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Abstract: Background: Facial behavior has emerged as a crucial biomarker for autism identification.
However, heterogeneity among individuals with autism poses a significant obstacle to traditional
feature extraction methods, which often lack the necessary discriminative power. While deep-learning
methods hold promise, they are often criticized for their lack of interpretability. Methods: To address
these challenges, we developed an innovative facial behavior characterization model that integrates
coarse- and fine-grained analyses for intelligent autism identification. The coarse-grained analysis
provides a holistic view by computing statistical measures related to facial behavior characteristics.
In contrast, the fine-grained component uncovers subtle temporal fluctuations by employing a long
short-term memory (LSTM) model to capture the temporal dynamics of head pose, facial expression
intensity, and expression types. To fully harness the strengths of both analyses, we implemented
a feature-level attention mechanism. This not only enhances the model’s interpretability but also
provides valuable insights by highlighting the most influential features through attention weights.
Results: Upon evaluation using three-fold cross-validation on a self-constructed autism dataset, our
integrated approach achieved an average recognition accuracy of 88.74%, surpassing the standalone
coarse-grained analysis by 8.49%. Conclusions: This experimental result underscores the improved
generalizability of facial behavior features and effectively mitigates the complexities stemming from
the pronounced intragroup variability of those with autism, thereby contributing to more accurate
and interpretable autism identification.

Keywords: autism identification; head pose; facial expression Intensity and types; LSTM; feature-level
attention mechanism

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by
core symptoms, including difficulties in social interaction, communication impairments,
and the exhibition of repetitive, stereotyped behaviors. In China, the number of individuals
affected by ASD is increasing annually, with some regions reporting a prevalence rate as
high as 0.7% [1]. According to recent data released by the Centers for Disease Control and
Prevention (CDC) in the United States, the prevalence rate of autism spectrum disorder
(ASD) in the United States in 2020 was approximately 2.7%, which is higher than the
global average prevalence rate of 62 per 10,000 reported by the World Health Organization
(WHO) [2]. Many autistic individuals struggle to manage their core symptoms, which can
hinder their ability to engage fully in social activities. Currently, educational interventions
serve as the cornerstone of ASD rehabilitation. To maximize the effectiveness of these
interventions, accurate early identification of ASD in the field of special education is
crucial. Nevertheless, traditional methods that rely on assessment with observation scales
can be professional yet time-consuming, highlighting the need for innovative, intelligent
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approaches to ASD identification [3]. Taking into consideration that a lack of empathy is a
crucial factor [4] that exacerbates difficulties in social engagement among individuals with
ASD and given that facial expressions [5] act as a tangible representation of underlying
emotional states, this research endeavored to utilize facial behaviors as biomarkers for the
identification of ASD.

By examining previous research on facial expression behaviors in autism, we high-
lighted three distinct characteristics of facial behaviors that have been associated with ASD:
(1) a tendency to exhibit neutral or low-intensity facial expressions in social situations,
(2) poor social congruency in communicating emotions through facial expressions, and
(3) difficulty in facial expressions being accepted or understood by others. Each of these
behaviors is described in more detail in the following paragraphs.

A tendency to exhibit neutral or low-intensity facial expressions in social situations.
According to research conducted by Yirmiya et al. [6], it has been observed that during
structured play scenarios, children with ASD tend to exhibit more neutral or bland facial
expressions, whereas children with intellectual disabilities express more positive facial
expressions. The authors emphasized that social engagement during structured play often
fosters positive emotions among participants. The high prevalence of neutral expressions
and the scarcity of positive emotions among children with ASD indicate a lower level of
social engagement compared to children with intellectual disabilities. Moreover, Capps
et al. [7] investigated the correlation between the proportion of positive facial expressions in
children with ASD and their empathy abilities, revealing a significant positive association.
This suggests that diminished social interaction among children with ASD may stem from
empathy deficits. Other pertinent studies have arrived at similar conclusions. For instance,
Trevisan et al. [8] examined the relationship between facial expression production and the
characteristics of alexithymia. Their research found that spontaneous facial expressions trig-
gered by emotional videos differed significantly between children with ASD and typically
developing children. During emotional elicitation, children with ASD displayed neutral
expressions for considerably longer durations compared to the control group. Notably,
their study indicated that characteristics of alexithymia, rather than ASD characteristics,
predicted variations in facial expression production among participants, suggesting that
alexithymia may account for deficits in emotion recognition, empathy, and interoceptive
accuracy among individuals with ASD.

Poor social congruency in communicating emotions through facial expressions. A
study conducted by Dawson et al. [9] with 16 children with ASD, with an average age of
4.13 years, and 16 typically developing children, uncovered a notable difference in facial
expressions during face-to-face interactions with their mothers. Children with ASD smiled
and responded with facial expressions significantly less frequently than their typically
developing peers. Furthermore, even when facial expressions were present, they often
lacked eye contact. In another study by Mcgee [10], preschool activities in an inclusive
kindergarten were observed, involving five children with ASD and five typically developing
children. The research revealed that children with ASD and typically developing children
displayed distinct facial expressions in various scenarios. For example, typically developing
children tended to exhibit happy facial expressions when interacting with teachers or peers,
whereas children with ASD showed happy expressions more often when playing alone.
Additionally, typically developing children were more prone to displaying angry facial
expressions in situations involving other children, whereas children with ASD were more
likely to become angry in situations involving adults.

Difficulty in facial expressions being accepted or understood by others. The facial ex-
pressions displayed by children with ASD are often described as awkward, stiff, strange, or
inconsistent. These expressions can be challenging for individuals in the general population
to interpret accurately. Grossman et al. [11] examined the facial expression characteristics of
high-functioning children with ASD during a story-retelling task. Their findings revealed
that, compared to typically developing children, high-functioning children with ASD ex-
hibited significantly more awkward facial expressions. Notably, this awkwardness was not



Children 2024, 11, 1306 3 of 18

readily apparent in static images but was evident in dynamic sequences. This underscores
the importance of the dynamic transition of facial expressions in social interactions and
the negative impact of awkward dynamic facial expressions on social engagement in ASD.
Volker et al. [12] delved into the encoding abilities (emotion portrayal) of various facial
expressions among high-functioning individuals with ASD. Their results indicated that
high-functioning individuals with ASD had little difficulty encoding happy expressions,
suggesting that happy expressions were the most easily portrayed. However, they strug-
gled with encoding sad expressions and displayed significant strangeness compared to the
control group. While differences in encoding other facial expressions were relatively minor,
they generally exhibited difficulties encoding anger and fear while proficiently encoding
disgust and surprise. A study conducted by Gordon et al. [13] focused on 17 children
with ASD (average age: 10.76 years) and 17 typically developing children. It revealed that
the quality of happy and angry expressions produced by children with ASD was lower
than that of typically developing children. However, this difference could be significantly
improved through play-based intervention training.

To intelligently describe the facial behavioral traits of autism, existing approaches
simulate the scale evaluation process through manual feature extraction and statistical
analysis [14]. Although such evaluation methods offer good interpretability, their lim-
ited representational capacity in manual features fails to adequately address the notable
intraclass variability observed in autism. In contrast, leveraging deep-learning methods
to extract adaptive features from data can overcome the issue of inadequate represen-
tation [15]. Deep learning has achieved significant breakthroughs in automatic facial
expression analysis. By utilizing cascaded artificial neural networks, deep learning is able
to extract rich and representative high-level semantics, enabling it to accurately capture
subtle appearance changes induced by spontaneous facial expressions. This significantly
enhances the accuracy of recognition of various facial behaviors. For instance, Li et al.
proposed the Graph Convolutional Networks (GCNs)-based method FG-AGR [16], which
achieved a recognition accuracy of 90.81% on the RAF-DB dataset. Similarly, Mao et al.
proposed the method Poster++ [17], leveraging Vision Transformers (ViT) [18], and attained
a higher recognition accuracy of 92.21% on the same dataset. These advancements in deep
learning for facial expression analysis have paved the way for its application in autism
identification. For example, Saranya et al. [15] incorporated Facial Action Coding System
(FACS) features into a CNN-LSTM model for autism identification, achieving a recognition
accuracy of 92% on the Kaggle Autistic Facial Datasets (KAFD-2020). Wang et al. [19]
employed CNNs to extract multiple features, which were then fused and input into an
LSTM for autism identification. This model, using only facial expression features, achieved
recognition accuracy of 89.39% on the Ext-Dataset [20]. When eye movement features were
also included, the accuracy increased to 98.54%. However, they often struggle to provide
convincing interpretability. These limitations pose considerable barriers to the widespread
adoption and effective deployment of intelligent identification systems.

To bridge this gap, we propose a facial behavior characterization model that integrates
coarse- and fine-grained analytical approaches (Section 2). Following this integration,
we undertake a detailed exploration of the algorithm’s implementation, offering a com-
prehensive understanding of its operational mechanisms and functionalities (Section 3).
Finally, to ensure the validity and practicality of our proposed method, we tested its efficacy
through a series of experiments while also convincingly demonstrating its interpretabil-
ity. This ensures that our model is not only suitable for real-world applications but also
comprehensible to a diverse range of stakeholders (Section 4).

In summary, the primary contributions of this paper are as follows:

1. Proposing a hybrid model of coarse- and fine-grained behavioral characterization.
The coarse-grained analysis emulates a scale-based evaluation approach, enhancing
interpretability, while the fine-grained analysis leverages long short-term memory
(LSTM) networks to explore subtle temporal dynamics, thereby augmenting the
discriminative power of the entire model;
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2. Introducing an attention-based end-to-end neural network. This network is designed
to integrate coarse- and fine-grained analytical features with a squeeze-and-excitation
network (SENet). An attention mechanism was employed to illuminate the contribu-
tions of individual features in the decision-making process, offering valuable insights
into the relative importance of different behavioral cues;

3. Experimental validation on a self-constructed dataset. We conducted extensive ex-
periments on our self-constructed dataset, demonstrating the feasibility of leveraging
facial behavior data to identify autism. Our findings indicate that the proposed fusion
approach significantly outperformed a sole coarse-grained approach, substantiating
its potential to improve the accuracy of autism identification.

2. Facial Behavior Characterization Model

Due to the spectrum distribution of autism symptoms and notable individual differ-
ences, we propose a combined coarse- and fine-grained facial behavior characterization
model to comprehensively describe the facial behavior characteristics of individuals with
autism. As shown in Figure 1, this model uses optical cameras to capture facial data of
the subjects and applies artificial intelligence algorithms to perceive facial expressions and
head poses within the data, obtaining frame-by-frame analysis results in three dimensions:
expression category, expression intensity, and head pose. Subsequently, statistical and
temporal features were extracted from the three-dimensional temporal data for subsequent
coarse- and fine-grained analyses. Specifically, statistical features include the average
intensity of expressions, the occurrence rate of context-consistent expressions, and the
range of head pose variations, whereas temporal features are extracted using the deep
learning model LSTM. In this process, the expression categories and intensities reveal the
individual’s emotional understanding and interaction capabilities when viewing specific
emotional stimuli, while the head pose reflects the individual’s attention. It is important
to note that when an individual’s attention is diverted, their emotional understanding
and interaction processes are also interrupted. Therefore, estimating attention is crucial in
emotion-related intelligence analysis.
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Figure 1. A combined coarse- and fine-grained facial behavior characterization model.

In the proposed model, coarse-grained analysis mainly uses a binary approach (“yes”
or “no”) to judge the behavior of individuals within a specific period. Specifically, coarse-
grained analysis focuses on the following three aspects:

1. Does the individual’s attention deviate?
2. Has the individual’s facial expression reached a certain intensity level?
3. Does the individual display a specific facial expression (e.g., a happy expression)?

These three observations point to three issues in emotional understanding and interac-
tion in autism: difficulty maintaining attention [21], weak facial expression intensity [6],
and poor social consistency in emotional expression [10]. This analysis method is similar to
traditional scale assessment methods [22], in which the presence or absence of described
phenomena is judged, providing good interpretability.
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Fine-grained analysis refers to further in-depth analysis of the temporal evolution
characteristics of an individual’s facial behavior, assuming similar results in coarse-grained
judgments. Specifically, fine-grained analysis focuses on the following three aspects:

1. Is the individual’s head rotation variation atypical? [23]
2. Are the changes in the intensity of the individual’s facial expressions atypical? [24]
3. Is the evolution of the categories of the individual’s facial expressions atypical? [25]

The goal of fine-grained analysis is to identify atypical head rotation [23] and facial
expressions [24,25] in individuals with autism (i.e., those that are difficult for typical indi-
viduals to understand and accept). Given the significant variations observed in individuals
with autism and the lack of clear, unified characterizations and definitions of atypical
dynamic facial expressions, traditional scale assessment methods are often influenced by
the subjective factors of the evaluators. In contrast, this research uses the facial expression
intensity estimation method in [26], the expression recognition method in [27], and the head
pose estimation method in [28] to automatically extract features from the data, effectively
avoiding subjective interference and ensuring better objectivity and accuracy.

The relationship between coarse- and fine-grained analysis is as follows: the coarse-
grained analysis forms the basis and premise of the fine-grained analysis. When coarse-
grained analysis results can reveal atypical patterns, it is possible to prioritize separating
easily distinguishable individuals, reducing the workload and difficulty of the fine-grained
analysis. When coarse-grained analysis results fail to identify atypical patterns, fine-grained
analysis is used for further differentiation. The fine-grained analysis complements and
extends the coarse-grained analysis. The coarse-grained analysis only addresses the first
and second characteristics of facial expressions in autism, as mentioned in Section 1, while
the fine-grained analysis supplements the analysis of the third characteristic. Given their
good complementarity, integrating the results of both coarse- and fine-grained analyses
achieves a comprehensive characterization of the facial behavior of individuals with autism,
thereby increasing the reliability of the autism assessment results.

3. Methods

This Section introduces our method for autism identification. It begins with an
overview of the overall framework of the model, followed by a detailed focus on the
implementation details of each key module.

3.1. Overview

The proposed method includes three main modules: coarse-grained analysis, fine-
grained analysis, and fusion analysis. Before intelligent analysis, the collected facial
expression sequences needed to be clipped according to the start time of the viewed video
stimuli. These clipped video segments are converted into image sequences, which we
refer to as “slices”. For each slice, the coarse-grained analysis involves calculating and
analyzing statistics related to facial behavior features, while the fine-grained analysis
captures temporal changes in head pose, facial expression intensity, and facial expression
types using an LSTM model [29]. The fusion analysis combines these coarse-grained
and fine-grained features using a feature-level attention mechanism in the squeeze-and-
excitation network (SENet) approach [30].

3.2. Coarse-Grained Analysis

The input for coarse-grained analysis consists of facial expression intensity, facial ex-
pression category, and head pose estimation results within a slice, denoted as
I = {I1, . . . , IK}, C = {C1, . . . , CK}, and P = {P1, . . . , PK}, respectively, where K rep-
resents the number of slices (in the experiment, K was set to 6, corresponding to the six
segments of emotional stimuli viewed by the subjects). Each slice is downsampled at equal
time intervals to obtain the same length, denoted as L (in the experiment, L was set to
200). Given k ∈ (1, . . . , K), Ik ∈ RL×6 represents the facial expression intensity of six basic
expressions (i.e., anger, disgust, fear, happiness, sadness, and surprise), with each element
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in Ik ranging from [0, 1]. Ck ∈ RL×1 represents the vector of predicted categories for all
frames in the k-th slice by the facial expression model, where the category label “happy” is
encoded as 1, and all other facial expression categories are encoded as 0. Pk ∈ RL×3 comes
from the head pose estimation algorithm’s predicted three-dimensional Euler angles: pitch,
roll, and yaw, with each dimension’s range being [−π/2,π/2].

Coarse-grained analysis calculates different statistics for each of the above variables.
Specifically, for each slice, the average facial expression intensity Ik is computed as follows:

Ik =
1
L∑j∈{1,...,L} max

(
Ij

k

)
, (1)

where max(·) calculates the maximum value of the input data, which is the maximum
value among the outputs of the six facial expression intensity estimation models.

For each slice, the number of occurrences of happy expressions Ck is calculated as fol-
lows:

Ck = ∑
j∈{1,...,L}

Cj
k (2)

For each slice, the range of head pose variations Pk is calculated as follows:

Pk = max(Pk)− min(Pk), (3)

where max(·) and min(·) designate the maximum and minimum values of the input data,
respectively.

Discrimination rules are designed for the above statistics to derive binary features.
Specifically, if the average facial expression intensity of the k-th slice is greater than the
threshold T1 (where T1 is set to 0.3), the facial expression intensity is considered activated,
denoted as 1; otherwise, it is denoted as 0. The specific mathematical formula is

Ǐk =

{
1 Ik ≥ T1
0 Ik < T1

(4)

If the number of occurrences of happy expressions in the k−th slice is greater than the
threshold T2 (where T2 is set to 10 to suppress potential short-term noise), the subject is
considered to have displayed happy emotions, denoted as 1; otherwise, it is denoted as 0.
The specific mathematical formula is

Čk =

{
1 Ck ≥ T2
0 Ck < T2

(5)

If any Euler angle of the head pose in the k−th slice is greater than threshold T3 (where
T3 is set to π/3), the individual’s attention is considered to have deviated, denoted as 0;
otherwise, it is denoted as 1. The specific mathematical formula is

P̌k =

{
0 max

(
Pk

)
≥ T3

1 max
(
Pk

)
< T3

(6)

Finally, the coarse-grained analysis result Oc is obtained. It is represented as follows:

Oc =
[
Ǐ1, . . . , ǏK, Č1, . . . , ČK, P̌1, . . . , P̌K

]
∈ R3K (7)

In the paper, K = 6, resulting in Oc, outputting 18 feature values as the characteristics
of the coarse-grained analysis.

3.3. Fine-Grained Analysis

The network structure for the fine-grained analysis is shown in Figure 2. The input for
fine-grained analysis is slightly different from that for coarse-grained analysis. To describe
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the ambiguity of facial expressions in autism, this research uses the probability distribution
predicted by the classifier as the fine-grained facial expression category feature, denoted
as C ′ =

{
C′

1, . . . , C′
K
}

. Given k ∈ (1, . . . , K), C′
k ∈ RL×c, where c represents the dimension

of the classifier’s output probability distribution. In the experiment, a seven-class facial
expression recognition model (six basic classes and a neutral expression) was used, so c = 7.
If the peak of the probability distribution tends toward a single category, it indicates low
ambiguity of the facial expression; if the peak tends toward multiple categories or there
is no clear peak, it indicates high ambiguity of the facial expression. For facial expression
intensity features, only the prediction results of the happy expression intensity model are
retained to eliminate redundant information, denoted as I ′ = {I′1, . . . , I′K} ∈ RL×3, given
k ∈ (1, . . . , K), I′k ∈ RL×1. The head pose features remain consistent with the input for
coarse-grained analysis. By concatenating all the features, we obtain the fine-grained input

I f =
{

Ik
f

}K

k=1
:

Ik
f =

[
I′k, C′

k, Pk
]
∈ RL×d (8)

where d = 1 + 7 + 3 = 11. That is to say, each image has a feature dimension of 11 for
fine-grained analysis, comprising one intensity feature, seven expression features, and
three head pose features.
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For the k-th slice, its fine-grained features are input into the corresponding LSTM
neural network based on the coarse-grained facial expression category analysis results to
extract temporal feature tk. The specific mathematical expression is

tk =

LSTM1
(

Ik
f

)
Ck = 1

LSTM2
(

Ik
f

)
Ck = 0

, (9)

where LSTM1(·) and LSTM2(·) are two LSTM networks with identical structures, but the
trainable parameters of the network are obtained from different data. Specifically, the slices
identified as “happy” by the coarse-grained analysis are used to train LSTM1, while the
slices not identified as “happy” are used to train LSTM2. By dividing the data based on the
coarse-grained analysis results and then inputting them into different LSTMs, the difficulty
of the temporal feature extraction tasks is reduced, allowing a focus on the differences
between individuals with autism and typically developing individuals under the premise
of similar coarse-grained analysis results.

The extracted temporal features are projected through a linear layer to obtain the
fine-grained feature indicators. The specific mathematical expression is

O f =
[

LN1

(
t1
)

, . . . , LNK

(
tK
)]

∈ RK×e (10)

where LNk(·) reduces the feature dimension of the k−th output signal to e dimensions. In
the experiment, we simply set e to 1.
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3.4. Fusion Analysis

The fusion analysis module concatenates the results of the coarse-grained analysis and
the fine-grained analysis into a single feature vector, which is then input into a simplified
SENet to obtain feature weights and achieve feature recombination. Specifically, according
to Formulas (7) and (10), we can obtain all the indicators that need to be analyzed in
fusion O :

O =
[
Oc, O f

]
∈ RK×(3+e) (11)

SENet was proposed by Hu et al. [30] with the aim of extracting channel attention from
convolutional neural networks and implementing the discarding or retaining of feature
maps in different channels based on attention weights. Its network structure is shown in
Figure 3.
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In Figure 3, global pooling is used to compress a feature map of a convolutional neural
network into a single feature value. The first fully connected layer compresses the feature
values (the “squeeze”), reducing the original C feature channels to C/r dimensions. The
second fully connected layer then restores the feature dimension back to C and “excites”
(i.e., the excitation) the useful features. This compression and restoration process ensures
that the attention weights of useful features approach 1, while the attention weights of
useless features approach 0. Multiplying these attention weights by the corresponding
feature channels retains the useful features and suppresses the useless ones. The entire
network structure can be expressed by the following formula:

A = σ(W2δ(W1O)), (12)

where σ(·) and δ(·) are the sigmoid and rectified linear unit (ReLU) activation functions,
respectively, and W1 and W2 are the trainable parameters of the first and second fully
connected layers, respectively. A∈ RC represents the attention weights of each channel.

The input features in this paper are K × (3 + e) dimensions, where each dimension
can be considered as a feature channel. Therefore, the first module (global pooling) in
Figure 3 is not needed, and the input can be directly fed into the two fully connected layers
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of the SENet to compute the fusion weights. After obtaining the attention weights, the final
output features are

O’ = O·A (13)

The output features are passed through a binary classifier to obtain the final evaluation
results.

4. Experiments

This Section describes the validation of the proposed intelligent autism assessment
method, which combines coarse-grained and fine-grained analyses through comprehen-
sive experiments. First, we introduce the self-constructed dataset and the details of the
experimental setup. We then explain the effectiveness of each feature in the coarse-grained
analysis through significance analysis. Next, we demonstrate the effectiveness of each mod-
ule in the method through ablation studies. Finally, we further explain the interpretability
of the method through attention visualization.

4.1. Dataset

Due to privacy concerns for individuals with autism, there are few publicly available
autism emotion datasets in the existing research. In particular, facial expression analysis
and its related data could potentially reveal identifying information about individuals with
autism; thus, researchers and potential participants (or the guardians of those individuals)
are interested in ensuring that the data collected for academic research do not allow the
disclosure of identifiable facial data. Therefore, our research team had to construct its own
facial expression dataset specifically for the autism assessment to validate the effectiveness
of the proposed method.

The construction of the database with images of children was approved by the Institu-
tional Review Board of Central China Normal University, Ethic Committee (protocol code
CCNU-IRB-202312043b and date of approval 2023.12.18).

Participants. A total of 81 participants were recruited for the data with the consent of
their guardians. We took meticulous steps to ensure that the rights and well-being of the
children and their legal guardians were protected. Specifically, we obtained written informed
consent from the legal guardians (typically the parents or legal representatives) of the children
whose images were included in the database. During the consent process, we explained the
purpose, methods, potential risks, and the rights of the guardians and children involved in
the study in clear and understandable language. We also provided sufficient time for the
guardians to read and understand the consent form and invited them to ask any questions or
express any concerns they might have. Only after the guardians fully understood and agreed
to participate did we proceed with the data collection and usage.

They were aged between 4 and 6 years old and included 40 typically developing (TD)
participants (mean age: 5.2 years; variance: 8 months) and 41 participants with autism
(mean age: 5.0 years; variance: 14 months). The autistic children were recruited from
special schools in China with the following inclusion criteria: (1) dual-blind diagnosis
by two chief or associate chief pediatricians specializing in developmental behavior; (2)
diagnostic criteria based on the DSM-5 published by the American Psychiatric Association;
(3) age between 4 and 6 years; (4) no severe respiratory disease, schizophrenia, epilepsy, or
other organic brain diseases; and (5) normal visual system development. Correspondingly,
the inclusion criteria for typically developing children were as follows: (1) age-matched
with the autism group, (2) no suspected or diagnosed mental disorders and/or other
developmental delays or learning disabilities, and (3) normal visual system development.

Stimulus Materials: The goal was to select film clips capable of eliciting positive
emotions from the participants. The film clips were initially screened based on the following
three criteria:

1. Reasonable duration. Prolonged viewing leading to fatigue can affect the subjective
experience of emotions. Considering the children’s attention spans and patience, it
was crucial to select clips of appropriate length;
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2. Easily understandable content. The testing process required obtaining emotional
information from both groups of children in a short amount of time. If the meaning
of a film clip were unclear, it would affect the participants’ emotional reaction time.
Therefore, the content of the clips needed to be intuitive and easy for the children to
understand;

3. Effective emotion elicitation. The effectiveness of emotion elicitation was a key factor
in evaluating the quality of the stimulus materials.

Based on these criteria, 20 suitable film clips were initially selected. Ten volunteers
were then recruited to evaluate the emotional elicitation effect of each clip through self-
report questionnaires. The ten volunteers in our study, recruited from master’s and doctoral
students in child education or psychology, were carefully selected for their academic back-
grounds and research experience, ensuring they were qualified to assess video emotional
elicitation. The questionnaire was designed based on Gross and Levenson’s work [31],
assessing the elicitation levels of six types of emotions: joy, happiness, interest, sadness,
disgust, and fear. Each category was rated on a 9-point Likert scale, from 0 (none) to 8
(very strong). Higher scores indicated stronger emotional intensity elicited by the film clip.
Ultimately, six clips with higher scores for positive emotion elicitation (including scenes
of babies playing with their mothers or pets and some amusing awkward events) were
selected. These clips were concatenated in ascending order of the self-rating scores (total
duration: 94 s, 25.0 frames per second). The video’s resolution was 720 × 576 pixels. To
verify the validity of the stimulus materials, this research included a pre-experiment with
30 children. The statistical analysis revealed that the selected materials exhibited significant
effectiveness in eliciting the target emotions (p < 0.05) [32].

Experimental Procedure: Each participant was asked to sit on a chair and adjust the
seat height to face the computer screen directly. Once the participant was emotionally calm,
the video playback program was started, and a camera above the display was turned on
to record their behavior. To ensure the validity of the data, if the participant’s attention
shifted during the experiment, they were reminded and guided. When the video playback
ended, the recorded data from the camera were saved. Figure 4 depicts a photograph of
the experimental data collection setup during the research.
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Based on the aforementioned process, we collected facial expression videos from
81 participants, resulting in a total of 81 videos. The collected participant videos were sliced
according to the duration of the video stimulus materials, with each slice downsampled
to retain 200 frames (8 s), ensuring a consistent slice length. Each video was divided into
six slices, with each slice consisting of 200 frames, totaling 1200 frames per video. These
1200-frame facial sequences served as the input for our algorithm.
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4.2. Experimental Setup

This Section details the experimental setup. The facial expression intensity estimation
model was trained using the method described in [26]. Considering the differences in facial
expressions between children and adults, additional facial expression sequence data from
typically developing children were collected to fine-tune the facial expression intensity
model. The facial expression recognition model was trained using the method in [27] on the
Real-World Affective Faces Database (RAF-DB) [33]. Since the RAF-DB dataset included
facial expression data across different age groups, no additional fine-tuning was required.
The head pose estimation model was trained using the method described in [28]. This
algorithm was trained using unsupervised methods, offering high accuracy and versatility
without the need for additional fine-tuning.

All binary classifiers in this paper were implemented using fully connected layers,
followed by a SoftMax activation function, and the model training was supervised using
binary cross-entropy loss. In the fine-grained analysis, the learning rate for training the
LSTM neural network was set to 1e−5, with a batch size of 2 and 200 iterations per batch.
These parameter settings are based on engineering experience and conventions established
in similar works [34].

The accuracy of the proposed method was estimated using three-fold cross-validation,
a technique commonly employed in facial expression analysis [35]. Specifically, all samples
were evenly divided into three groups, with each group containing 27 samples. The number
of participants with autism and typically developing participants in each group was as
balanced as possible. Two groups were used to train the model, and the remaining group
was used to test it. This experiment was repeated three times to ensure that all groups were
tested once in turn, and the average of the results was calculated. The average accuracy
under different experimental settings was compared in the ablation study.

4.3. Data Analysis

This Section describes the significance analysis of differences in coarse-grained features
using IBM SPSS Statistics version 28. According to Section 3.2, 18 features were extracted
from the coarse-grained analysis. These 18 features were defined in Table 1:

Table 1. Definitions of features in significance analysis of differences.

Variable Feature Variable Feature Variable Feature

V1 Head pose in slice 1 V2 Expression category in slice 1 V3 Expression intensity in slice 1
V4 Head pose in slice 2 V5 Expression category in slice 2 V6 Expression intensity in slice 2
V7 Head pose in slice 3 V8 Expression category in slice 3 V9 Expression intensity in slice 3
V10 Head pose in slice 4 V11 Expression category in slice 4 V12 Expression intensity in slice 4
V13 Head pose in slice 5 V14 Expression category in slice 5 V15 Expression intensity in slice 5
V16 Head pose in slice 6 V17 Expression category in slice 6 V18 Expression intensity in slice 6

In this study, a one-way analysis of variance (ANOVA) was conducted on the above
18 features to explore whether there were differences among the labels. All data were
divided into two groups based on whether the participant was an autistic individual. For
any feature Vk, the following hypotheses were established:

H0: Null hypothesis: There is no difference in the labeled feature Vk between the two groups.

H1: Alternative hypothesis: There is a significant difference in the labeled feature Vk between the
two groups.

The significance level α was set to 0.05. If the significance p < α, the null hypothesis
H0 was rejected, indicating that the feature was statistically significant. The specific analysis
results are detailed in Table 2.
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Table 2. Comparison of coarse-grained analysis indicators between ASD and TD (BG = Between
Group, WG = Within Group, df = degrees of freedom; p < 0.05 indicates a significant difference).

Sum of Squares df Mean Square Statistic
F p

V1

BG 1.438 1 1.438 9.468 0.003
WG 11.995 79 0.152
Total 13.432 80

V2

BG 1.025 1 1.025 11.609 0.001
WG 6.975 79 0.088
Total 8.000 80

V3

BG 0.141 1 0.141 0.588 0.446
WG 18.995 79 0.240
Total 19.136 80

V4

BG 0.761 1 0.761 6.356 0.014
WG 9.461 79 0.120
Total 10.222 80

V5

BG 1.265 1 1.265 13.329 0.000
WG 7.500 79 0.095
Total 8.765 80

V6

BG 0.537 1 0.537 2.229 0.139
WG 19.019 79 0.241
Total 19.556 80

V7

BG 0.292 1 0.292 2.505 0.117
WG 9.214 79 0.117
Total 9.506 80

V8

BG 2.480 1 2.480 21.532 0.000
WG 9.100 79 0.115
Total 11.580 80

V9

BG 0.398 1 0.398 1.823 0.181
WG 17.256 79 0.218
Total 17.654 80

V10

BG 0.970 1 0.970 8.979 0.004
WG 8.536 79 0.108
Total 9.506 80

V11

BG 2.856 1 2.856 21.338 0.000
WG 10.576 79 0.134
Total 13.432 80

V12

BG 2.647 1 2.647 13.095 0.001
WG 15.970 79 0.202
Total 18.617 80

V13

BG 0.590 1 0.590 8.032 0.006
WG 5.805 79 0.073
Total 6.395 80

V14

BG 2.856 1 2.856 21.338 0.000
WG 10.576 79 0.134
Total 13.432 80

V15

BG 1.973 1 1.973 9.367 0.003
WG 16.644 79 0.211
Total 18.617 80

V16

BG 0.430 1 0.430 5.010 0.028
WG 6.780 79 0.086
Total 7.210 80

V17

BG 2.866 1 2.866 19.387 0.000
WG 11.677 79 0.148
Total 14.543 80

V18

BG 0.927 1 0.927 4.292 0.042
WG 17.073 79 0.216
Total 18.000 80
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Based on the data in the Table, it can be observed that the vast majority of the coarse-
grained features exhibited significant differences (p < 0.05), demonstrating the rationality
and effectiveness of the selected feature indicators in this study. Here, we only list the
features that did not show significant differences: V3 (p = 0.446), V6 (p = 0.139), V7 (p = 0.117),
and V9 (p = 0.181). It is worth noting that V3, V6, and V9 are all facial expression intensity
features. The main reason for their lack of significance may be that the preceding video clips
had a relatively weak effect on emotional arousal, resulting in the facial expression intensity
of some typically developing children not reaching the activation level. However, features
such as V12 (p = 0.006), V15 (p = 0.003), and V18 (p = 0.042) were significant, indicating
that as the emotional elicitation effect of the video clips increased, the cumulative effect
of the emotions built up, and the emotional intensity of the typically developing children
generally reached the activation level, making the differences between them and the autistic
individuals more apparent.

As for V7, which was the head pose feature of segment 3, its lack of a significant
difference may be due to the shorter attention span of autistic individuals. They usually
had difficulty concentrating at the beginning of a video, showed a brief period of focused
attention in the middle of the video after being reminded by the guide, and some individuals
lost attention again toward the end of the video. Since the autistic individuals showed
concentrated attention during segment 3, which was similar to the attention performance
of typically developing children, the significant difference between the two groups was
relatively small.

4.4. Ablation Study

To clarify the specific role of each module in the proposed method, this Section
describes a comparison of the experimental results under different settings through an
ablation study. In Experiment 1, we used the coarse-grained analysis module proposed in
Section 3.2 to extract 18-dimensional coarse-grained features, which were then input into a
binary classifier to obtain the corresponding recognition results. In Experiment 2, we used
the fine-grained analysis module introduced in Section 3.3 to extract 6-dimensional fine-
grained features, which were also input into a binary classifier to obtain the corresponding
recognition results. In Experiment 3, we combined the 24-dimensional features extracted
from both the coarse- and fine-grained analyses and input them into a classifier to obtain
more comprehensive recognition results. Finally, in Experiment 4, we further incorporated
the attention module proposed in Section 3.4 into Experiment 3, where the weighted fused
features were input into a binary classifier to obtain the final recognition results. To ensure
the reliability of the experimental results, we used three-fold cross-validation and calculated
the average accuracy of the three folds. The specific experimental results are detailed in
Table 3.

Table 3. Ablation study experimental results (
√

means that the specified module is used, while ×
means not used).

Experiment No. Coarse-Grained
Analysis

Fine-Grained
Analysis

Attention
Mechanism

Classification
Accuracy (%)

1
√

× × 80.25
2 ×

√
× 81.50

3
√ √

× 85.07
4

√ √ √
88.74

In Experiment 3, the average classification accuracy reached 85.07%, which was an
improvement of 4.82% and 3.57% compared to Experiment 1 and Experiment 2, respectively.
This significant improvement validates the complementarity of the coarse- and fine-grained
analyses mentioned in Section 2. Specifically, the coarse-grained analysis focused on the
characteristics of autism in terms of facial expression intensity and social consistency, while
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the fine-grained analysis revealed the difficulty of understanding the facial expressions of
individuals with autism.

The average accuracy of Experiment 4 reached 88.74%, an improvement of 3.67% over
Experiment 3. This result indicates that the attention mechanism played a significant role
in the feature fusion. As mentioned in Section 4.3, some features may not show significant
differences, and the application of the attention mechanism can effectively eliminate the
interference of these nonsignificant features on the classification results. Additionally, when
different features are combined, there may be conflicts or redundancies among them, and
the attention mechanism can effectively address these issues.

4.5. Visualization Analysis

To further explain the results of the ablation experiments in Section 4.4, this Section
presents a visualization of the attention weights. It is important to note that attention
weights were obtained through data training and thus may vary during the model’s
training process. Therefore, we selected the attention weights after the classification
accuracy stabilized in one of the cross-validation folds for demonstration. As shown in
Table 4, each row represents the attention weights of the four features corresponding to a
slice (including one fine-grained feature and three coarse-grained features).

Table 4. Attention weight visualization.

Slice Fine-
Grained

Coarse-Grained

Head Pose Expression Category Expression Intensity

1 1 1 0 0
2 0 0 1 0
3 1 1 0 0
4 0 1 1 0
5 1 0 1 1
6 1 0 0 0

From the visualization of the attention weights, it can be seen that out of the 24 feature
indicators, 11 were retained with weights of 1, while the remaining 13 had weights of 0,
indicating that they did not contribute to the final classification. Compared to the univariate
significance analysis in Section 4.3, attention visualization focused more on the contribution
of feature combinations to classification. Therefore, the attention weights of certain features
may differ from the significance analysis results. For example, in the significance analysis,
the expression intensity features of slices 1–3 did not show significance, and their attention
weights were also 0, indicating consistency between the two methods for these features.
However, eight other features had weights set to 0, suggesting that they may not have
been redundant with other features. Notably, although the head pose feature of slice 3
was not significant in the univariate ANOVA, its attention weight was 1, indicating that
it still contributed significantly to the classification when combined with other features.
This discrepancy may have been due to differences between the current fold data and the
overall data.

Next, we analyzed the different types of features by column. The fine-grained features
had weights of 1 in slices 1, 3, 5, and 6, while the coarse-grained expression category
features had weights of 1 in slices 2, 4, and 5. These two types of features were each only
assigned a weight of 1 in slice 5, aligning with our model’s setup; fine-grained analysis was
conducted only when the coarse-grained expression category analysis was inconsistent.
This demonstrates the complementary nature of the fine- and coarse-grained analyses.

Additionally, we observed that the head pose features had weights of 1 in slices 1, 3,
and 4, which were mostly concentrated in the first half of the viewing stimulus materials.
In contrast, expressions with a weight of 1 were mostly in the latter half. This may be
because the autistic children needed some time to adapt or focus their attention at the
beginning of the stimulus (as shown in Figure 5), while the typically developing children
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could focus their attention more quickly. In the latter half, autistic children could focus
their attention more quickly. In the latter half, the autistic children’s facial expressions often
failed to be properly elicited, whereas the typically developing children’s facial expressions
were correctly elicited and intense (as shown in Figure 6), making facial expressions more
distinguishable in the latter half.
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For the expression intensity features, we found that only the weight of slice 5 was 1
out of the six slices, indicating that the role of expression intensity in the combined analysis
was relatively limited. This could be due to a few typically developing children not eliciting
strong enough expressions when watching certain clips, as well as some autistic children
eliciting other expressions with intensities reaching the pre-set threshold while watching the
clips. These factors made it difficult for the model to handle outliers in the data, resulting
in most expression intensity indicators not participating in the final classification.

5. Conclusions

In this paper, we proposed a combined coarse- and fine-grained facial behavior analy-
sis method aimed at the intelligent identification of autism. Based on the characteristics
of facial behaviors observed in individuals with autism, such as difficulty maintaining
attention, reduced facial expression intensity, and a lack of social consistency in emotional
expression, we constructed an interpretable facial behavior characterization model that
then guides the design of a comprehensive intelligent identification system for autism.
This system integrates facial intensity estimation, facial expression recognition, and head
pose estimation methods to precisely extract facial behavior features from individuals
with autism.

During the recognition process, the system initially generates coarse-grained analysis
results through the calculation and analysis of statistical measures. Subsequently, it em-
ploys LSTM neural networks to capture temporal evolution features, yielding fine-grained
analysis results. LSTM networks are particularly well-suited for capturing long-term depen-
dencies and sequential patterns, making them ideal for analyzing the temporal evolution
of facial expressions over time. This fine-grained analysis helps in detecting subtle changes
and patterns that might be missed by coarser methods. Ultimately, a feature-level atten-
tion network was utilized for the adaptive fusion of all features, culminating in the final
recognition outcomes.

To validate the system’s effectiveness, extensive experiments were conducted on a self-
constructed dataset. The cross-validation average recognition accuracy achieved 88.74%,
marking an 8.49% improvement over the recognition accuracy of a standalone coarse-
grained analysis. This significant enhancement underscores the improved generalizability
of facial behavior features.

Furthermore, the system’s interpretability was illuminated through ANOVA analysis
and attention visualization techniques. The ANOVA analysis indicates that the majority of
coarse-grained features exhibited significant differences (p < 0.05), confirming the rationality
and effectiveness of the selected feature indicators in this study. Notably, a few features—
specifically V3, V6, V9 (all related to facial expression intensity), and V7 (head pose feature
during segment 3)—did not show significant differences. The insignificant results for
V3, V6, and V9 could be due to the weak emotional arousal effect of the preceding video
clips, which hindered some typically developing children’s facial expression intensity from
reaching the activation level. Conversely, features like V12, V15, and V18 demonstrated
significant differences, suggesting that as the emotional elicitation effect of the video clips
intensified, the emotional intensity of typically developing children rose to the activation
level, emphasizing the distinctions between them and autistic individuals. Regarding
V7, the lack of significant difference may arise from the similar attention performance of
autistic individuals and typically developing children at the midpoint of the video, despite
the autistic group’s attention being brief. Moreover, attention visualization allowed us
to visualize which features were most heavily weighted by the attention network during
decision-making.

In future endeavors, we aim to expand the breadth of facial behavior characterization
by incorporating additional facial features extracted by computer vision models. For
instance, gaze directions can provide crucial insights into social engagement and attention
patterns, while facial action units (AUs) can offer a more granular breakdown of facial
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movements. Furthermore, we plan to perform more extensive validation to solidify the
method’s universal applicability.
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