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Abstract: Objective: The aim of this qualitative systematic review was to identify publications
on blood pressure monitoring in combination with cerebral tissue oxygenation monitoring dur-
ing the first week after birth focusing on cerebral autoregulation. Methods: A systematic search
was performed on PubMed. The following search terms were used: infants/newborn/neonates,
blood pressure/systolic/diastolic/mean/MAP/SAP/DAP, near-infrared spectroscopy, oxygena-
tion/saturation/oxygen, and brain/cerebral. Additional studies were identified by a manual search
of references in the retrieved studies and reviews. Only human studies were included. Results:
Thirty-one studies focused on preterm neonates, while five included preterm and term neonates.
In stable term neonates, intact cerebral autoregulation was shown by combining cerebral tissue
oxygenation and blood pressure during immediate transition, while impaired autoregulation was
observed in preterm neonates with respiratory support. Within the first 24 h, stable preterm neonates
had reduced cerebral tissue oxygenation with intact cerebral autoregulation, while sick neonates
showed a higher prevalence of impaired autoregulation. Further cardio-circulatory treatment had
a limited effect on cerebral autoregulation. Impaired autoregulation, with dependency on blood
pressure and cerebral tissue oxygenation, increased the risk of intraventricular hemorrhage and
abnormal neurodevelopmental outcomes. Conclusions: Integrating blood pressure monitoring with
cerebral tissue oxygenation measurements has the potential to improve treatment decisions and
optimizes neurodevelopmental outcomes in high-risk neonates.

Keywords: neonate; blood pressure; NIRS; cerebral oxygenation; cerebral autoregulation

1. Introduction

The transition period from fetal to neonatal life is associated with significant physiolog-
ical changes affecting all vital organ systems [1]. Intrauterine, most of the blood bypasses
the lungs through the ductus arteriosus due to elevated pulmonary resistance. Immediately
after clamping the umbilical cord, there is a significant reduction in the preload of the heart,
as up to 50% of the preload is delivered by the placenta. In lambs, it has been shown that
this may result in reduction of cardiac output, which may trigger bradycardia [1,2]. With
aeration of the lungs immediately after birth, the pulmonary vascular resistance drops, and
the pulmonary blood flow increases, leading to an increase in cardiac output [1,2]. Most
changes from the fetal to neonatal transition occur within the first few minutes, which is
one of the most-challenging periods in human life [3,4]. Once the immediate transition is
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completed, cardio-circulatory and pulmonary changes still continue for several weeks [4].
It takes up to 96 h for term infants to have a functional closure of the ductus arteriosus.
Permanent anatomic closure occurs within three weeks up to three months after birth [4].
Therefore, monitoring to assess and evaluate hemodynamics in neonates, especially dur-
ing the first week after birth, is crucial, whereby the immediate transition might also be
highly relevant.

During immediate transition after birth, monitoring with pulse oximetry and electro-
cardiogram (ECG) is recommended [5–7]. However, the routinely used monitoring is not
always sufficient to recognize potentially compromised neonates [8], especially in cases
when impaired cardio-circulation causes reduced oxygen delivery to the tissue.

A further tool for the assessment of the neonate’s circulation is blood pressure mon-
itoring. Due to its feasibility, it is a common practice in the neonatal intensive care unit
(NICU). Especially in compromised neonates during the first days after birth, blood pres-
sure measurements are used to detect arterial hypotension, whereby thresholds are still
controversially discussed [9–15]. During immediate transition, there are only a few obser-
vational studies describing blood pressure in preterm and term neonates [16].

Arterial blood pressure is dependent on systemic vascular resistance and cardiac
output. Therefore, it determines tissue perfusion and oxygen delivery to the tissue. Tissue
oxygenation can be monitored by near-infrared spectroscopy (NIRS) [17] The focus of
tissue oxygenation measurements in neonates has been on cerebral tissue oxygenation
measurement during the immediate transition [18,19] and at the NICU during the first
week after birth [20]. Some studies in neonates have described that the combination of
blood pressure measurements and cerebral NIRS monitoring might be a promising tool
due to its potential to reveal information about cerebral autoregulation [21–23].

Therefore, the aim of the present qualitative systematic review was to identify pub-
lications on blood pressure monitoring in combination with cerebral tissue oxygenation
monitoring with NIRS during the immediate transition and first week after birth in order
to gain more information about cerebral autoregulation, resulting in improved treatment
options and approaches in neonates.

2. Materials and Methods
2.1. The Search Strategy and Study Selection Criteria

Articles were identified using the stepwise approach specified in the Preferred Report-
ing Items for Systemic Reviews and Meta-Analyses Statement (PRISMA).

2.2. Search Strategy

A systematic search was performed on PubMed. In order to identify studies address-
ing blood pressure measurements, non-invasive or invasive in combination with cerebral
tissue oxygenation measurements with NIRS during the immediate transition and first
week after birth, the following search terms were used: infants/newborn/neonates, blood
pressure/systolic/diastolic/mean/MAP/SAP/DAP, near-infrared spectroscopy, oxygena-
tion/saturation/oxygen, and brain/cerebral. Additional studies were identified by a
manual search of references in retrieved studies and reviews. Only human studies with
combined blood pressure and cerebral tissue oxygenation monitoring during the immediate
transition period after birth and the first week were included.

2.3. Study Selection

Articles identified following the literature review were evaluated by two authors (D.P.,
G.P.) for inclusion using the title and abstract. The full text was reviewed, resulting from
remaining uncertainty regarding eligibility for inclusion. All data were analyzed qualita-
tively. Data extraction included the characterization of study types, patient demographics,
methods, and results.
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3. Results

The initial search detected 2200 articles on PubMed. Due to the rejection of studies that
did not meet the prior mentioned criteria, 36 studies were identified, analyzing blood pres-
sure and cerebral regional tissue oxygenation monitoring during the immediate transition
and during the first week after birth (Figure 1).

Figure 1. Selection of papers.

Thirty-one studies described monitoring results in preterm neonates, and five studies
described monitoring results in preterm and term neonates. There were no studies that
conducted measurements on term neonates only.

Blood pressure was measured invasively with an indwelling catheter in 27 [21,23–48]
studies and non-invasively with oscillometric measurements in 3 studies [22,49,50]. In five
studies [51–55], both methods were combined, and in one study [56], the method was un-
clear. Cerebral oxygen saturation was measured in 19 studies with the NIRO 200, 300, or 500
(Hamamatsu Photonics, Hamamatsu-city, Japan) [23,26–30,32,34–37,40,42,44,45,48,51,53,56],
in 10 studies with the INVOS 4100 or 5100 (Covidien, Medtronic, Minneapolis, MN,
USA) [21,22,31,38,39,41,46,50,52,55], in 3 studies with the FORE-SIGHT (Casmed, Irvine,
CA, USA) [24,25,47], in 2 studies with the cerebral tissue oxygenation Monitor 205 (Critikon,
Tampa, FL, USA) [33,54], in 1 study with the Oxiplex TS.3.1 (ISS, Inc., Champaign, IL,
USA) [49], and in 1 study with the NIRO 300 in combination with an INVOS 4100 [43]
(Tables 1–3).
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Table 1. Cerebral tissue oxygenation measurement in combination with arterial blood pressure measurement during immediate transition.

Author
(Reference)

(Year) of
Publication

Neonates, n Gestational Age,
Weeks NIRS Device Arterial Blood

Pressure Duration Initiation Study Aim
Main Results

Concerning BP
and NIRS

Baik
[50]

(2017)

Term
n = 292, preterm n = 186

Term
38.9 ± 0.8,
preterm

31.0 ± 3.5

INVOS 5100c MABP
(oscillometric) 15 min 0–1 min

Impact of MABP
on the cerebral

regional oxygen
saturation

In preterm
neonates, MABP

correlated
negatively with

cFTOE

Pfurtscheller
[22]

(2022)

Preterm
n = 47

34.4 ± 1.6
(resp. support, n = 25)

34.5 ± 1.5
(stable, n = 22)

INVOS 5100c MABP
(oscillometric) 15 min 0–1 min

Impact of MABP
and NIRS

parameters in
compromised

neonates

In compromised
preterm neonates,
MABP correlated
negatively with

cFTOE and
positively with

crSO2

BP, blood pressure; cFTOE, cerebral fractional tissue oxygen extraction; crSO2, cerebral oxygen saturation; MABP, mean arterial blood pressure; NIRS, near-infrared spectroscopy;
resp., respiratory.

Table 2. Cerebral tissue oxygenation measurement in combination with blood pressure measurement after immediate transition within the first 24 h after birth.

Author
(Reference) (Year)

of Publication
Neonates, n Gestational Age,

Weeks
NIRS

Device

Arterial Blood
Pressure

Evaluation
Duration Initiation Study Aim

Main Results
Concerning BP and

NIRS

Naulaers
[56]

(2002)

Preterm
n = 15 28.0 (25.0–30.0) NIRO 300 n.a. 48 h <6.0 h

To describe normal
values of cTOI in
premature infants

cTOI, MABP, and CBF
increased in the first

3 days in preterm
neonates

Pellicer
[54]

(2005)

Preterm
n = 59 28.3 ± 2.3 Critikon

MABP
(oscillometric and

invasive)
80 min 5.3 ± 3.7 h

Effect of two
catecholamines on

brain hemodynamics
in LBW neonates

Epinephrin and
dopamine increased BP,
CBF, and HbD, whereas

cerebral circulation is still
pressure passive
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Table 2. Cont.

Author
(Reference) (Year)

of Publication
Neonates, n Gestational Age,

Weeks
NIRS

Device

Arterial Blood
Pressure

Evaluation
Duration Initiation Study Aim

Main Results
Concerning BP and

NIRS

Lemmers
[21]

(2006)

Preterm
n = 83

26.6 ± 1.32
(with RDS, n = 18)

29.3 ± 1.74
(without RDS, n = 20)

INVOS 4100 MABP (invasive) 72 h 1.0–2.0 h

The influence of RDS
on arterial blood

pressure in preterm
neonates with and

without RDS

RDS neonates showed
impaired CA with

positive MABP-crSO2 and
negative MABP–cFTOE

correlations

Victor
[29]

(2006)

Preterm
n = 40 27.0 (23.0–30.0) NIRO 500 MABP (invasive) 96 h <24.0 h

Association between
cardiocirculatory

values and cerebral
oxygenation

Stable very premature
neonates showed intact

CA without correlation of
MABP-cFTOE and

CO-cFTOE

Victor
[28]

(2006)

Preterm
n = 35 27.0 (24.0–34.0) NIRO 500 MABP (invasive)

and echo 96 h <24.0 h

Association between
cardiocirculatory

values and cerebral
monitoring

aEEG and cFTOE
maintained normal above

MABP of 23 mmHg

O’Leary
[36]

(2009)

Preterm
n = 88 26.0 (23.0–30.0) NIRO 500 MABP (invasive) 96 h 11.0 h Association between

CA and outcome

MAP-HbD gain reflecting
cerebral pressure

passivity was associated
with IVH or PVL

Hahn
[30]

(2010)

Preterm
n = 22 27.5 (24.0–29.0) NIRO 300 MABP (invasive) 1.3–3.7 h 17.4 h

Increasing precision of
coherence analysis by

adding MABP

CA measurements took
hours and can be

improved by adding
MABP

Takami
[51]

(2010)

Preterm
n = 16 25.2 ± 1.6 NIRO 200

NIRO 300

MABP
(oscillometric and
invasive) and echo

72 h 3.0–6.0 h
Detailed analyses of
cerebral oxygenation
and cardiac function

cTOI decreased initially,
then increased, while

FTOE showed the
opposite pattern; MABP

increased gradually



Children 2023, 10, 1304 6 of 15

Table 2. Cont.

Author
(Reference) (Year)

of Publication
Neonates, n Gestational Age,

Weeks
NIRS

Device

Arterial Blood
Pressure

Evaluation
Duration Initiation Study Aim

Main Results
Concerning BP and

NIRS

Bonestroo
[31]

(2011)

Preterm
n = 142

30.0 (26.0–31.6)
(volume, n = 33)
(control 1, n = 33)

29.4 (25.9–31.6)
(dopamine, n = 38)
(control 2, n = 38)

INVOS
4100–5100 MABP (invasive) 1 h 15 min before

treatment

Effect of volume
expansion and
dopamine in

hypotensive preterm
neonates

No significant changed in
rScO2 and cFTOE

Gilmore
[24]

(2011)

Preterm
n = 23 26 ± 1 Foresight MABP (invasive) 24–96 h 14.4 ± 14.4 h

Relationship between
CA and blood

pressure

Correlation between
MABP and impaired CA

Hahn
[32]

(2012)

Preterm
n = 60 27 ± 1 NIRO 300 MABP (invasive) 2.3 h 2.3 ± 0.5 h Neonates with

inflammation and CA

Impairment of CA
measured with OI

worsened with lower
MABP

Wong
[37]

(2012)

Preterm
n = 32 26.3 ± 1.5 NIRO 200 MABP (invasive) 57.0 ± 5.9 h 12 ± 5.8 h

Relationship between
cerebral

autoregulatory
capacity and blood

pressure

Sick infants exhibited
blood pressure-dependent

variations in crSO2

Alderliesten
[41]

(2013)

Preterm
n = 90

27.9 (26.2–30.0)
(with IVH, n = 30)

27.5 (25.4–31.0)
(without IVH, n = 60)

INVOS
4100–5100 MABP (invasive) 24 h after

IVH 21.0 h Association between
CA and IVH

IVH infants exhibited
increased crSO2,

decreased cFTOE, and
passive brain perfusion

indicated by
MABP–crSO2 correlation

Kooi
[39]

(2013)

Preterm
n = 14 27.6 (25.0–28.7) INVOS 5100C MABP (invasive)

1 h after
volume
therapy

16.8 h
Effect of volume

therapy in
hypotensive neonates

Volume did not improve
cFTOE in preterm

neonates

Eriksen
[40]

(2014)

Preterm
n = 60

26.2 ± 1.5
(dopamine, n = 13)

26.7 ± 1.2
(no dopamine, n = 47)

NIRO 300 MABP (invasive) 2.3 ± 0.5 h 18 ± 9.4 h
Effect of dopamine
therapy in terms of

CA

Dopamine therapy was
associated with decreased

CA
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Table 2. Cont.

Author
(Reference) (Year)

of Publication
Neonates, n Gestational Age,

Weeks
NIRS

Device

Arterial Blood
Pressure

Evaluation
Duration Initiation Study Aim

Main Results
Concerning BP and

NIRS

Riera
[27]

(2014)

Preterm
n = 54 27 ± 2 NIRO 200NX MABP (invasive) 9.5 h <24.0 h To identify impaired

hemodynamics

BIAR COH (a specific
time–frequency analysis
consisting of MABP and
TOI) identified cerebral

hypoperfusion

Binder-Heschl
[55]

(2015)

Preterm
n = 46

33.4 ± 1.9
(hypotensive, n = 17)

33.3 ± 1.3
(normotensive, n = 29)

INVOS 5100
MABP

(oscillometric and
invasive) and echo

24 h <6.0 h CA during
hypotension

There were no significant
differences in mean 24-h

crSO2 and cFTOE
between hypotensive and

normotensive neonates

Demel
[49]

(2015)

Term
n = 7,

Preterm
n = 16

39.9 (37.0–40.2)
(term, n = 7)

34.0 (32.2–35.6)
(preterm, n = 16)

Oxiplex TS 3.1 MABP
(oscillometric) 72 h

7.0–11.0 h
term

1.5–2.0 h
preterm

Feasibility of NIRS
and Doppler
sonography

Measurements of crSO2
using frequency domain

NIRS was feasible

Eriksen
[26]

(2015)

Preterm
n = 60 27 ± 1 NIRO 300 MABP (invasive) 2.3 ± 0.5 h 18.0 ± 9.4 h

Comparison of two
conventional methods
used to describe CA

Time domain analysis
using TOI and MABP

appeared more robust in
describing CA

Stammwitz
[33]

(2016)

Preterm
n = 31 27.3 (26.0–32.0) Critikon MABP (invasive) 68–76 h <6.0 h Association between

CA and outcome

Higher variability of TOI
was associated with IVH

and death

Vesoulis
[25]

(2017)

Preterm
n = 68 25.5 ± 1.3 Foresight MABP (invasive) 72 h 17.8 ± 9.7 h

Evaluation of the
interaction between

BP, changes in oxygen
extraction, and

maturity

In extreme preterm
neonates, MABP and

cFTOE showed a positive
correlation, indicating

immature autoregulation

Da Costa
[34]

(2018)

Preterm
n = 44 25.0 (23.0–27.0) NIRO 200NX MABP (invasive) 24 h 3.1–12.6 h To define optimal

MABP using NIRS

Optimal MABP gained by
TOI and HR identified

risk patients
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Table 2. Cont.

Author
(Reference) (Year)

of Publication
Neonates, n Gestational Age,

Weeks
NIRS

Device

Arterial Blood
Pressure

Evaluation
Duration Initiation Study Aim

Main Results
Concerning BP and

NIRS

Pichler
[53]

(2018)

Preterm
n = 98

33.1 (32.0–34.0) (with
NIRS, n = 49)

33.4 (32.3–34.3)
(without NIRS, n = 49)

NIRO 200NX
MABP

(oscillometer and
invasive)

48 h

2.0 (1.5–3.5) h
(with NIRS)

2.5 (2.0–4.0) h
(without NIRS)

Reduction of
hypotensive episodes

by using NIRS

cTOI measurements led to
a non-significant

reduction in arterial
hypotension

Da Costa
[35]

(2019)

Preterm
n = 43 25.7 (23.6–31.0) NIRO 200NX MABP (invasive)

and echo 48 h 6.0 h
Association of MABP
and IVH in preterm

neonates

crSO2 was lower in
neonates with IVH before

and during the event

Bruckner
[52]

(2020)

Term
n = 13, preterm n =

47

34.0 (33.0–35.0) (whole
cohort) INVOS 5100

MABP
(oscillometric and
invasive) and echo

24 h 4.0–6.0 h
Association between
cardiac function and

crSO2

In stable term and
preterm neonates, crSO2

and cFTOE did not
correlate with CO

Chock
[38]

(2020)

Preterm
n = 103 26.2 ± 1.7 INVOS 5100C MABP (invasive) 96 h 8.0–21.0 h Association between

CA and outcome

MABP and crSO2
correlated in neonates
with adverse outcome

BP, blood pressure; CBF, cerebral blood flow; CA, cerebral autoregulation; cFTOE, cerebral fractional tissue oxygen extraction; CO, cardiac output; crSO2, cerebral oxygen saturation;
cTOI, cerebral tissue oxygenation index; EEG, electroencephalogram; HbD, deoxygenated hemoglobin; HR, heart rate; IVH, intraventricular hemorrhage; LBW, low birth weight; MABP,
mean arterial blood pressure; NIRS, near-infrared spectroscopy; OI, oxygenation index; PVL, periventricular leukomalacia.

Table 3. Cerebral tissue oxygenation measurement in combination with blood pressure measurement after 24 h up to 1 week after birth.

Author
(Reference) (Year)

of Publication
Neonates, n Gestational Age,

Weeks
NIRS

Device

Arterial Blood
Pressure

Evaluation
Duration Initiation Study Aim Main Results Concerning

BP and NIRS

Tsuji
[23]

(2000)

Preterm
n = 32 26 (23.0–31.0) NIRO

500 MABP (invasive) 30 min <72 h Association between CA
and outcome

Concordant changes in
HbD and MABP suggest
impaired cerebrovascular

function

Wong
[42]

(2008)

Preterm
n = 24 26 ± 2 NIRO

300 MABP (invasive) 3 h 28 h Association between CA
and outcome

High coherence between
MABP and cTOI indicates

impaired CA in sick
preterm neonates
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Table 3. Cont.

Author
(Reference) (Year)

of Publication
Neonates, n Gestational Age,

Weeks
NIRS

Device

Arterial Blood
Pressure

Evaluation
Duration Initiation Study Aim Main Results Concerning

BP and NIRS

De Smet
[48]

(2009)

Term and
preterm
n = 20

28.7 (24.0–39.0) NIRO
300 MABP (invasive) 1.5–23.5 h <72 h

To assess whether cTOI
may replace HbD for

measuring CA

cTOI and HbD showed
similar results; both may be

used for calculating CA

Caicedo
[43]

(2011)

Preterm
n = 53 29 ± 2 INVOS 4100

and NIRO 300 MABP (invasive) 6–70 h 24–72 h
To assess whether cTOI
and crSO2 may replace
HbD for measuring CA

cTOI, crSO2, and HbD
showed similar results; all

three may be used for
calculating CA

Zhang
[44]

(2011)

Preterm
n = 17 26.4 (24.0–29.0) NIRO

300 MABP (invasive) 72 h 24–72 h Association between CA
and outcome

Neonates with IVH showed
higher TOI, lower cFTOE,

and reduced coherence
between MABP and HbD

Mitra
[45]

(2014)

Preterm
n = 31 26.1 (23.7–32.6) NIRO 200NX MABP (invasive) 2 h 48 h

Association between
cardio-circulatory

values and CBF in sick
preterm neonates

cTOI and HR, reflecting
cerebrovascular reactivity,
showed a correlation with

MABP

Verhagen
[46]

(2014)

Preterm
n = 25 29.1 (25.4–31.7) INVOS

4100–5100 MABP (invasive) 24 h <72 h Association between
clinical variables and CA

Negative correlation
between MABP and cFTOE
suggests the absence of CA

Traub
[47]

(2021)

Preterm
n = 17 26.5 (23.0–33.2) Foresight MABP (invasive) 24 h 88.8 h

To determine whether
NIRS helps to identify

neonates at risk

Neonates maintain intact CA
within normal MABP ranges

CA, cerebral autoregulation; CBF, cerebral blood flow; cFTOE, cerebral fractional tissue oxygen extraction; crSO2, cerebral oxygen saturation; cTOI, cerebral tissue oxygenation index;
HbD, deoxygenated hemoglobin; HR, heart rate; IVH, intraventricular hemorrhage; MABP, mean arterial blood pressure; NIRS, near-infrared spectroscopy.
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Two studies described the association of blood pressure values and cerebral NIRS
during immediate transition in preterm and in term neonates [22,50] (Table 1). These
studies showed intact cerebral autoregulation in term neonates and impaired cerebral
autoregulation in moderate and late preterm neonates receiving respiratory support with
significant associations between crSO2/cFTOE and MABP.

Twenty-six studies were conducted during the first 24 h [21,24–41,49,51–56] (Table 2).
Eleven studies investigated physiological changes of blood pressure and cerebral tissue
oxygenation [24–30,49,51,52,56]. A further six studies combined cerebral NIRS monitoring
with blood pressure measurement to investigate cerebral autoregulation in stable and sick
neonates [21,32,34,37,53,55]. Stable preterm neonates experienced reduced cerebral tissue
oxygenation, perfusion, and cardiac output after birth, followed by an increase of all three
parameters; however, cerebral autoregulation remained intact [28,29,49,51,52,56]. Besides,
sick preterm neonates suffering from respiratory distress syndrome (RDS), hypotension, or
sepsis had a higher prevalence of impaired cerebral autoregulation [21,25,32,34,37,53,55].
Another four studies focused on the treatment of hypotension and cerebral autoregula-
tion [31,39,40,54]. They showed that cardio-circulatory treatment had a limited effect on
cerebral autoregulation. The influence of impaired autoregulation on intraventricular
hemorrhage (IVH), death, or abnormal neurodevelopmental outcome was demonstrated
by five studies [33,35,36,38,41]

Eight studies were conducted 24 h after birth [23,42–48] (Table 3). Three studies
examined the physiological changes in blood pressure, cerebral tissue oxygenation, and
cerebral autoregulation [46–48], and a further two studies [43,45] investigated cerebral
autoregulation in stable and sick neonates by combining cerebral tissue oxygenation with
blood pressure measurement. Maintaining mean arterial blood pressure (MABP) within
normal ranges reduces the duration of impaired cerebral autoregulation [46]. However,
even clinically unremarkable preterm neonates below 32 weeks of gestational age still
experience episodes of impaired cerebral autoregulation [47]. Risk factors for impaired
cerebral autoregulation include a higher CRIB II Score [43,45]. The remaining three studies
showed that impaired cerebral autoregulation increased the risk of IVH and abnormal
neurodevelopmental outcomes [23,42,44].

4. Discussion
4.1. Immediate Transition

Studies within the immediate transition period analyzing blood pressure measure-
ments in combination with cerebral tissue oxygenation measurements were scarce. There
were only two observational studies available [22,50]. Baik et al. described that there is
no correlation of cerebral oxygen saturation (crSO2) and cerebral fractional tissue oxygen
extraction (cFTOE) with MABP in term neonates, suggesting intact cerebral autoregulation.
These findings were in line with findings in animals by Helou et al. [48]. However, in mod-
erate and late preterm neonates, Baik et al. [50] showed a significant correlation between
cFTOE and MABP, whereas crSO2 and MABP did not correlate. Pfurtscheller et al. [22]
showed in more detail that, only in moderate and late preterm neonates receiving respira-
tory support, both crSO2 and cFTOE were associated with MABP, indicating an impaired
cerebral autoregulation in those compromised neonates.

4.2. First Day after Birth

Twenty-six studies were conducted during the first day after birth [21,24–41,49,51–56].
Of these, three studies described different mathematical and technical approaches to assess
cerebral autoregulation [26,27,30]. Eight studies analyzed physiological changes of blood
pressure and cerebral tissue oxygenation [24,25,28–30,49,51,56]. Naulaers et al. [56] demon-
strated that, in preterm neonates, blood pressure, as well as the crSO2 values increased over
the first three days. These findings in blood pressure were in line with normative blood
pressure studies, which demonstrated an increase in MABP with an increase of postnatal
age in days and with an increase in gestational age [16,57]. Concerning cerebral tissue
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oxygenation, Takami et al. [51] described a reduction after birth in stable preterm neonates
in addition to a reduction in perfusion and cardiac output. These results seem to contradict
their findings for blood pressure, since blood pressure did not correlate with cFTOE and
crSO2, which suggests intact cerebral autoregulation. A further two studies were in line
with the latter findings and showed that preterm neonates presenting a combination of
low cardiac output and a normal systemic blood pressure were able to maintain cerebral
and peripheral perfusion within normal ranges [28,29]. In contrast to those mentioned
studies demonstrating intact cerebral autoregulation in preterm neonates [28,29,49,52],
Gilmour et al. [24] demonstrated that preterm neonates could have episodes of impaired
cerebral autoregulation in association with low arterial blood pressure. Their findings may
be explained with the heterogeneity of their cohort, including stable and sick neonates. Bear-
ing this in mind, Vesloulis et al. [25] showed that sick extremely low gestational age preterm
neonates with a mean gestational age of 24 weeks had an autoregulatory immaturity, which
led to a decrease in oxygen extraction with low blood pressure values.

Taking the above-mentioned studies into consideration, it seems that preterm neonates
are able to have an intact cerebral autoregulation, but may lose this ability due to different
risk factors. Six studies identified such risk factors for impaired cerebral autoregulation
with blood pressure and cerebral NIRS measurements [21,32,34,37,53,55]. Hahn et al. [32]
showed that inflammation in preterm neonates moderately influenced cerebral autoregu-
lation in the first day after birth. However, it was unclear whether the impaired cerebral
autoregulation was due to inflammation itself or due to arterial hypotension that exceeded
cerebral autoregulatory capacity, caused by inflammation. These findings were in line with
data coming from animal studies [58,59]. Furthermore, Lemmers et al. [21] demonstrated
that neonates with RDS more frequently suffered from impaired cerebral autoregulation
compared to neonates without RDS. These findings are supported by a non-NIRS study [60]
demonstrating that CBF, measured by using the 133Xe clearance technique, varied with
blood pressure, also suggesting an impaired cerebral autoregulation in preterm neonates
with RDS. In addition to the previously mentioned risk factors for impaired cerebral autoreg-
ulation, birth weight and Clinical Risk Index for Babies (CRIB) Score were demonstrated to
be risk factors as well, due to the influence on blood pressure variability, which exceeded
cerebral autoregulatory capacity and led to fluctuations in cerebral tissue oxygenation [37].
Similar results concerning birth weight were shown by Baik et al. [61] by comparing
cerebral NIRS data of intrauterine-growth-restricted (IUGR) neonates with appropriate
for gestational-age neonates showing significantly higher crSO2 values and significantly
lower cFTOE values in IUGR neonates during immediate transition. A further cause for
impaired cerebral autoregulation is hypotension below the autoregulatory capacity [14].
This hazardous hypotension is commonly defined by MABP being below gestational age in
NICU [62]. However, Binder et al. [55] demonstrated that, during borderline hypotension,
cerebral autoregulation in preterm neonates was maintained within the first 24 h. These
findings were in line with Dempsy’s multicenter HIP trial [13], where hypotensive preterm
neonates with clinical evidence of good perfusion had equal cranial ultrasound outcomes as
normotensive neonates, whereas neonates treated for low blood pressure were associated
with adverse outcomes.

The treatment of arterial hypotension and its influence on cerebral autoregulation
was the focus of four studies [31,39,40,54]. Bonestroo et al. [31] demonstrated in his study
that any kind of hypotensive treatment did not cause a significant change in crSO2 and
cFTOE. This is in line with Kooi et al. [39], who showed that cFTOE did not improve with
volume expansion in hypotensive preterm neonates. On top of that, dopamine therapy was
even associated with a decreased cerebral autoregulation in preterm neonates [40,54], and
epinephrin or dopamine increased cerebral blood flow in sick preterm neonates.

Cerebral autoregulation assessment by blood pressure and cerebral tissue oxygenation
measurements and the impact on outcome (intraventricular hemorrhage (IVH), death,
or abnormal neurodevelopmental outcome) were addressed in five observational stud-
ies [33,35,36,38,41]. These studies demonstrated that impaired cerebral autoregulation
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within the first 24 h increased the risk for IVH [36,41] and abnormal neurodevelopmental
outcome at 16 months [33]. This was in line with Chock et al. [38], who demonstrated that
impaired cerebral autoregulation was associated with an increase of cerebral hemodynamic
fluctuations, which increased the risk of death and IVH. Equal findings were reported by
Da Costa et al. [34,35], who described impaired cerebral autoregulation in preterm neonates
with IVH prior to and during the event.

4.3. Beyond the First Day after Birth

Eight studies combining blood pressure and cerebral tissue oxygenation measurements
were conducted after 24 h up to 1 week after birth. [23,42–48]. One study showed different
approaches to calculate cerebral autoregulation [48]. Two studies showed that, on the
one side, with MABP maintained within normal ranges, the time with impaired cerebral
autoregulation was reduced. On the other side, 40% of clinically unremarkable preterm
neonates with a gestational age below 32 weeks showed episodes of impaired cerebral
autoregulation within the first 72 h of life [46,47]. These findings are in accordance with
observations during the first day after birth [24].

Two studies [43,45] assessed risk factors for impaired cerebral autoregulation, whereby
the first showed that an increase in the CRIB II Score was associated with an impaired
cerebral autoregulation [45]. This finding is again consistent with observations during the
first day after birth [37]. The second study [43] demonstrated that investigating cerebral
vascular reactivity with cerebral tissue oxygenation and heart rate measurements helped
to identify neonates at risk. In this study, blood pressure and cerebral tissue oxygenation
measurements showed no correlation, due to the described technical limitations.

Three studies investigated the influence of impaired cerebral autoregulation on IVH,
death, or abnormal neurodevelopmental outcome with cerebral tissue oxygenation and
blood pressure measurements [23,42,44]. The three studies [23,42,44] demonstrated
similar results compared to studies that were performed during the first day after
birth [33,35,36,38,41]. They concluded that the time with impaired cerebral autoregulation
is associated with IVH, death, or abnormal neurodevelopmental outcome.

4.4. Limitations

First, one of the main limitations is the small cohorts in most of the included studies.
The study populations were heterogeneous, in particular regarding the presence of risk
factors. Thereby, most of the studies demonstrated that blood pressure measurement in
combination with cerebral tissue oxygenation monitoring is a feasible method for bedside
monitoring of cerebral autoregulation.

Second, studies were performed using different blood pressure measurement methods
(invasive and non-invasive) and different NIRS devices.

Third, different methods were used to measure cerebral autoregulation, and different
thresholds were set for defining impaired autoregulation.

5. Conclusions

Interpreting arterial blood pressure measurements and making therapeutic decisions
can be challenging in clinical practice. The use of cerebral tissue oxygenation provides a
promising approach for establishing blood pressure targets that preserve cerebral autoregu-
lation and prevent pressure-passive cerebral perfusion. Integrating blood pressure monitor-
ing with cerebral tissue oxygenation measurements provides the potential to identify more
effectively interventions for improving neurodevelopmental outcomes in high-risk patients.
This approach has significant implications for enhancing clinical practice and ultimately
improving patient outcomes.
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