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Abstract: The complete transposition of the great arteries (C-TGA) is a congenital cardiac anomaly
characterized by the reversal of the main arteries. Early detection and precise management are crucial
for optimal outcomes. This review emphasizes the integral role of multimodal imaging, including
fetal echocardiography, transthoracic echocardiography (TTE), cardiovascular magnetic resonance
(CMR), and cardiac computed tomography (CCT) in the diagnosis, treatment planning, and long-term
follow-up of C-TGA. Fetal echocardiography plays a pivotal role in prenatal detection, enabling early
intervention strategies. Despite technological advances, the detection rate varies, highlighting the
need for improved screening protocols. TTE remains the cornerstone for initial diagnosis, surgical
preparation, and postoperative evaluation, providing essential information on cardiac anatomy,
ventricular function, and the presence of associated defects. CMR and CCT offer additional value in
C-TGA assessment. CMR, free from ionizing radiation, provides detailed anatomical and functional
insights from fetal life into adulthood, becoming increasingly important in evaluating complex cardiac
structures and post-surgical outcomes. CCT, with its high-resolution imaging, is indispensable in
delineating coronary anatomy and vascular structures, particularly when CMR is contraindicated or
inconclusive. This review advocates for a comprehensive imaging approach, integrating TTE, CMR,
and CCT to enhance diagnostic accuracy, guide therapeutic interventions, and monitor postoperative
conditions in C-TGA patients. Such a multimodal strategy is vital for advancing patient care and
improving long-term prognoses in this complex congenital heart disease.

Keywords: complete transposition of the great arteries; cardiovascular multimodal imaging; fetal
echocardiography; pediatric cardiovascular magnetic resonance; cardiac computed tomography
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1. Introduction

Transposition of the great arteries (TGA) is one of the most prevalent cardiac congenital
heart diseases (CHDs), accounting for 5–7% of all cardiac congenital malformations [1,2].
Without intervention, TGA could be life-threatening in the first weeks of life [2,3]. However,
after effective medical and surgical treatments, early and midterm survival is nowadays
achievable in the majority of cases and, with an overall good long-term prognosis [3].

Although the exact etiology and pathogenesis of TGA remains unknown [4], several
theories have been postulated; the most accredited one involves an abnormal twisting
of the pulmonary artery (PA) around the aorta during embryogenesis, with consequent
misalignment of great vessels with the respective ventricular chamber [5,6]. An alternative
theory suggests that an abnormal enlargement of the subaortic conus and resorption of the
subpulmonary conus could be involved, resulting in the anterior and rightward positioning
of the aorta in relation to the PA [7].

Two main types of TGA have been described: complete TGA (C-TGA) and congenitally
corrected TGA (CC-TGA) [5].

With a prevalence ranging from 20.1 to 30.5 per 100,000 live births and a strong
male preponderance (2:1) [2,4], C-TGA is a conotruncal abnormality characterized by
atrioventricular concordance and ventriculoarterial discordance [5]. The aorta originates
therefore from the morphological right ventricle (RV) while the PA originates from the
morphological left ventricle (LV) [5]. The essential communication between the systemic
and pulmonary circulations is typically maintained through an atrial septal defect (ASD).
Other shunt sources such as ventricular septal defects (VSDs) or patent ductus arteriosus
(PDA) do not maintain effective pulmonary blood flow and mainly function to augment
the interatrial shunt by increasing left atrial pressure [5,8]. The diagnosis is usually fetal or
neonatal and prompt surgical intervention is necessary for survival, with options including
the atrial switch operation (AtrSO) [9,10], arterial switch operation (ASO) [11,12], and
Rastelli [13] or Nikaidoh [14] operation in case of associated VSD.

CC-TGA is a rarer anomaly, representing 1% of all forms of congenital heart disease [15]
and is characterized by both atrioventricular and ventriculoarterial discordance [5,15–19].
For this review, we will focus on C-TGA, and we will not delve into the specifics of CC-TGA.
For simplicity, from now on, we will refer to C-TGA as TGA throughout the manuscript.

Cardiac imaging therefore plays a central role in the initial assessment of TGA,
aiding in the identification of both structural and functional anomalies. It is also key
in assisting therapeutic management, providing a non-invasive evaluation of hemody-
namic severity, the degree of associated intracardiac shunt, and the recognition of post-
surgical complications.

The aim of this review is to summarize the roles, advantages, and limitations of each
imaging modality within the context of TGA. We have briefly summarized the use of these
methods divided between prenatal, preoperative, and postoperative application (Table 1).

Table 1. Summary of the use of echocardiography, cardiovascular magnetic resonance, and cardiac
computed tomography in the prenatal, preoperative, and postoperative periods.

Prenatal Preoperative Postoperative

Echocardiography

• Early diagnosis
• Planning delivery and fetal or

early intervention/delivery
• Outflow tracts’ assessment
• CA origins’ assessment

• Evaluation of mixing between
the systemic and pulmonary
circulations: VSDs,
PDA, ASDs

• Proximal CAs’ anatomy
assessment

• Outflow tracts’ assessments
(valvar stenosis/regurgitation,
outflow tract obstructions)

• Intervention planning

• Postoperative complications
(ventricular disfunction, PAs
stenosis but with limited
vitalization from adolescence)

• Stress echocardiography:
evaluation of CA
reimplantation/inducible
myocardial ischemia
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Table 1. Cont.

Prenatal Preoperative Postoperative

Cardiovascular Magnetic
Resonance

• An alternative to fetal
echocardiography in scenarios
where traditional ultrasound
faces limitations

• Still considered a
research method

• Diagnosis of vascular
anomalies with a high
degree of accuracy

• Support in planning fetal or
early intervention/delivery

• Limited use due to need of
high patient compliance

• Detailed definition of cardiac
anatomy, ventricular volumes,
function, and vascular
structures

• 3D modeling

• Detailed definition of cardiac
anatomy, ventricular volumes,
function, and vascular
structures

• Pivotal role in postoperative
evaluation and management
(e.g., baffle obstructions, PA
stenosis, PA flow distribution)

• Tissue characterization
(myocardial ischemia)

• Origin and proximal
part of CAs

• Stress CMR: evaluation of CA
reimplantation/inducible
myocardial ischemia

• 3D modeling

Cardiac Computed
Tomography

• Contraindicated due to
radiation exposure

• Cardiac anatomy and vascular
structure assessment

• Gold standards for CA
anatomy assessment

• 3D modeling

• Vascular structure assessment
• Assessment of region where

stents are in place
• Evaluation of CA anatomy

post-reimplantation
• 3D modeling

2. Fetal Echocardiogram in Complete Transposition of the Great Arteries

Prenatal diagnosis of TGA plays a pivotal role in modern pediatric cardiology, en-
abling early identification and planning for the management of this congenital heart defect.
However, despite the advancements in fetal ultrasound screenings and fetal echocardiogra-
phy, the rates of prenatal detection for TGA internationally remain relatively low, spanning
from 25 to 40% [20,21].

One of the main reasons is that, until recently, the guidelines for obstetric ultrasound
recommended the inclusion of the four-chamber (4CH) view in standard screening. Indeed,
there was an optional evaluation of cardiac outflows, great arteries, and their relationship
with the ventricles [22,23]. Nowadays, the assessment of left and right cardiac outflow
tracts has been integrated as essential components of fetal echocardiographic 2-dimension
(2D) imaging [24,25]. Consequently, the prenatal detection rates of TGA should improve.
Usually, the diagnosis is confirmed by fetal echocardiography between 18 and 22 weeks
of gestation following abnormal results on screening ultrasound. However, advances in
imaging techniques now allow for the assessment of the fetal heart as early as 12 to 14 weeks’
gestation [26]. Timely recognition is fundamental as it enables healthcare providers to
counsel expectant parents. They can plan appropriate interventions and arrange specialized
care, thereby optimizing outcomes for infants born with TGA [27]. During a normal fetal
scan, a cranial sweep from the 4CH view allows for the visualization of the left ventricle
outflow tract (LVOT) and the aorta. More cranially, the right ventricle outflow tract (RVOT)
and PA are visualized. Of note, in the normal heart, the great arteries cannot be seen in the
same plane, meaning that they cross each other, and do not originate in parallel (Figure 1).

By contrast, in TGA, the great vessels arise in parallel from the ventricles. The origin
of the main PA and its bifurcation from the LV and the aorta from the RV should be
examined in two orthogonal planes, and any potential discrepancy in vessel size and flow
acceleration should also be examined [28]. The three vessels and trachea view can raise
the suspicion of TGA as well, demonstrating only a single large vessel (aorta) and the
superior vena cava (SVC). Lastly, in the short-axis (SAX) view, both semilunar valves are
seen in a cross-sectional orientation with the aorta usually anterior and to the right of the
pulmonary artery.
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Figure 1. Fetal echocardiographic assessment in TGA through cranial sweep starting from 4CH going
to the outflows. Panel (A): 4CH view, which appears normal in most fetuses with TGA; (B,C): outflow
tracts’ assessment, showing parallel vessels arising from the 2 ventricles, with the posterior artery
(PA), which bifurcates; (D): short-axis view, where both the semilunar valves appear in cross-sectional
orientation; (E): the presence of a VSD should be investigated with 2D and color Doppler. In this
panel, a mild posterior deviation of the conal septum is noted (red arrow).

Once the diagnosis of TGA is made, efforts should be made to identify anatomical
features that can advocate the need for an urgent procedure after birth (i.e., Rashkind/atrial
septostomy), modify the standard surgical approach (ASO), or alert the cardiologists about
an increased risk of coronary abnormalities (i.e., side-by-side great vessels). VSD and
pulmonary stenosis (PS) are the two most common associated cardiac findings in TGA.
VSD is present in about 40% of cases and is usually a perimembranous outlet, but it can
be located in any position and, if small, it can be missed during fetal scans due to equal
ventricular pressure [29]. The presence of a posterior or anterior septal malalignment
should also be investigated; indeed, they can cause respectively progressive PS, which is
identified in about 30% of patients with VSD, or aortic root stenosis, and this can influence
the postnatal management.

The identification of coronary artery (CA) origin in fetuses with TGA is of great
importance. This information could help in counseling parents about potential variations
in postnatal surgical techniques.

Unfortunately, CA identification is still challenging for fetal cardiologists. Multiple
factors, such as fetal position, gestational age, type of CA anatomy, and maternal habitus
can affect the success of this evaluation. For many cases, it is necessary to repeat the
examination to visualize all three CAs adequately. The early third trimester may represent
the optimal gestational age for evaluating CA anatomy. Nevertheless, identifying the origin
of CA presents challenges, particularly because the proximal course of the CA in certain
types of anatomy closely aligns with the aortic root, making it difficult to visualize the
CA flow or distinguish it from the aortic flow [30]. Recent data on 34 fetuses showed that
coronary assessment was feasible in 41% of the cohort, with a higher chance of success after
25 weeks of gestation and when both short- and long-axis views were investigated [31].

Late-gestation imaging of the interatrial septum is also advisable to try to predict
the need for a postnatal balloon (Rashkind) atrial septostomy and plan delivery in an
environment where enlarging the interatrial septal defect is possible in case shunting
proves to be insufficient. Several parameters have been investigated, including foramen
ovale (FO) appearance, flow in the ductus arteriosus, maximal velocity of flow through the
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FO and pulmonary veins’ maximal velocity [32,33]. Among them, a flattened FO and an
increased velocity in maximum pulmonary vein (PV) velocity (>41 cm/s) were associated
with the need for a Rashkind procedure within the first 24 h postnatally and could be used
prenatally to identify fetuses at risk for FO restriction [32,33].

3. Transthoracic Echocardiography in Complete Transposition of the Great Arteries

Transthoracic echocardiography (TTE) is a crucial diagnostic tool for the initial di-
agnosis, surgical planning, and late follow-up of patients with TGA. Indeed, for most
neonates, TTE provides all the information required for a successful anatomical characteri-
zation and tailored surgical planning, hence obviating the need for further cardiovascular
imaging modalities.

3.1. Preoperative Evaluation

Preoperative TTE protocol in patients with TGA is outlined in detail in Table 2.

Table 2. Echocardiographic assessment in patients with TGA.

Preoperative Assessment

Spatial relationship between the aorta
and the pulmonary artery

Subxiphoid frontal
Subxiphoid sagittal

Parasternal long axis

Presence and size of the atrial septal defect Subxiphoid frontal

Presence, location, number, and size of VSD
Subxiphoid sagittal
Apical five chamber

Parasternal short axis

AV valve morphology, function, and abnormalities Subxiphoid sagittal
Apical four and five chamber

Outflow tract obstruction
Subxiphoid sagittal
Apical five chamber
Parasternal long axis

Coronary artery anatomy and anomalies
High parasternal short axis

Apical four chamber
Subxiphoid

Aortic arch anatomy and sideness and PDA Suprasternal sagital

Postoperative Assessment

Residual ASD Subxiphoid frontal

Residual VSD
Subxiphoid frontal
Subxiphoid sagittal

Parasternal short axis

Ventricular function, size, regional wall motion,
AV valve function

Apical four chamber
Parasternal long axis
Parasternal short axis

Outflow tract obstruction, neoaortic root dilation,
semilunar valve regurgitation/
stenosis, supravalvar stenosis

Subxiphoid frontal
Subxiphoid sagittal
Apical five chamber
Parasternal long axis
Parasternal short axis

Branch pulmonary arteries stenosis High parasternal plane

Residual arch obstruction or residual PDA Suprasternal sagittal
Subxiphoid sagittal

In the TTE evaluation of TGA, a segmental approach is fundamental. This method
ensures a comprehensive assessment, including the spatial relationship between the aorta
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(Ao) and the pulmonary artery (PA). Typically, the aortic valve (AV) is positioned anteriorly
and to the right of the pulmonary valve (PV), with the great vessels running parallel. In
some cases, the AV may be located directly in front of the PV, side by side, or, less commonly,
in an anterior–leftward position.

As previously emphasized, examining the interatrial septum is critical. This exam-
ination should identify any interatrial communications and assess the mixing efficiency
between the systemic and pulmonary circulations. A thorough analysis includes evaluating
the direction and velocity of flow across the septum [34]. In situations where the defect
restricts adequate left-to-right shunting, necessary for oxygenated blood delivery to the
systemic circulation, performing a balloon atrial septostomy might be warranted. The
literature defines a restrictive interatrial communication by a mean gradient exceeding
8 mmHg, while a mean gradient below 3 mmHg is considered non-restrictive [35,36]. Both
TTE and transesophageal echocardiography play a crucial role in guiding this intervention
and evaluating its success.

Another key aspect of TTE is detecting any obstruction in the ventricular outflow
tract, often due to deviation of the conal septum or valvar stenosis, as this may affect
surgical planning [34]. Blood speckle imaging (Figure 1), a novel echocardiographic tech-
nique, enhances fluid dynamic analysis by overcoming the limitations associated with
standard Doppler aliasing artifacts, thereby providing critical insights into distinguishing
between genuine stenosis and volume mismatch (Figure 2) [37]. However, while this is a
very promising technique, further evidence will be needed to validate its application in
this setting.
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The assessment of CA anatomy in TGA is critically important due to the anterior
transposition of the aorta, which leads to significant variations in the origins and courses of
the CA. These variations are particularly relevant because certain anatomical differences,
such as the intramural course of the proximal CA, can complicate the ASO or lead to
subsequent coronary events. The most frequent CA patterns observed in TGA, along
with their approximate prevalence, include the usual pattern with the left coronary artery
(LCA) originating from the left-facing sinus and the right coronary artery (RCA) from
the posterior- and rightward-facing sinus; the origin of the circumflex artery (LCx) from
the RCA; a single RCA emerging from the posterior-facing sinus; a single LCA from the
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left-facing sinus; inverted arteries, a configuration similar to a normal heart; inverted RCA
and LCx; intramural LCA; and intramural RCA. Notably, intramural Cas in TGA often
arise from the sinus facing the opposite direction and traverse within the aortic wall before
exiting the adventitia, sharing a medium and lacking separate adventitial layers [34–39]. In
addition to the commonly used apical four-chamber and high-parasternal short-axis views
for identifying anomalous coronary origins, subxiphoid and modified apical five-chamber
views can also be helpful. These views offer an additional perspective in evaluating
coronary vasculature, especially in detecting a potential retro-pulmonary course of the LCx
and revealing anomalous coronary origins [40].

Evaluating the interventricular septum is essential for identifying any ventricular
communications, their anatomical types, and flow directions. The use of low Nyquist
limits (≤60 cm/s) helps detect low-velocity shunts at the ventricular level, particularly
since neonates’ right and left ventricular systolic pressures tend to be similar. While the
decision to close a VSD is influenced by various factors, including surgical accessibility
and visibility, generally, small VSDs (less than 3 mm) do not necessitate closure [41,42].
Lastly, Doppler echocardiography is invaluable for identifying PDA flow and its circulatory
effects, excluding coarctation or interruption of the aortic arch, and pinpointing anomalies
in the atrioventricular and semilunar valves that require surgical correction.

3.2. Postoperative Evaluation

For TGA, the ASO is the preferred method, providing both anatomical and physiologi-
cal corrections. It involves cutting and switching the aorta and pulmonary artery positions
(LeCompte maneuver) and relocating the coronary arteries to the newly positioned aorta.
Certain conditions, like outflow tract obstructions or complex coronary patterns, might limit
ASO’s applicability. When ASO is not viable, alternatives like the atrial switch procedure
are used for cases with an intact ventricular septum, rerouting systemic and pulmonary
venous blood at the atrial level. This method, however, has associated risks such as sinus
node and ventricular dysfunction, leading to lower survival rates.

For TGA with ventricular septal defects, the Rastelli and REV procedures create a
left-ventricle-to-aorta connection via an intraventricular tunnel. Rastelli uses an extrac-
ardiac conduit between the right ventricle and pulmonary artery, while REV employs
the LeCompte maneuver for a direct right-ventricle-to-pulmonary-trunk connection. The
Nikaidoh procedure, addressing complex anatomical issues, repositions the aortic root
and coronary arteries, and corrects left ventricular outflow tract obstruction. Despite its
complexity and higher reoperation risks, Nikaidoh offers improved physiological out-
comes [42].

TTE is crucial for detecting post-surgical complications, although they are rare. Below,
we highlight several key echocardiographic complications or critical factors that require
attention [34]. Any patient with low-cardiac-output syndrome who has echocardiographic
evidence of substantial LV dysfunction should be evaluated for CA stenosis. This is
particularly important if regional motion abnormalities are identified. Recently, myocardial
deformation imaging has emerged as a tool to assess regional wall motion abnormalities
in this population. Indeed, several studies [43–45] have demonstrated reduced values of
left ventricle global longitudinal strain in children who have undergone arterial switch
operation with coronary reimplantation, underlining that select patients may be at greater
risk of developing earlier ventricular dysfunction. In a study by Buendía-Fuentes et al. [46],
reservoir, conduit, and contraction left atrial strain were found significantly reduced in
patients with TGA after the arterial switch, highlighting a further possible risk of diastolic
dysfunction in these patients. However, while these methods allow for the assessment of the
risk of developing cardiac dysfunction resulting from CA stenosis, cardiac catheterization
remains necessary to receive the diagnose in this scenario [4].

As a result of LeCompte maneuver’s deployment of the pulmonary artery anterior
to the aorta, stenosis of the pulmonary branches is a common consequence. The short-
axis high-parasternal imaging plane results, which are particularly valuable for a two-
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dimensional color Doppler and for spectral evaluations of pulmonary artery branches
(Figure 3), are becoming more challenging from the adolescent period. A mild degree
of flow acceleration (up to 2.5 m/s) is commonly observed and does not require further
intervention [42]. Pulmonary outflow obstructions are usually observed in series at varying
levels, including branches of the pulmonary artery and the suture site in the supravalvular
pulmonary region [34].
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The presence of aortic root dilatation with some grade of aortic insufficiency is a
common complication, especially in patients with TGA and VSD, as opposed to TGA with
intact ventricular septum [34,47]. Aortic root dilatation is progressive over time. A recent
study reported a disproportional growth of neoaortic size in the first year after ASO, while
the growth was reported as comparable to normal somatic growth, albeit with a higher
z-score, in the years 2–18 after ASO [47].

3.3. Stress Echocardiography in Complete Transposition of the Great Arteries

Stress echocardiography could have a potential role in evaluating TGA in pediatric
patients. The ASO necessitates coronary artery reimplantation, introducing a potential for
complications such as tension, torsion, or the kinking of the vessels. Although coronary
issues like stenosis, occlusion, or stretching are rare immediately post-surgery, they might
emerge later during follow-up [48–51]. The basis of stress echocardiography lies in the
observation by Tennant and Wiggers 80 years ago, which noted that coronary stenosis and
myocardial ischemia result in myocardial wall motion abnormalities. Subsequent research
has elaborated on the ischemic cascade, starting from subclinical metabolic changes to
myocardial wall motion abnormalities and finally, angina symptoms. Stress echocardiogra-
phy capitalizes on this knowledge to identify coronary artery disease (CAD) prior to the
appearance of symptoms or ECG changes [48,49]. Consequently, as ASO is a substrate for
coronary anomalies, stress echocardiography could identify myocardial ischemia before
symptoms occur.

From a methodological point of view, stress echocardiography involves the induc-
tion of myocardial stress through exercise or pharmacological agents, followed by the
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assessment of cardiac function using echocardiographic imaging. Speckle-tracking in stress
echocardiography enhances the assessment of myocardial mechanics, aiding in the de-
tection of subtle abnormalities in patients with TGA [52]. It provides valuable insights
into myocardial function under stress, contributing to risk stratification and therapeutic
decision-making. Finally, three-dimensional echocardiography and contrast-enhanced
imaging are increasingly being used for improving the sensitivity and specificity of stress
echocardiography in TGA patients.

Stress echocardiography in TGA poses challenges, including imaging quality and
interpretation complexities due to the altered cardiac anatomy and hemodynamics, as well
as coronary anomalies. Furthermore, it is important to note that its use in this specific
population has not yet been validated, and additional research and studies are needed
to establish the utility and reliability of stress echocardiography in this clinical contest.
Despite all this, a thorough evaluation combining clinical history, imaging data, and
stress test outcomes could be helpful for accurate diagnosis and management planning in
TGA patients.

4. Cardiovascular Magnetic Resonance (CMR) in Complete Transposition of
the Great Arteries

CMR is an advanced imaging method. It provides a comprehensive view of thoracic
and cardiac anatomy, function, flow, and tissue properties. Importantly, it does this without
the use of ionizing radiation. This makes it extremely valuable for assessing conditions
such as TGA, where detailed anatomical and functional insight is critical. Its non-invasive
nature and safety profile make CMR a useful tool for patients of all ages, from fetal to adult
age [53,54].

The main sequences used in CMR include cine balanced steady-state free precession
(b-SSFP) sequences that are essential to define ventricular function, ventricular interdepen-
dency, and to assess great arteries and systemic vein stenosis visually, together with the
presence of shunts at ventricular or atrial level and valvular regurgitation. All the above
will be further assessed with phase contrast MRI, offering a defined quantification of shunt,
regurgitation, and stenosis. Two-dimensional phase contrast MRI images are currently
being integrated by the use of 4D flow sequences that offer various modalities of blood
flow pathway visualization, providing unprecedented capabilities to understand blood
flow changes using color-coded 3D multiplanar reformations, streamlines, and velocity
vectors. Four-dimensional flow MRI allows for a retrospectively optimal assessment of any
blood flow at any level and provides new advanced parameters, such as wall shear stress
(WSS), kinetic energy loss, and pressure difference fields [55].

In addition, T1- and T2-weighted imaging for tissue characterization, providing es-
sential information about myocardial edema and fat or scar content, and late gadolinium
enhancement (LGE) identify myocardial fibrosis or scarring, important for prognosis
and therapeutic planning [56]. Gadolinium and Ferumoxytol contrast agents are valid
alternatives for angiography sequences that enable vasculature assessments [57]. Three-
dimensional SSFP sequences offer high-resolution images of cardiac structures, enabling
precise vascular assessment [56].

Despite its broad utility, CMR requires patient cooperation for breath-holding to ensure
clear images; this can be challenging for young children. In such cases, the procedure might
be performed under general anesthesia after clinical benefit–risk consultation. However,
newer and faster techniques are being developed to reduce or eliminate the need for
anesthesia in neonates and young children, improving CMR’s accessibility and safety for
this vulnerable patient group [56].

Although its considerable utility in providing detailed diagnostic insights without
ionizing radiation, MRI has specific contraindications and risks. It is not recommended
for patients with non-MRI-compatible pacemakers, defibrillators, or certain metallic in-
tracardiac devices due to the risk of artifacts or adverse interactions. However, the use
of MRI-compatible devices has increased with the improvements in reducing metal arte-
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facts [58]. Moreover, the use of contrast agents, while enhancing imaging clarity, may lead
to allergic reactions or, in rare instances, nephrogenic systemic fibrosis in patients with
compromised renal function. Thus, while MRI is a powerful diagnostic tool, its use must
be judiciously considered against potential risks and contraindications [59].

4.1. Fetal CMR

Fetal CMR emerges as a powerful adjunct to echocardiography, especially in scenarios
where traditional ultrasound faces limitations such as maternal obesity, oligohydramnios,
unfavorable fetal positioning, and acoustic hindrances due to the fetal bony structure [60].
Fetal CMR could be performed with a 3 Tesla machine, which might achieve higher image
quality permitting the visualization of small fetal cardiac structures, or with a 1.5 Tesla
machine, which is safer and more accessible but with limitations in spatial resolution.
During the acquisition, the mother should preferably lie in the supine decubitus position,
or in the left lateral decubitus.

Fetal CMR protocol consists of static imaging, including b-SSFP sequences, and cine
imaging with CINE-bSSFP sequences to investigate both anatomical and functional charac-
teristics of the fetal heart [61]. Fetal CMR has been pivotal in elucidating detailed anatomical
and functional insights into the fetal heart, offering precise definitions of the cardiac struc-
ture, connections, and size, thereby facilitating a deeper understanding of CHD [56,60]. Its
application extends to diagnosing vascular anomalies with a high degree of accuracy, often
surpassing echocardiography, and providing invaluable information for the management
and intervention in cases like TGA [62]. The fetal CMR is a promising tool for planning
interventions such as balloon atrial septostomy in utero to mitigate severe hypoxemia after
birth, showcasing its critical role in guiding therapeutic decisions and assessing the efficacy
of interventions to ensure a smoother transition from fetal to neonatal circulation [63].

4.2. CMR in Neonatal and Pediatric Life

CMR in the neonatal and pediatric population, especially for conditions like TGA,
requires careful consideration due to the long scan times and the need for patient cooper-
ation. Traditionally, CMR has been challenging in children under 8 years old due to the
necessity for breath-holding, often necessitating general anesthesia for younger or neonatal
patients (56). However, the advent of four-dimensional (4D) flow MRI technology offers a
promising shift toward nonsedated, free-breathing acquisition protocols. Innovations like
the “feed and wrap” technique [64], demonstrate the feasibility of sedation-free neonatal
MRI, providing flow and volume quantifications that align closely with traditional 2D
phase contrast methods. This development increases the introduction of MRI in neonates
and pediatric patients at any stage of clinical treatment [34,65].

4.3. Preoperative

Despite these technological advancements, CMR is infrequently utilized for the pre-
operative evaluation of infants with TGA, as echocardiography suffices for surgical plan-
ning by detailing intracardiac anatomy and ventricular outflow tract obstruction mech-
anisms [66]. CMR’s role is often reserved for assessing thoracic vessels when echocar-
diography is inconclusive. Although CMR can precisely quantify LV mass, volume, and
systolic function, criteria for determining adequate ventricular preparation for surgery
remain to be clearly established. This highlights the specific, yet evolving role of CMR in
the comprehensive assessment and management of TGA in neonatal and pediatric patients
before surgery [34,56,65].

4.4. Postoperative

CMR imaging plays a pivotal role in the postoperative evaluation and management of
patients with C-TGA across various surgical interventions, offering a comprehensive and
non-invasive modality that complements echocardiography [34,56,58,65].
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In the context of the ASO, CMR emerges as an indispensable tool, particularly when
increasing patient size and postoperative scar tissue limit the effectiveness of echocardio-
graphy. It excels in detecting branch PAs’ stenosis and flow differential [66], accurately
quantifying ventricular parameters, and resolving uncertainties regarding the severity of
valve regurgitation [67]. Furthermore, CMR’s high-resolution imaging capabilities enable
the precise assessment of proximal CAs and their relation to surrounding structures, aid-
ing in the diagnosis of inducible CA ischemia and myocardial infarction through stress
perfusion and late LGE techniques [68–70].

Nowadays, AtrSO is a far less common surgical option, but when performed, CMR
assumes a central role in imaging surveillance, especially in assessing the systemic RV,
which can be challenging with echocardiography due to its position and complex shape
(Figure 4). It accurately and reproducibly measures the ventricle’s volume, mass, and
ejection fraction and assesses systemic and pulmonary venous baffle pathways for ob-
structions or leaks. The detection of right ventricular focal myocardial fibrosis through
LGE is associated with adverse outcomes, highlighting CMR’s prognostic significance [71],
together with the detection of baffle obstructions [72].
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Figure 4. Male patient with TGA after ArtSO-Mustard operation. (A) A 4CH view with patent
pulmonary venous pathway; (B) aorta and PA running in parallel with aorta emerging from RV and
PA form LV; (C) patent systems’ venous baffle with unobstructed superior vena cava and inferior
vena cava.

In patients who have undergone the Rastelli or Nikaidoh procedures, CMR offers
unparalleled imaging of the pathway of the outflows from the left ventricle to the aortic
valve and from the right ventricle to the pulmonary artery via a conduit. It assesses
for obstructions, estimates gradients across stenoses, quantifies valve regurgitation, and
evaluates the impact of residual VSDs. This comprehensive assessment is crucial for
determining the need for surgical conduit replacement or catheter-based interventions [73].

CMR 3D models offer a distinct advantage for surgical planning, providing a compre-
hensive visualization of the anatomical structures together with precise measurements of
cardiac dimensions and volumes [74,75].
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Overall, CMR stands out for its ability to provide detailed anatomical and functional
insights after surgical corrections in TGA, significantly impacting clinical decision-making,
management strategies, and long-term surveillance of these patients.

5. Cardiac Computed Tomography (CCT) in Complete Transposition of the
Great Arteries

In recent years, the evaluation of congenital heart diseases in pediatric patients has
experienced a significant transformation, with cardiac computed tomography (CCT) play-
ing an increasingly important role [4,76]. Technological advancements, such as enhanced
spatial and temporal resolutions, the rapid acquisition of isotropic volumetric data, and
reduced radiation oses, have significantly improved diagnostic accuracy [77]. Dual-source
and wide-detector scanners, among other innovations, contribute to improved temporal
resolution and reduced motion artifacts, which are particularly advantageous in neonates
and infants [78].

A key factor contributing to the growing significance of CCT is the substantial reduc-
tion in radiation exposure and the diminishing need for sedation. State-of-the-art scanners
rapidly acquire datasets, eliminating the necessity for prolonged breath-holding and seda-
tion in neonates and infants, thereby enhancing patient safety [79]. The utilization of 320-
or 640-section 16 cm detectors in newborns and young children has further expanded z-axis
coverage and accelerated image acquisition, resulting in a remarkable 60–80% reduction in
radiation exposure [80]. The reduction in or elimination of overlapping helical imaging
contributes to an overall risk mitigation strategy. For older-generation scanners with longer
acquisition times (>10 s), sedation or anesthesia may still be required in children. Recent
developments have reduced radiation exposure, achieving <5 mSv for a combined CCT
coronary, pulmonary, and aortic angiogram. Automated dose modulation and iterative
reconstruction algorithms further reduce radiation doses while maintaining diagnostic
image quality [77].

The increasing adoption of CCT is evident in temporal trends, surpassing the rise
in CMR use [81]. However, despite these advancements, challenges persist in aligning
clinical practice with appropriateness criteria (AUC) for CHD imaging, which may not
fully encompass CCT’s expanding role, especially in procedural planning for defects like
tetralogy of Fallot or TGA [82]. Typically, 2 mL/kg of a contrast agent is administered,
diluted if necessary, with injection rates adjusted to maintain a 15–25 s bolus duration, not
exceeding the total fluid limits of 10 mL/kg.

Protocols may require individual modifications. Weight-limited contrast doses and
challenges like tachycardia are considered. Often, biphasic injection protocols are used,
deploying a neat contrast bolus followed by a saline chaser. Power injectors are preferred
for the precise control of injection rates [81].

5.1. Preoperative Imaging

In TGA, preoperative cardiac CT is employed to delineate coronary anatomy and
examine complex vascular structures in cases involving heterotaxy syndrome. The pre-
operative checklist encompasses the assessment of great vessel origin and relationships,
interatrial and interventricular communication, outflow tract obstructions, semilunar valve
stenosis, ductal arteriosus status, coronary artery anomalies, and aortic arch conditions.
Despite significant advancements, the imaging of systemic and pulmonary venous vas-
culature remains dependent on the timing of contrast administration. This method can
sometimes miss critical anatomical details that are not enhanced during the acquisition
phase [78].

The robust capability of cardiac CT resides in its ability to generate detailed 3D recon-
structions, enabling the precise identification and characterization of complex coronary
anatomies. The significance of coronary artery nomenclature becomes paramount in cases
of TGA, shaping treatment decisions and surgical planning [83].
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Three-dimensional reconstructions form the foundation for 3D modeling, which is
increasingly being recognized as a valuable tool in surgical preparation [74,75].

In TGA, where the aorta and pulmonary artery undergo transposition, the Leiden
classification assigns numerical designations to sinuses crucial for surgical procedures.
The right posterior facing sinus (Leiden 2) typically gives rise to the RCA, while the left
anterior facing sinus (Leiden 1) contributes to the LAD and LCx [84]. This aids in identify-
ing potential complications and guiding therapeutic interventions [83,84]. Beyond sinus
relationships, meticulous reporting includes details of coronary arteries’ origins within or
above a sinus and the notation of intramural segments (Figure 5). Rare occurrences, such
as an intramural segment coursing within the aortic wall, pose inherent risks [83].
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Figure 5. A 4-month-old infant, scanned in sedation and free-breathing at 96 bpm, with TGA-type DORV
and VSD in (A) and (B) MPR view-blue arrow; (E) and (H) in VRT reconstruction and s/p pulmonary
artery banding; (C) curved MPR view (aortic coarctation s/p aortic coarctation treatment—yellow
arrow); (D) curved MPR view (anomalous coronary arteries with common origins of both right
and left coronary arteries from the same sinus of Valsalva (F,G—red arrow) in VRT reconstruction).
Yellow arrows indicate pulmonary artery banding.

5.2. Postoperative Imaging

Following AtrSO procedures, the imaging targets encompass the status of systemic
or pulmonary venous baffles, residual ventricular septal defects (VSDs), main or branch
pulmonary arteries (PAs), and potential obstructions in the right or left outflow tracts. An
evaluation of the systemic right ventricular (RV) functional status is also crucial, particularly
due to the complex three-dimensional structure of venous pathways, and is challenging to
assess with echocardiography [78].

The common site for narrowing in the systemic venous pathway is typically at the en-
trance of the distal superior limb into the right atrium. Computed tomography (CT) proves
advantageous in visualizing both systemic and pulmonary venous pathways, with CT
being the preferred method for detecting and treating anatomic stenoses, often addressed
through stent placements. In cases where stent restenosis is suspected, CT is the imaging
modality of choice [81].

Post-ASO, patients often require pacing and defibrillator leads. CT is instrumental in
observing these leads, and in instances of repeat electrophysiologic intervention, such as
the placement of biventricular pacing leads, CT is the preferred modality for evaluating
coronary venous anatomy. Moreover, CT serves as a valuable tool for calculating ventricular
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volumes, mass, and ejection fraction, especially when echocardiography is insufficient, and
CMR is not feasible [82].

The objectives of postoperative imaging in ASO include assessing the relationships of
great vessels, the integrity of reimplanted coronaries, neoaortic root dilatation, PA stenosis,
and aortopulmonary collaterals. CT, reserved for patients with contraindications for
cardiac MRI, offers a comprehensive two-dimensional and three-dimensional anatomical
assessment of the neopulmonary root, neoaortic root, branch PAs, and reimplanted coronary
arteries. Notably, coronary artery lesions, including ostial stenosis, kinking, anomalous
course, and atherosclerotic disease, are common in post-ASO patients, and CTA facilitates
their detailed evaluation [76].

For those undergoing angioplasty for PA stenosis, CT emerges as the ideal method
to assess PA stents due to potential artifacts with cardiac MRI. CT plays a crucial role in
visualizing three-dimensional structures like systemic and pulmonary venous pathways,
aiding in the assessment of potential stenosis or thrombosis. Furthermore, in a subset
of ASO patients, the evaluation of gothic aortic arch poses challenges, impacting cardiac
mechanics and exercise capacity [85,86].

6. Conclusions

Multimodality imaging is essential for the comprehensive diagnosis and management
of TGA, both before and after surgery. Imaging techniques are instrumental in identifying
cardiac anatomical or functional abnormalities, assisting in treatment decisions, and guiding
the timing of interventions. In addition, a multimodality imaging approach is crucial
during the follow-up phase to detect complications and assess the potential need for
further intervention.

Various imaging techniques play established roles in this context. The diagnosis of
TGA may be achievable during the fetal period through a careful echocardiographic assess-
ment, providing an opportunity for prenatal counseling and planning for prenatal/neonatal
management [2,56].

Echocardiography represents the primary imaging modality for both the diagnosis and
follow-up, given its widespread availability, low cost, and absence of radiation exposure [2].
It provides valuable insights into structural and functional abnormalities, as well as the
hemodynamic status of patients [36]. However, it may not be the optimal choice for complex
cases or instances with poor acoustic windows, particularly for right ventricle assessment.

In such cases, CMR represents the preferred imaging modality, offering detailed
information to define complex anatomy, assess myocardial and valvular function, and
detect extracardiac abnormalities. Additionally, it also uniquely provides myocardial tissue
characterization [87,88]. However, CMR is contraindicated in patients with certain metallic
devices or claustrophobic disturbances, and its relatively longer duration may limit its use,
particularly in children, sometimes requiring anesthesia to complete the examination [88].

Finally, CCT is employed when contraindications to or artifacts in CMR are present [77].
CCT allows for the assessment of cardiac and coronary anatomy and provides important
insights into ventricular function [88]. While CCT offers similar data to CMR, it lacks
hemodynamic information and exposes patients to ionizing radiations and contrast ma-
terial administration. Furthermore, the application of CCT and CMR 3D models into the
assessment of patient TGA holds great promise for optimizing the management of this
specific population [74,75].

Certainly, the selection of an imaging modality is influenced by various factors, pri-
marily driven by the specific clinical question, the current status of the disease, and the
presence of contraindications. In addition, practical considerations such as local availability
and the level of expertise of the medical professionals involved play a crucial role in the
decision-making process [36]. Each modality has its strengths and limitations, and the
optimal choice depends on a careful evaluation of these factors to ensure the most effective
and safe diagnostic and management approach for the patient.
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Abbreviations

ASD atrial septal defect
ASO arterial switch operation
AtrSO atrial switch operation
AV aortic valve
b-SSFP balanced steady-state free precession
CA coronary arteries
CAD coronary artery disease
CCT cardiac computed tomography
CTGA complete TGA
CCTGA congenital corrected TGA/L-TGA
CFR coronary flow reserve
CHD congenital heart disease
CX circumflex artery
DORV double outlet right ventricle
FFSE fast spin echo sequences
GAA gothic aortic arch
GBCA gadolinium-based contrast agents
HASTE (half-Fourier acquisition single shot)
LAD left anterior descending artery
LCA left coronary artery
LCx left circumflex
LGE late gadolinium enhancement
LV left ventricle
LVOT left ventricular outflow tract
LVOTO left ventricular outflow obstruction
MRI magnetic resonance imaging
PA pulmonary artery
PDA patent ductus arteriosus
PFO patent foramen ovale
PS pulmonary stenosis
RA right atrium
RCA right coronary artery
RV right ventricle
RVOT right ventricular outflow tract
SAX short axis
SVC superior vena cava
TGA transposition great arteries
TTE transthoracic echocardiography
US ultrasound
VSD ventricular septal defect
WSS wall shear stress
PS pulmonary stenosis
PV pulmonary valve
PVs pulmonary veins
2D two dimension
4CH four chamber
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