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Abstract: Recent evidence showed that the postulated linear progression of the atopic march, from
atopic dermatitis to food and respiratory allergies, does not capture the heterogeneity of allergic
phenotypes, which are influenced by complex interactions between environmental, genetic, and
psychosocial factors. Indeed, multiple atopic trajectories are possible in addition to the classic atopic
march. Nevertheless, atopic dermatitis is often the first manifestation of an atopic march. Improved
understanding of atopic dermatitis pathogenesis is warranted as this could represent a turning point
in the prevention of atopic march. In this review, we outline the recent findings on the pathogenetic
mechanisms leading to atopic dermatitis that could be targeted by intervention strategies for the
prevention of atopic march.

Keywords: atopic march; atopic dermatitis; food allergy; asthma; allergic rhinitis; eosinophilic
esophagitis

1. Introduction

The model of atopic march was originally proposed to describe the natural history
of atopic manifestations. According to this model, atopy starts in infancy with atopic
dermatitis (AD) and progress to asthma and/or allergic rhinitis (AR) in childhood and
adolescence, with the potential development of food allergy (FA) before respiratory allergies
in a subgroup of individuals (Figure 1) [1].

AD often appears early in life, and thus it has been considered as the origin of the
atopic march by most prospective longitudinal cohort studies looking at trajectories of
allergic diseases [2]. Prospective longitudinal cohort studies have shown that about 50% of
children with AD does not progress into the atopic march, even in its broadest definition [3].
Indeed, recent evidence from birth cohort studies, that applied the Bayesian machine
learning framework, shows that the postulated linear progression of the atopic march does
not capture the heterogeneity of allergic phenotypes, which are influenced by a complex
interaction between environmental, genetic, and psychosocial factors (Figure 1) [4].

Nevertheless, AD is often the first manifestation of an atopic march. Improved under-
standing of AD is warranted as this could represent a turning point in the prevention of
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allergic diseases. In this review, we outline the recent findings on the pathogenetic mecha-
nisms leading to AD that could be targeted by intervention strategies for the prevention of
atopic march.
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Figure 1. Allergic march trajectories starting from atopic dermatitis. AD, atopic dermatitis; AR,
allergic rhinitis; FA, food allergy.

2. The Atopic March: Myth or Reality?

Despite the existence of epidemiological and experimental data in support of the atopic
march, some researchers have highlighted the risk of an overestimation of the classical
march [5].

First, disease identification in existing epidemiological investigations is at risk of bias,
because data on the diagnosis of AD, asthma, and AR are commonly self-reported reported
by caregivers and not necessarily physician-confirmed atopic condition [6–8].

Another critical issue is the inability to address the heterogeneity of atopic diseases.
According to Martinez et al. [6] individuals with AD were at higher risk of developing
transient early asthma and persistent asthma, but non-allergic late-onset asthma. This
could indicate that the association between AD and asthma may be limited to specific
allergic asthma subpopulations. A recent study used Bayesian machine learning and latent
class analysis to examine data from two birth cohorts and highlighted the heterogeneity
in the trajectories of allergic diseases development [4]. These authors identified eight
latent classes: no disease (51.3%), eczema only (15.3%) and rhinitis only (9.6%), transient
wheezing (7.7%), persistent wheezing with late-onset rhinitis (5.7%), atopic march (3.1%),
persistent eczema and wheezing (2.7%), persistent eczema with late-onset rhinitis (4.7%).
The persistence of AD (after several consecutive visits) was essentially related to asthma
or rhinitis. Highly concordant sensitization patterns have been associated with different
profiles of rhinitis, eczema, and wheezing. In each case, it was found that eczema, wheezing
and rhinitis are all common pathologies, which therefore coexist, but above all as separated
entities, each related to an extent higher or lower atopic sensitization. Although some
children follow trajectories similar to the atopic march, this study shows that the classical
march is detectable in about one in 20 children with atopic symptoms [9].
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3. Atopic March Risk Factors
3.1. Age of Onset and Severity of Atopic Dermatitis

The age of AD onset and its severity influence the relationship between AD and
allergic airway disease. Multimorbidity and more persistent disease are more commonly
experienced by patients with more severe AD. The severity of AD is the strongest risk
factor for early-onset AD [10]

High-risk children in the MACS study with persistent early-onset AD had a 3-fold
greater risk of developing asthma and AR in late childhood compared to infants with
late-onset AD starting after 2 years of age [11].

In another Swedish study, more than 60% of infants with severe AD before age 3
developed asthma by age 7, compared with only 20% of those with mild AD [12]. Increased
asthma severity and greater persistence into adulthood have also been associated with the
presence of AD [6,13]. Similar results were reported in the PASTURE cohort [14], the PEER
study [15], and the BAMSE cohort [16].

In an Italian cohort that followed 252 children (ages 6–36 months) for an average of
16.9 years, the severity of AD was significantly related to the development of asthma [17].

Roduit et al. [14] compared children of women who lived on farms vs. those who did
not live on farms in the Protection Against Allergy: Study in Rural Environments (PAS-
TURE). These researchers identified 4 phenotypes of AD in childhood: 2 early phenotypes
with onset before 2 years (early transient (n = 96; 9.2%) and early persistent (n = 67; 6.5%)),
one phenotype with onset at age 2 years or older (n = 50; 4.8%), and the never/infrequent
phenotype (n = 825; 79.5%), recognized as children without AD. Both early phenotypes
were strongly related to FA. The early persistent phenotype had also a significantly in-
creased risk of developing asthma (adjusted odds ratio, 2.87; 95% CI, 1.31–6.31). The late
phenotype was only positively associated with the risk of AR.

Paternoster et al. [18] examined AD trajectories from birth to adolescence in 9894
children from the Child Avon Longitudinal Study of Parents and Children (ALSPAC) cohort
study and 3652 children from the Prevention and Incidence of Asthma and Mite Allergy
(PIAMA) cohort study. Six latent classes were identified: (1) unaffected/transiently affected,
(2) early-onset/early resolution (most common AD class), (3) early onset/late resolution,
(4) early-onset/persistent, (5) late-onset/resolution, and (6) medium onset/resolution. The
more persistent classes (persistent and late resolution) were most strongly related with
filaggrin (FLG)-null mutations and showed the greatest risk of coexistence of asthma, high
IgE levels, and parental history of atopy. The probability of asthma was highest for the
early-onset/persistent class at age 7 (OR, 5.50; 29% vs. 8% in the normal/transient class)
and age 13 (OR, 7.9; 31% vs. 7%) and weaker for the early-onset/early resolution class (OR,
1.56 at 7 years and 1.79 at 13 years).

3.2. Allergic Polysensitization

A recent systematic review reported a strong and dose-dependent association between
AD and IgE-mediated FA [19].

Children with moderate to severe AD are more likely to have FA and associated
respiratory allergies [20,21].

The Mechanisms of the Development of Allergy (MeDALL) study reported a rare but
severe phenotype in which individuals who were polysensitized and with multimorbidity
have a very high frequency, higher than other phenotypes, of more severe and persistent
AD symptoms and total and specific IgE levels [22].

In another BAMSE cohort, 62% of aeroallergen-sensitized children aged 4 to 16 years
had concomitant eczema, rhinitis, or asthma [23].

The PARIS (Pollution and Asthma Risk: An Infant Study) birth cohort recently reported
that allergic sensitization in infancy can predict allergic multimorbidity in childhood, and in
the case of early polysensitization, multimorbidity is more frequent as soon as infancy [24].

The MACS (Melbourne Atopy Cohort Study, high risk) and LISAplus (Influences
of Lifestyle-Related Factors on the Immune System and the Development of Allergies



Children 2022, 9, 450 4 of 12

in Childhood plus Air Pollution and Genetics) population cohort studies reported that
sensitization to food allergens in the first 24 months of life is associated with a higher risk
of asthma and AR at the age 10 years [25]. A meta-analysis of 13 cohorts showed that an
increased risk of wheezing/asthma and AR between 4 and 8 years was associated with
early food sensitization [26]. Hill et al. [27] noted that children with FA, particularly milk,
egg, and peanut allergies, were at increased risk of developing rhinitis and asthma in late
childhood. The Canadian Healthy Infant Longitudinal Development birth cohort study
showed that there is an increased risk of physician-diagnosed asthma at 3 years only if the
AD is associated with sensitization to inhalants, foods, or both at 1 year of age [28].

The birth cohort study WHEALS (Wayne County Health, Environment, Allergy, and
Asthma Longitudinal Study) looked at the relationship between early allergic sensitization
(specific IgE to 10 inhalant and food allergens measured at age 2) and the risk of pedi-
atric asthma and allergic diseases at 10 years of age. Four latent classes were identified
based on sensitization profiles at the age of 2: (a) highly sensitized, (b) milk/egg domi-
nant, (c) peanuts and inhalants, and (d) low-to-zero sensitization. At age 10, an allergist
screened children for ongoing AD and asthma through interviews and a physical exam.
Methacholine challenge test and spirometry were also performed. Compared to the group
“low-to-zero sensitization”, infants sensitized to ≥4 food and inhalant allergens at the age of
2 had the highest risk of current asthma (hazard ratio = 4.42) p < 0.001) and bronchial hyper
reactivity (HR 1.77; p < 0.001). The risk of current AD was independent of the sensitization
pattern but remained raised for children with any sensitization. No differences were found
in spirometry parameters [29].

3.3. Family History for Atopy

The probability of subsequent allergic manifestations of the upper or lower airways
is increased by a history of childhood AD along with a family history of parental atopy,
hence suggesting a genetic influence in the atopic march [30].

In addition, the persistence and severity of atopic conditions such as asthma is strongly
predicted by a family history of atopy [11,31,32].

According to the PARIS study, parental history of asthma and/or AR and/or eczema
was related to a severe atopic phenotype [33]. In the PASTURE study [14], parental
allergy status was strongly related to the early persistent phenotype, and participants
with both parents having an allergy history had nearly six times greater risk of following
early persistent AD than those with no family history of atopy. However, only a minor
proportion (<5%) had AD, asthma, and rhinitis at any age, among those with or without
an allergic parent, suggesting that progression from AD to asthma to AR is not a common
event [34]. However, it should be noted that these analyses were made on community-based
populations that take into account milder forms of AD and asthma.

3.4. Genetic Factors

Allergic diseases are strongly influenced by genetics [35]. Many of the genes that have
been related to the development of AD are situated on chromosome 1q21, in a position
referred as to the epidermal differentiation complex (EDC) [36]. These genes code for
proteins important for epithelial keratinocytes maturation and skin barrier function. The
strongest genetic risk factor known for AD is the loss-of-function (LOF) mutation in the
filaggrin (FLG) gene, which is located in the EDC [37]. The early-onset, persistent AD
phenotype is strongly related to FLG null mutations which play an important role in
epidermal barrier function, water retention, and acidification. Children with FLG variants
who develop asthma are likely to have AD as their first atopic disease. Individuals with
AD and FLG mutations are those who are most likely to follow trajectories of severe,
persistent, and multimorbid disease [38]. This relationship supports the existence of an
endotype-based atopic march and the role of barrier dysfunction in AD and allergic diseases
development. FLG mutation-related AD shows distinctive phenotypic features, which
include: early-onset AD, increased AD severity, persistent disease, the predilection of
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cheek and hand lesions, palmar hyperlinearity, increased risk of herpetic eczema and
Staphylococcus (S.) aureus-mediated skin infections, increased risk of allergic sensitization
and asthma (including treatment-resistant asthma), and FA occurrence [38,39].

FLG2 and SPRR3 are 2 other genes located within the EDC that have been implicated
in AD. Both genes encode proteins that are important for the structure of the epidermal bar-
rier [40]. Other non-EDC-localized genes identified in AD patients include SPINK5, CLDN1,
and TMEM [41,42], which encode proteins that contribute to epidermal homeostasis and
barrier function.

A GWAS study showed that AR, asthma, and AD may coexist because they share
genetic risk loci that result in dysregulation of immune-related genes [43]. Another GWAS
study also found genetic loci that overlapped between asthma and AD [44]. A multi-stage
GWAS study in children with childhood AD and asthma found new genetic loci (rs9357733
positioned in EFHC1 on chromosome 6p12.3 and rs993226 between TMTC2 and SLC6A15
on chromosome 12q21.3) that were specific for AD-asthma march phenotype [45]. The
Greater Cincinnati Pediatric Clinic Repository (GCPCR) found a relationship between a
dependent genetic variant family member Kinesin 3A (KIF3A) with AD-asthma comor-
bidity in a population cohort [46]. KIFA3A is a component of primary and motile cilia.
Deletion of KIF3A in epidermal cells results in disrupted keratinocyte differentiation in
animal models, suggesting a role for KIF3A in skin barrier function in addition, deletion of
KIF3A in mouse airway epithelial cells causes increased airway hyperresponsiveness and
inflammation [46–48].

In a recent human study, the KIF3A rs12186803 risk allele differentially interacts
with the sensitization pattern to modify asthma risk, resulting in a high risk of asthma
even without clinical eczema [49]. These findings suggest that a set of immunologically
important genes are shared in the predisposition to multiple allergic manifestations, with
some genetic variants showing a different impact on allergic outcomes.

In summary, although important progress has been achieved in identifying allergic risk
loci, studies evaluating genotypic associations with specific allergic trajectories of interest
are needed. Gene-environmental interactions are also important because environmental
inputs can influence gene transcription through hereditary epigenetic regulation that does
not require alterations in the gene sequences [50].

4. Pathogenic Mechanisms Underlying Atopic Dermatitis and Possibly Atopic March
4.1. Outside-In vs. Inside-Out Hypotheses

The pathogenesis of AD combines a complex interplay of genetic background, envi-
ronmental influences, immune dysregulation, impaired epidermal barrier, and reduced
microbiota diversity. However, the relative contribution of each of these components is yet
to be determined. With regards to immune abnormalities, AD is currently considered a
biphasic T-cell mediated disease. A Th2 signal predominates in the acute phase whereas
a Th2 to Th1 switch promotes disease chronicity [51,52]. Recent studies have proposed
a significant role for IL-22 producing T cells and to a fewer extent IL-17 producing Th17
cells, in the initiation and maintenance of AD [51]. Although it is generally recognized that
immune dysregulation contributes to AD pathogenesis and disease perpetuation (inside-out
hypothesis), emerging evidence suggests that a disrupted skin barrier in AD (involving both
lesioned and unaffected skin) plays a key role in disease initiation by promoting foreign
antigen penetration (e.g., dust mite and food allergens) and subsequent activation of innate
and type 2 immune responses (outside-in hypothesis) [53].

The skin is the main defense barrier against external stimuli, such as environmental
pollutants, ultraviolet light, and pathogens. As a component of the innate immune system,
the skin has various defensive functions, enclosing chemical, microbial, physical, and
immune barriers [54]. In an organ such as the skin, local breakdown of barrier integrity can
cause a systemic breakdown of immune tolerance even in distant organs such as the lungs
and intestines.
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Dysfunction of the skin barrier can occur even without eczema, as recently reported in
some infants who showed subclinical eczema endotype [55]. This suggests the possibility
that children and infants without a diagnosis of eczema may have subclinical eczema
with normal-looking skin, but with skin dysbiosis, low FLG expression, and increased
expression of skin alarmins. These alterations could favor the development of allergic
disease without overt eczema [56]. Individuals with AD exhibit epidermal dysfunction
with increased transepidermal water loss (TEWL) even in clinically healthy skin sites,
which increases the risk of allergen sensitization [55]. Both lesional and non-lesional skin of
children with AD exhibits reduced long-chain sphingolipids and aberrant skin metabolism
mainly mediated by type 2 inflammation cytokines [56]. Children with skin barrier defects
are at a higher risk of asthma than healthy children, even in the absence of AD, indicating
even when the allergic skin inflammation is absent the skin may serve as a site for allergen
sensitization [57]. Another study showed that uninjured skin of children who suffered
from AD and FA has substantially lower filaggrin expression and a lower proportion of
waxy lipid molecules such as sphingosine ceramide compared to children with AD only
and non-atopic controls. Furthermore, AD/FA + children have greater TEWL than controls.
An increased expression of type 2 inflammation related-genes was identified in the skin
transcriptome of patients AD/FA +, together with a high expression of the skin proteins
keratin 5, 14, and 16, indicating hyperproliferative keratinocytes [58].

Recent pilot studies suggested that intensive emollient use in early life could reduce
the risk of developing AD later in life, especially in high-risk infants [59]. However, a
very recent systematic review of randomized controlled studies concluded that the use of
emollients in healthy infants during the first year of life is probably not an effective strategy
for preventing AD and probably increasing the risk of skin infection [59].

4.2. The Exposome Hypothesis

This hypothesis supposes that environmental exposure to toxic substances related to
the modern lifestyle can affect the epithelial barrier of both the skin, the airways, and the
gastrointestinal tract. These toxic substances enclose cleaning products, detergents, mi-
croplastics, nanoparticles, ozone, and particulate matter in raised concentrations, cigarette
smoke, and food additives (enzymes and emulsifiers) [60]. The role of microplastics, cur-
rently omnipresent in the environment, on human health is not fully known. They are
present in the air, water, and food. They have been found, for example, in human lungs
and feces. The ingestion of microplastic is implicated in intestinal dysbiosis and alterations
of the gut microbiome are known to promote inflammatory responses [61]. In addition,
histamine levels are shown to increase after high exposure to polypropylene microplastics
(~20 and 25–200 µm) [62]. Chronic low-dose exposure to microplastics has the potential
to cause impaired intestinal barrier function and epithelial cell injury [63]. In an epithelial
cell study of the human lung, it has been reported that exposure to microplastics such as
inhaled polystyrene leads to inflammatory and oxidative damage along with the break-
down of intercellular junction proteins in the lung, which would lead to lung barrier
dysfunction [64].

Exposure to these harmful agents may lead to the development of inefficient epithelial
barriers, translocation of bacteria to the inter-and sub-epithelial areas, microbial dysbio-
sis, and micro-inflammation of the tissues [60]. According to this hypothesis, the barrier
damage caused by environmental changes is not only responsible for the development of
autoimmune and allergic diseases, but also for a great range of diseases in which immune
responses to translocated bacteria have systemic effects [60]. The dysregulated epithelial
barrier activity increases the potential for microbe and allergen penetration and subse-
quent sensitization. Interactions between microbial, viral, genetic, environmental, and
immune factors contribute to epithelial destruction, aberrant Th2 immune responses, and
allergic diseases [61]. Deficiencies in the epithelial barrier often drive to a state of constant
inflammation, making tissue repair difficult. Due to the inflammatory environment, defi-
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cient barrier integrity lowers the sensitization threshold to harmless substances and likely
triggers allergic sensitization in distal organs [60].

Environmental pollutants such as carbon monoxide, nitrogen dioxide (NO2), and
particulate matter 2.5 (PM2.5) from fires and pollution has been found to favor acute asthma
exacerbations [65,66].

The mechanisms linking asthma exacerbation to air pollutants include induction of
both eosinophilic and neutrophilic inflammation driven by stimulation of the epithelium of
the airways and increased production of proinflammatory cytokines, oxidative stress, and
alterations in DNA methylation [67,68].

Current data demonstrate that the epithelial barriers, such as skin, airways, and
intestinal mucosa, can be damaged by pollutants such as cigarette smoke, particulate
matter, diesel exhaust, ozone, nanoparticles, microplastics, detergents, and chemicals in
household substances. The local inflammation begins, and the tissue can become more
vulnerable to the inflammatory and tissue-destructive effects of pollution after the barrier
opens. Most of these pollutants show synergistic effects and future research in this field is
warranted [60].

Two recent studies provided evidence on how living standards and location may
influence the immunological status of children and subsequently their susceptibility to
AD. The studies conducted in South Africa, reflect strong differences in living standards
between rural and urban areas and revealed significant differences in the immunological
status of children living in respective locations [69,70]. The differences in allergy symptoms
between these populations were striking (i.e., higher in urban children compared to their
rural peers) and the duration of breastfeeding was also of importance (i.e., longer duration
in rural communities). The authors provided an immunological basis for this phenomenon.
Healthy rural children had the lowest levels of food allergen-specific IgG4. Of interest,
independently of AD, the rural children exhibited a generalized type of microinflammation
determined by the expression of inflammatory markers [70].

4.3. The Dysbiosis Hypothesis

Epidermal barrier dysfunction is invariably present in AD and the skin microbiome is
an integral part of the skin barrier [71].

The skin of AD individuals frequently exhibits loss of bacterial diversity and over-
growth of the pathogenic bacteria S. aureus [72]. Individuals with AD have greater skin
colonization with S. aureus than healthy controls (60 to 100% vs. 5–30%, respectively) [73].
In AD patients, the higher skin pH level, reduced levels of FLG and related breakdown
products, and lower levels of antimicrobial peptides favor the skin colonization by S. aureus,
which can promote cutaneous inflammation and AD flare-ups by causing direct proteolytic
damage to the epidermal barrier and immune dysregulation [72].

S. aureus colonization is associated with AD severity, persistence, and infectious and
atopic comorbidities [71,74,75]. S. aureus colonization is also associated with greater type 2
inflammation (elevated expression of IL-4, IL-13, IL-17, IL-22, and Thymic Stromal Lym-
phopoietin, TSLP), allergen sensitization, and tissue damage compared to non-colonized
individuals [76–79]. S. aureus activates the immune system by the expression of proteases,
toxins, superantigens, and other virulence factors [80,81]. Therefore, S. aureus skin col-
onization is hypothesized to concur with the development of atopic march. Indeed, a
recent experimental study showed that the enterotoxin-producing S. aureus strain can cause
allergen-induced excessive lung inflammation and airway hyperreactivity via an IL-17A-
dependent mechanism, in addition to enhancing type 2 inflammatory responses [81].

Tsilochristou et al. [82] recently showed that skin S. aureus colonization was signif-
icantly associated with AD severity and specific IgE sensitization to egg and peanuts,
regardless of the severity of eczema. In addition, S. aureus was associated with a more
persistent food allergy to egg and peanut [83].

Recent evidence points towards the importance of commensal microbiome composi-
tion in early life on the risk of atopic conditions development [84]. In addition to S. aureus
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colonization, the skin of AD patients is often depleted of commensal coagulase-negative
staphylococci (CoNS), which could selectively inhibit S. aureus through the production of
bacteriocins and antimicrobial peptides [85]. A recent small prospective study showed
that skin CoNS species were significantly less abundant at 2 months in those infants who
developed AD at 1 year compared to those who did not develop AD [86]. A recent human
trial has investigated the safety and potential benefits of S. hominis A9, a commensal CoNS
isolated from the skin of healthy individuals, as a topical bacteriotherapy for AD with
promising results [87].

In addition to skin dysbiosis, there is accumulating evidence on the role of gastrointesti-
nal dysbiosis in the development of AD and atopic march, which is extensively reviewed
elsewhere [84,88]. The gut microbiota has a major role in shaping and regulating the im-
mune response and consequently the susceptibility to develop immune-mediated disorders,
including AD and allergic diseases [84,88].

5. Conclusions

It is now acknowledged that atopic march is not a single path, but an umbrella term for
multiple trajectories, because atopic diseases are heterogeneous conditions resulting from
complex and not fully known interactions between genetic, environmental, and epigenetic
factors. Because allergic diseases involve a considerable socio and economic burden all
efforts to prevent these diseases are strongly important. AD is often the first manifestation
of an atopic march. Improved understanding of the pathogenetic mechanism leading to AD
is warranted as this could represent a turning point in the prevention of atopic march. There
is a strong need for studies investigating a multifaceted preventive approach targeting both
the skin barrier and the environment early in life.
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