undergone prior nasal surgery, suggesting
a possible target patient [84]. These data suggest a possible major role of signalling
pathways mediated by IL-4 and IL- 13 in the pathogenesis of CRSwNP.

Three studies reported the use of anti–IL-5 treatment, and they showed greater im-
provement in the endoscopic nasal polyp score in the treatment groups [85–87]. In the
Reslizumab study, the findings were statistically significant in those patients with high
intranasal IL-5 levels. Gavaert et al. showed that Mepolizumab is effective in reducing
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symptoms and polyp size in adults with steroid-refractory CRSwNP [88]. In two phase
III trials (NCT03085797, NCT03401229), Mepolizumab and Reslizumab were, respectively,
safe and effective as an add-on therapy for bilateral CRSwNP [80]. Paediatric studies are
not currently available.

7. Barrier Dysfunction in Atopic Dermatitis: The Pivotal Role of Stratum Corneum

The skin is an important immunological organ that acts as a primary barrier between
the body and the environment. It consists of epidermal proteins of the stratum corneum
(SC), stratum granulosum, tight junctions, and epidermal lipids, such as ceramides. The SC
is crucial for skin barrier function. It is the outer layer of skin, placed above the epithelial
layer of keratinocytes and interspersed antigen-presenting cells called Langerhans cells
(LC) [89].

The SC is composed of proteins, including filaggrin, involucrin, loricin, etc., and an
outer lipid layer. Keratin filaments are aggregated through filaggrin (FLG) monomers
which derive from pro-filaggrin cleavage. FLG degradation products contribute to the natu-
ral moisturizing of the SC and to the maintenance of the acid pH of the epidermidis [90–92].
The extracellular matrix of the SC is composed of lipids such as ceramides, long-chain fatty
acids, and cholesterol that play essential roles in maintaining epidermal permeability and
guaranteeing skin barrier integrity [93,94].

There has been increasing evidence in the last decades that barrier impairment is the
hallmark of AD [95].

Epidermal barrier dysfunction results in increased permeability, reduced integrity
of the epidermis, increased transepidermal water loss (TEWL), drying of the skin, and
ruptures of the skin [96]. Of note, skin barrier impairment has been observed in lesioned
skin but also in skin without lesions [97].

In infancy, the skin barrier is physiologically more permeable due to low lipid concen-
tration in the SC and the reduced production of FLG cleavage derivates. In particular, FLG
products are lower in cheeks than in elbow or nasal tips during the first year of life and
this may explain why cheeks are a common first site of AD in early childhood [98,99].

A number of different genes have been implicated in the pathogenesis of AD, provok-
ing structural abnormalities of the epidermis and immune dysregulation [100].

Several studies have demonstrated that FLG loss-of-function mutations are associated
with atopic eczema [101–103] and AD phenotype in FLG null-mutation has an earlier onset,
greater severity, and increased persistence [104]. Furthermore, inflammatory cytokines pro-
duced in AD, especially IL-4 and IL-13, have been demonstrated to reduce FLG expression
in keratinocytes, leading to the perpetuation of a vicious circle of inflammation and tissue
damage [105–107].

However, nearly 40% of patients with FLG null-alleles don’t exhibit the AD phenotype,
suggesting that pathophysiology of AD goes far beyond FLG mutations [92].

In fact, other proteins of the corneal layer such as corneodesmosin, locrin, and involu-
crin can be altered in AD with the consequent impairment of barrier skin function and
type-2 immune activation [104,108–110]. Additionally, lipids such as ceramides are dimin-
ished in patients with AD and inflammatory cytokines released during allergic responses
can further reduce the lipid content of the SC and worsen barrier dysfunction [93,111–113].

Environmental factors such as detergents and microplastics have been demonstrated
to alter skin barrier integrity. In particular, anionic surfactants in commercial detergents can
disrupt the tight junctions of the SC [6] while other components, such as papain, promote
the release of inflammatory cytokines [114].

The impairment of barrier function facilitates the penetration of allergens and micro-
bial pathogens that can trigger an unwanted immune response to innocuous environmental
stimuli leading to AD and/or other systemic allergies [89].

The importance of skin barrier impairment as primum movens of the pathogenetic
mechanism is supported by the observation that skin barrier dysfunction, in the first
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week of life, detected as increased transepidermal water loss, has been associated with the
increased risk of developing allergies in the first 2 years of life [99,115].

Finally, evidence from past decades has shown that skin microbiome plays a crucial
role in the maintenance of cutaneous homeostasis and the defence against pathogenic
microorganisms. AD is characterized by a dysregulation of microbiome which can be
caused by many environmental factors such as pH, temperature, dryness, hygiene practices,
and antibiotics; all these factors can alter the richness and the diversity of resident bacteria
with notable consequences for skin homeostasis [116].

Coagulase-negative staphylococci (CoNS) such as Staphylococcus epidermidis and
Staphylococcus hominis are among the most common Gram-positive species inhabiting
the human skin [117]. These bacteria play an active role in contrasting the colonization of
Staphylococcus aureus and other pathogens [118]. The lack of antimicrobial peptides in
AD and disorders of innate immunity including Toll-like receptors favour virulent strains
of Staphylococcus aureus colonization [119].

The dysbiosis characterizing AD skin, with a higher colonization of Staphylococ-
cus aureus, can alter the SC protein and lipid composition, and it can exacerbate skin
inflammation by Th2 cytokines [93,118,120–122].

In general, the immune response activated by penetrating agents includes a first
sensitization phase and a subsequent effector one. The sensitization phase is initiated
when allergens are captured by LC and transported to local lymphonodes. There, antigen
presentation to naive CD4+ T cells drives the proliferation and differentiation of them into
Th2 cells (allergen specific CD4 T cell), releasing high levels of cytokines as IL-4 and IL-13.
In the presence of these cytokines, B-cells are driven to produce specific IgE and to generate
a memory pool of allergen-specific B cells and CD4+ positive Th2 cells [107].

Epithelial cells in AD skin play a role in initiating the immune cascade during the
sensitization phase through the secretion of thymic stromal lymphopoietin (TSLP) that
can activate DCs and stimulate them to migrate to skin draining lymphonodes where they
promote CD4+ differentiation. TSLP is highly expressed by keratinocytes in the SC of
patients with AD and by epithelial cells in asthmatic children [123], and it seems to be
correlated with AD severity in children valuated by SCORAD [124]. Elevated expression of
TSLP can be found in the skin months before the development of AD [125]. Of note, TSLP
promotes migration of skin presenting-antigens to mesenteric lymphonodes creating a sort
of skin to gut migration [107,126].

IL-33 is another important cytokine released and involved in inflammatory cascade in
AD [107,127]. Epithelial cells physiologically produce IL-33, which resides in the cellular
nucleus where it controls gene expression. In the event of barrier cell disruption, IL-33 is
released and acts as an alarm signal by binding to mast-cells, DCs, resident macrophages,
and group 2 innate lymphoid cells, inducing the production of inflammatory cytokines
and proteases to digest connective tissue and favour leukocyte penetration [127]. IL-33
deficient mice have a reduced severity of food-induced reactions, suggesting a potential
role of this cytokine in food allergies.

Gain of function genes encoding these cytokines and their receptors can contribute to
development of AD [128–130]. Interestingly, not only can hereditary mutations alter gene
expression, but also epigenetic mechanisms may regulate cytokine production. Epigenetic
modifications, such as genomic DNA modification and microRNA posttranscriptional
regulation can be inherited or acquired through environmental exposure. In particular,
stress, obesity, low vitamin D levels, and poly-aromatic hydrocarbon exposure due to fuel
or tobacco combustion can lead to an increased expression of specific cytokines [131–133].

The second phase of the immune response is called the effector phase and is triggered
by a second contact between the sensitised host and the allergen. Antigen-presentation
activates memory allergen-specific Th cells that produce IL-13, IL-4, and IL-5. These
cytokines promote recruitment of mast-cells with specific receptors for IgE that are activated
and produce more cytokines. High levels of allergen specific IgE are maintained and
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inflammatory cells, such as eosinophils, are recruited to the inflamed site with consequent
tissue damage.

The pathogenesis of AD cannot be exclusively explained through Th2 activation. In
fact, prominent Th17 activation has been observed in the blood of AD patients. IL-17
produced by Th17 can reduce FLG and involucrin expression and contribute to skin barrier
dysfunction [93,134,135]. Serum IL-17 is positively correlated with total IgE levels in
patients, with AD suggesting a role of this cytokine not only in AD but also in other allergic
phenotypes [136].

Recent studies have shown that a group of skin resident cells, called group 2 innate
lymphoid cells (ILC2), may play an important role in allergic immune responses. These cells
are dispersed through barrier surfaces of the skin, gut, and airways, and they can secrete
pro-allergen cytokines as IL-5 and IL1-3, which, in turn, promote the recruitment of inflam-
matory cells, alteration in skin microbiome, and dysfunction of the skin-barrier [93–107],
perpetuating a vicious circle.

8. AD and the Atopic March

In the light of this evidence, skin barrier damage in AD may be the first step of the
so-called “atopic march”, a clinical sequence beginning with AD and culminating with
food and respiratory allergies [93]. Animal models have demonstrated that exposure to
food allergens after epicutaneous barrier disruption can induce an increase in specific Ig,
respiratory, and gastrointestinal allergic symptoms [89,93,136,137].

In fact, mechanical skin injury in AD causes a systemic release of IL-33, leading to
the activation of intestinal mast cells and an increase in intestinal permeability, promoting
anaphylaxis in patients with AD and food allergies [138,139].

Similarly, IL-17 and IL-23 levels in children with AD have been correlated with
association of AD and other atopic diseases, suggesting their role as markers of the atopic
march [140].

Age and severity at the onset of AD are positively correlated with the risk of devel-
oping other allergies in the future. Children with AD, requiring topical steroids in the
first 3 months of life, have a 50.8% possibility of developing a challenge-proved food-
allergy [141] and there seems to be a dose-dependent correlation between food sensitiza-
tions and SCORing topic Dermatitis (SCORAD) levels in children between 4 and 11 months
of age [142]. Furthermore, early-onset (<6 months) AD is associated with the increased risk
of respiratory allergies in childhood.

Overall, this evidence highlights that the early treatment of AD skin can have a
potential role in the prevention of the atopic march. Evidence has suggested that skin
barrier improvement, via the daily application of emollients, beginning in the neonatal
period in high-risk infants, reduces the risk of AD development [143,144].

Several preliminary studies have proved that AD can be prevented through skin-
barrier improvement intervention. Although these trials have showed that regular moistur-
izing can prevent AD, it is still unclear whether AD prevention is achieved, or AD is merely
delayed or masked. Furthermore, there aren’t any data demonstrating the long-term effects
of the application of emollients on the risk of AD beyond the treatment period and on the
incidence of food allergies [93].

9. Novel Therapeutic Strategies

Coinciding with a deeper understanding of AD pathogenesis, many new therapies
have been developed, and others are under investigation (see Table 1). Biologics and small
molecules, targeting different metabolic pathways (see Table 1), represent the new frontiers
in the treatment of AD.

Nowadays, the so-called TH2 immune pathway has been recognized as an important
mechanism involved in many inflammatory reactions, underpinning different allergic
conditions [145]. The Th2 immune pathway starts in the skin at the site of sensitization
and ultimately leads to the inflammatory reaction.
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IL-4 and IL-13 are the two most important cytokines involved in Th2 inflammatory
pathway of AD [146,147]. Recent evidence has also suggested that the shared receptor
subunit for IL-4 and IL-13 (IL-4Ra) on sensory neurons can mediate chronic pruritus
through Janus kinase (JAK) signalling.

Dupilumab, a biologic targeting IL-4Ra, inhibits both IL-4 and IL-13 signalling [148,149].
In adolescents with moderate-to-severe AD, Dupilumab has shown clinically mean-

ingful and statistically significant improvements in AD signs and symptoms, including
pruritus [150].

Other therapeutic strategies under investigation aim to block, specifically, either IL-4
or IL-13 and other cytokines involved in inflammatory pathways, such as IL-5, IL-31,
and IL-22.

Blocking IL-33 through monoclonal antibodies seems to be a promising therapy not
only for AD but also for preventing food allergy development and the progression of the
atopic march [151,152].

Current studies are investigating the protein and lipid barrier deficits of early AD and
will guide future preventative interventions, but these studies imply the need for the early
prediction of AD and act prophylactically as early as the neonatal period.

In addition to these strategies, manipulating skin microbiota in the first period of life
is under investigation. Colonization, with commensal staphylococci at 2 months of age,
has been associated with a lower risk of developing AD at 1 year of age [153], suggesting
the potential role of the topical application of commensal bacteria as a preventive measure.

Table 1. Biologic treatment in atopic dermatitis (AD), asthma, chronic rhinosinusitis with nasal polyps (CRSwNP), or
eosinophilic esophagitis (EoE).

Disease Biologic Drug Action Indication Age of Use Stage of
Experimentation

ASTHMA

Omalizumab anti-IgE

severe allergic asthma with
elevated serum IgE (>30 and

<1500 IU/mL) and serum IgE
positivity for at least one

aeroallergen

- IV-Approved

Mepolizumab anti-IL5 severe eosinophilic asthma >6 yo IV-Approved

Reslizumab anti-IL5
severe eosinophilic asthma

(blood eosinophil count
≥400 cells/µL)

- IV-Approved

Benralizumab anti-IL5 severe eosinophilic asthma >18 yo IV-Approved

Dupilumab anti-IL4 severe eosinophilic asthma >12 yo
IV-Approved

III-6–12 yo—Paller
A.S. et al. [54]

Tezepelumab anti-TSLP variety of asthma phenotypes - III-Menzies-Gow A.
et al. [57]

CRSwNP

Omalizumab anti-IgE CRSwNP with asthma >18 yo IV-Approved

Dupilumab anti-IL4 CRSwNP >18 yo IV-Approved

Mepolizumab anti-IL5 CRSwNP with
steroid-refractory >18 yo III-Gavaert et al.,

Licari et al. [80,86]

Reslizumab anti-IL5 CRSwNP >18 yo III-Licari et al. [80]

EoE Dupilumab anti-IL4 EoE
>18 yo II-Hirano et al. [154]
1–12 yo III-recruitment
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Table 1. Cont.

Disease Biologic Drug Action Indication Age of Use Stage of
Experimentation

AD

Dupilumab anti IL4 e IL13 moderate to severe atopic
dermatitis >12 yo

Baricitinib anti JAK 1 e 2 Moderate to severe DA >18 yo IV-Approved
EMA 2019

Tralokinumab anti IL13 Moderate to severe DA >18 yo IV-Approved
EMA 2021

Abrocitinib anti JAK 1 Moderate to severe DA >2 yo IV-Approved
EMA 2020

10. Barrier Dysfunction in Eosinophilic Esophagitis: The Interplay between
Impairment of Epithelial Barrier Integrity and Inflammatory Response

Eosinophilic Esophagitis (EoE) is an immune-mediated chronic disease character-
ized by symptoms related to oesophageal dysfunction and by the presence of eosinophil-
predominant oesophageal inflammation [155,156]. EoE is histologically defined as more
than 15 eosinophils per high power field in an oesophageal mucosal biopsy.

Since it was first reported, the incidence and prevalence of EoE have been increasing
over time, with similar rates in both children and adults [157]. Clinical manifestations of
EoE vary by age group and are not pathognomonic. Infants and children commonly present
with feeding difficulties, vomiting, and failure to thrive, while heartburn, dysphagia, and
food impaction have been found to be more common in adolescents [158].

It is now believed that EoE occurs in genetically predisposed individuals in whom
food allergens penetrate through a deficient epithelial barrier and trigger an abnormal
immune reaction mediated by Th2 cytokines, leading to oesophageal lesions, dysmotility,
subsequent remodelling, and fibrosis [159].

Multiple evidence supports the theory that EoE is closely related to atopy. Most EoE
patients have allergic comorbidities or a family history of atopy [160]. It is known that an
Elemental Diet can induce both clinical and histological remission in EoE patients [161].
Moreover, EoE lesions can be induced in experimental models by allergen exposure through
the skin, respiratory, or gastrointestinal systems [162–165].

Nevertheless, EoE pathogenesis appears to be more complex than a mere Ig-E me-
diated condition. Numerous evidence supports a mixed IgE-mediated and delayed Th2-
mechanism in EoE pathogenesis. In fact, IgE and B cell deficient mice can experimentally
develop EoE [155] and monoclonal anti-IgE antibodies that failed to induce remission in
EoE patients [166].

The genetic contribution of EoE to aetiology is suggested by the increased risk of
developing the disease in first degree relatives or siblings of EoE patients [167,168]. An
insight into the genetic contribution to EoE is given by mono-genetic inherited disorders
with an increased risk of EoE development. Dysregulation of TGF-ß signalling, a key
cytokine involved in epithelial growth, fibrosis, and tissue remodelling, is thought to
be the pathogenic mechanism for the development of EoE in inherited connective tissue
disorders (CTD) (e.g., Loetyz–Dietz Syndrome, Marfan Syndrome type II and Ehlers–
Danlos Syndrome) [169], while the gene mutation involved in epithelial integrity and
tissue remodelling (e.g., STAT3, DSG1, SPINK5) can explain the increased risk of EoE in
patients affected by PTEN Hamartoma Tumour Syndrome, SAM (severe skin dermatitis,
multiple allergies and metabolic wasting) Syndrome, Netherton Syndrome, and Autosomal
Dominant Hyper-IgE Syndrome [109,170–172]. This evidence suggests the pivotal role of
gene involvement in mucosal barrier integrity, inflammatory cell recruitment, and tissue
remodelling in EoE pathogenesis. Furthermore, analysis of EoE transcriptome, a panel of
574 genes, has demonstrated a different pattern of gene expression involved in mucosal
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barrier integrity and inflammatory response, in the oesophagus of EoE patients, healthy
controls, and patients with chronic esophagitis [173–175].

Specifically, the epidermal differentiation complex (EDC), a gene complex encoding
for proteins, such as desmosomal cadherin desmoglein-1 (DSG1), fillaggrin, and involucrin,
involved in barrier integrity, has been demonstrated to be markedly downregulated in
EoE tissues [176]. Consistently, DSG1 expression is decreased in EoE biopsies, but not in
gastroesophageal reflux disease (GERD) biopsies [177].

The deficiency of epithelial barrier integrity can be histologically demonstrated. Di-
lated intercellular spaces, basal zone hyperplasia, and extracellular matrix deposition are
commonly found in EoE biopsies [178,179]. Furthermore, mucosal impedance testing in
EoE adults before and after treatment confirms that oesophageal mucosal integrity is signif-
icantly impaired in active EoE patients compared to healthy controls and that it inversely
correlates, both in vitro and in vivo, with eosinophilia. Mucosal integrity is still impaired
in EoE patients in remission compared to healthy controls, suggesting a potential innate
barrier defect, this is similar to what happens in other allergic diseases [5] Additionally,
histological changes, similar to EoE and EoE transcriptome, can be induced in vitro after
stimulation by Th2 cytokines, suggesting the potential role of inflammatory responses in
determining barrier dysfunction and eosinophil recruitment [180].

Food allergens and presumably aeroallergens, gain access through a dysfunctional
oesophageal barrier and trigger a Th2 inflammatory response, which in turn contributes
to disruption of the epithelial barrier, in a self-perpetuating process [181]. Specifically,
cytokines secreted by local oesophageal cells promote a Th2-skewing and the presentation
of allergens to CD4 T naive cells favours their differentiation to a Th2 phenotype. In
particular, epithelial cells secrete TSLP—a “master regulator” of the Th2 response—as it
promotes the dendritic cells’ Th2-skewing ability, and basophil maturation [182]. TSLP is
overexpressed in EoE biopsies compared to healthy controls [183] and genetic studies have
found particular polymorphisms of TSLP and its receptors to be associated with EoE [184].
Furthermore, mouse models have demonstrated that skin sensitisation with food allergens,
followed by oral challenges with the same foods, can induce oesophageal lesions similar
to EoE, suggesting a possible connection between allergic epicutaneous sensitisation and
eosinophilic inflammation of the oesophagus [165].

Activated Th2 cells can amplify an inflammatory response through the secretion of
Th2 cytokines, such as IL-4, IL-13, and IL-5, that are increased in both the oesophageal and
peripheral blood of active EoE patients [176,185,186].

IL-4 induces the differentiation of naïve Th cells into the Th2 and promote B cell
switching to produce IgE [162]. IL-5 is secreted by Th2 cells and eosinophils and favours
eosinophil maturation and migration into the oesophageal epithelium [162].

IL-13 has a pivotal role in EoE as it not only contributes to the downregulation of
molecules involved in barrier integrity, but it also promotes the recruitment of eosinophils,
through the upregulation of eotaxin-3 expression by epithelial cells and of periostin ex-
pression by fibroblasts [187]. In particular, eotaxin-3 is encoded by the CCL26 gene and
its expression is promoted by IL-13 and IL-4 through Signal Transducer and Activator of
Transcription 6 (STAT6) binding to its promoter gene.

Several cells are involved in EoE inflammation. Among them, eosinophils certainly
play a key role. They act as antigen presenting cells (APC), enhance inflammatory cascade
through production of cytokines (e.g., IL-1, IL-3, IL-4, IL-5, GMCSF, TGFß) and activate
inflammatory cells such as T cells, mast-cells, and basophils. They also contribute to
tissue remodelling and fibrosis through the secretion of TGFß, eosinophilic peroxidase
(EPO) and a major binding protein (MBP) that cause mucosal damage and oesophageal
dysmotility [181,188].

Mast-cells and basophils recruited to the oesophagus further enhance inflammatory
responses and oesophageal dysmotility, by secreting cytokines such as TGFß1 [183,189,190].
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11. Therapeutic Implications and Novel Therapeutic Strategies

Conventional management of EoE currently includes proton pump inhibitors (PPI),
elimination diets and topical steroids. They all seem to act by targeting the key elements in
EoE pathogenesis, the epithelial barrier, the Th2 response and their mutual interaction.

PPIs may act by reducing oesophageal epithelium damage due to acid exposure.
However, the PPI response in EoE cannot be merely explained by its well-established
antisecretory activity. Indeed, it seems that PPIs may also exert an anti-inflammatory
activity, as they can downregulate oesophageal Th2-cytokines and eotaxin-3 [191–194]. In
particular, PPIs block STAT6 binding to the CCL26 promoter inhibiting in vitro eotaxin-3
expression [195].

Various elimination diets have been successfully used in EoE. The Elemental Diet
is the most effective, as it induces histological remission in nearly 90% of patients, but
multi-food elimination diets may be an alternative choice as they have a lower cost and
better palatability [155,196]. Dietary therapy modulates mast cell density and activity,
leading to the reduction in mast-cell proteases damaging tissue [183,197].

Ingested topical steroids are effective in obtaining clinical and histological remission
in EoE through multiple mechanisms [198–200]. Steroid therapy is proven to normalize
EoE transcriptome, including IL-13, CCL26, and filaggrin [176,201]. Restoration of filaggrin
levels in steroid-treated EoE seems to contribute to restoring epithelial barrier function.
Furthermore, steroid therapy seems to have a wider effect on oesophageal tight junctions,
leading to a decrease in epithelial spongiosis [202]. Finally, steroids reduce mast-cell
recruitment, degranulation, and eosinophil recruitment mediated by IL-5 [185,194]

Notably, some patients are refractory to conventional therapeutic strategies; moreover,
compliance to daily medications may be poor, and responses to steroids might be lost
over time.

In light of these limitations, biological agents targeting key cytokines, such as IL-4,
IL-5 and IL-13, as well as IgE and TNF, have been studied for the treatment of EoE. Some
of the studies have successfully progressed to phase III trials (see Table 1)

IL-5 blockage by Mepolizumab and Reslizumab has been suggested as a potential
treatment strategy for EoE, since it interferes with eosinophil maturation and migration
into the oesophageal epithelium. Indeed, it has also resulted effective in reducing peak
and mean oesophageal intraepithelial eosinophil counts, but a significant clinical improve-
ment was not observed in three separate studies in children [203–205]. Treatment with
Omalizumab, an anti-IgE antibody, failed to induce either reduction in oesophageal and
peripheral eosinophilia or clinical improvement [166,206].

IL-13 has been shown to play a crucial role in epithelial barrier integrity, as demon-
strated by transcriptional changes of EDC induced by IL-13 itself. By targeting this molecule
and its receptor, it could be possible to restore epithelial barrier function, Nevertheless,
studies on QAX576, a monoclonal antibody targeting IL-13, have provided scarce results
in a small adult cohort. It has been shown to reduce oesophageal eosinophilia and to
downregulate important proteins involved in tissue integrity (collagens, periostin, ker-
atins), but no clinical improvement has been noted [207] No studies in children have been
conducted yet. Dupilumab, a monoclonal antibody targeting IL-4 receptor alpha chain
(IL-4Rα), common to both IL-4 and IL13, appeared to be effective in a phase 2 trial and
seems to induce the reduction in Th2 inflammation markers and eosinophilic inflammation,
as well as the improvement of endoscopic features. In addition, it seems to be effective
in increasing oesophageal distensibility suggesting the potential role of this therapy in
reducing tissue damage and consequent remodelling [154]. A phase 3 trial on both the
adolescent and adult population is currently enrolling patients.

This evidence strengthens the concept of the epithelial barrier’s central role in EoE
pathogenesis and suggests that a targeted therapy, restoring barrier integrity by Th2
inflammation modulation, might be the most promising strategy for EoE.
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12. Conclusions

A common characteristic of allergic diseases is the impairment of the epithelial barrier,
which is skewed toward loss of differentiation, reduced junctional integrity, and altered
innate defence.

Despite our growing knowledge of the pivotal role of barrier dysfunction in the
initiation of allergic diseases, many important questions regarding mechanisms affecting
normal barrier function remain unanswered. Identifying biomarkers for routine practice is
essential for developing new strategies and intervention that is targeted towards restoring
barrier impairment.
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