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Abstract: Pulmonary hypertension (PH) is a progressive disorder characterized by ob-
structive changes in the pulmonary vasculature, leading to increased pulmonary vascular
resistance (PVR), right ventricular (RV) strain, and eventual RV failure (RVF). Despite
advancements in medical therapy, PH remains associated with significant morbidity and
mortality, particularly in children. RVF is a clinical syndrome resulting from complex
structural and functional remodeling of the right heart, leading to inadequate pulmonary
circulation, reduced cardiac output, and elevated venous pressure. Management paradigms
for pediatric PH diverge significantly from those in adults, particularly due to the predomi-
nance of congenital heart disease (CHD) and the dynamic nature of pediatric cardiovascular
and pulmonary development. CHD remains a principal driver of PH in children, and its
associated pathophysiology demands a nuanced approach. In patients with unrepaired
left-to-right shunts, elevated pulmonary blood flow can lead to progressive pulmonary
vascular remodeling and increased PVR. The postoperative persistence or progression
of PH may occur if irreversible vascular changes have already developed. Current PH
treatments primarily focus on reducing PVR, yet distinguishing between therapeutic ap-
proaches that target the pulmonary vasculature and those aimed at improving RV function
remain challenging. In pediatric patients with progressive PH despite optimal therapy,
additional targeted interventions may be necessary to mitigate RV dysfunction and disease
progression. This review provides a comprehensive analysis of the mechanisms underlying
RVF in PH, incorporating insights from clinical studies in adults and experimental models,
while highlighting the unique considerations in children. Furthermore, it explores current
pharmacological and interventional treatment strategies, emphasizing the need for novel
therapeutic approaches aimed at directly reversing RV remodeling. Given the complexities
of RV adaptation in pediatric PH, further research into disease-modifying treatments and
innovative interventions is crucial to improving long-term outcomes in affected children.
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1. Introduction
The functionality of the right ventricle (RV) is a crucial factor in determining the

prognosis for patients with pulmonary hypertension (PH). Once PH is established, the RV
function begins to deteriorate, progressively worsening over time, and ultimately leading
to RV failure (RVF) and premature death. Although this progression is well documented,
the precise mechanisms driving RVF are not yet fully understood. Consequently, there
are no approved treatments specifically designed to target the RV. This gap in targeted
therapies can be attributed, in part, to the complex pathogenesis of RVF, as revealed in both
animal models and clinical studies. The International Right Heart Foundation Working
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Group defines RVF as a “clinical syndrome caused by an alteration of structure and/or
function of the right heart circulatory system that leads to suboptimal delivery of blood
flow (high or low) to the pulmonary circulation and/or elevated venous pressures at rest
or with exercise [1]”.

Guideline-directed medical therapy (GDMT) for managing left ventricular failure
(LVF) includes angiotensin-converting enzyme inhibitors (ACEis), angiotensin II receptor
blockers (ARBs), angiotensin receptor and neprilysin inhibitor (ARNI), sodium–glucose
cotransporter-2 (SGLT2) inhibitors, β-blockers (BBs), and mineralocorticoid receptor antag-
onists (MRAs) [2,3]. However, ACEis/ARBs, BBs, and MRAs are not effective for patients
with RVF due to PH unless they also have hypertension, coronary artery disease, or LVF [4].
Recent advancements in medical research have led to the development of innovative thera-
pies, offering new hope for improving outcomes in patients with RVF in adults [5]. This
review explores the mechanisms and novel pharmacological treatments of RVF due to PH,
highlighting advancements from adult clinical trials and preclinical studies. While out-
comes from adult trials cannot be directly extrapolated to children, the insights gained can
help to understand the mechanisms behind RVF and to evaluate the potential effectiveness
of therapeutic interventions in children.

2. Methodology
The goals for this review article was to summarize current treatment strategies for

RVF in children with PH, to identify gaps in knowledge, and to suggest future research
directions. A comprehensive literature search using databases such as PubMed, Embase,
Scopus, and Cochrane Library was performed using a combination of keywords and medi-
cal subject headings (MeSH) terms, such as “pulmonary hypertension”, “right ventricular
failure”, “pediatric” or “children”, “treatment” or “management”, “pharmacological ther-
apy”, or “interventional therapy”. The inclusion criteria were a pediatric population, adult
population, focus on RVF, clinical trials, preclinical studies, observational studies, and meta-
analyses. The exclusion criteria were studies that did not meet the focus, e.g., non-English
articles. The extracted data were organized into themes or categories, e.g., pathophysiology
of RVF, differentiating pharmacological therapies targeting pulmonary vasculature versus
RV adaptations, interventional strategies, long-term treatment outcomes, future directions,
etc. The limitations of adult therapies when applied to children were discussed.

3. Definition and Hemodynamic Classification of PH
The clinical definition and classification of PH are the same for both children and

adults. In 2018, the definition of PH was updated to an elevation of the mean pulmonary
artery pressure (mPAP) > 20 mm Hg at sea level in children older than 3 months [6]. How-
ever, the pulmonary vascular resistance (PVR) criterion of ≥3 Woods Unit (WU) per m2 in
children remained unchanged [7]. PH, whether precapillary, isolated postcapillary (IpcPH),
or combined postcapillary and precapillary PH [CpcPH]), increases RV afterload, leading
to hypertrophy and eventual RVF [8]. Pulmonary arterial hypertension (PAH) is hemody-
namically characterized by precapillary PH in the absence of other causes of precapillary
PH, such as chronic thromboembolic pulmonary hypertension (CTEPH) and PH associated
with lung diseases, and is characterized by a PVR of >3 WU·m2 and a pulmonary arterial
wedge pressure (PAWP) of 15 mm Hg or less [6]. IpcPH is hemodynamically defined as
mPAP > 20 mmHg, PAWP > 15 mmHg, and PVR ≤ 3 WU·m2. PVR is used to differentiate
between patients with postcapillary PH who have a significant precapillary component
(PVR > 3 WU·m2 combined with postcapillary and precapillary PH [CpcPH]) and those
who do not (PVR ≤ 3 WU·m2—isolated postcapillary PH [IpcPH]) [6]. The differentia-
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tion of PH into pre-, post-, and combined types based on mPAP and PVR by right heart
catheterization is described in Figure 1.
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Figure 1. Types of pulmonary hypertension based on hemodynamics (original diagram) [IpcPH,
isolated postcapillary pulmonary hypertension; CpcPH, combined postcapillary and precapillary PH;
PVOD/PCH, pulmonary vaso-occlusive disease/pulmonary capillary hemangiomatosis].

In the pediatric population, PH differs markedly from the adult counterpart in terms
of classification, etiology, clinical presentation, and therapeutic strategies (Table 1).

Table 1. Etiologies, Classification, and Incidence of Right Ventricular Failure in Children with PH by
WHO Group.

Group 1 (PAH: CHD-PAH,
iPAH, HPAH)

Group 2
(PH Due to LHD)

Group 3 (PH Due to
Lung Disease) Group 4 (CTEPH) Group 5

(Miscellaneous)

Common
Pediatric
Etiologies

CHD (e.g, ASD, VSD,
AVSD), idiopathic PAH,

BMPR2 mutations

Rare; congenital
mitral/aortic lesions,

cardiomyopathies

BPD, CDH, alveolar
capillary dysplasia

pediatric ILD

Exceptionally rare
in pediatrics

Sarcoidosis, storage
disorders,

hematologic diseases

Incidence of RV
Failure

High, especially in iPAH
and Eisenmenger syndrome

Low to moderate,
depending on
LHD severity

Moderate to high in
severe

developmental
lung disease

Variable, based on
clot burden and RV

adaptation
Variable

Medical
Management

Targeted therapies (PDE5i,
ERA, prostacyclins); CCB if

vasoreactive; sotatercept
in trials

Optimize LHD; PH
therapies typically

ineffective or harmful

Supportive care
(oxygen, diuretics);

PH therapies
selectively in
elevated PVR

Anticoagulation;
surgical

consideration
if operable

Treat underlying
cause;

supportive care

Surgical/Intervent
ional Role

CHD repair if operable;
lung/heart-lung transplant

in advanced disease

Valve
repair/replacement;
heart transplant in

end-stage

Ventilatory support;
transplant in

refractory cases

Pulmonary throm-
boendarterectomy
(rarely performed

in children)

Individualized;
etiology—dependent

Long-Term
Prognosis

Variable; improved with
advanced therapies;

Eisenmenger may have
stable course

Better if LHD is
correctable; poor
with progressive

myocardial disease

Guarded; prognosis
tied to underlying

lung pathology

Unclear
due to rarity

Heterogeneous
outcomes

PAH: pulmonary arterial hypertension, CHD: congenital heart disease, HPAH: hereditary PAH, LHD: left
heart disease, CTEPH: chronic thromboembolic pulmonary hypertension, PDE5i: phosphodiesterase 5 inhibitor,
ERA: endothelin receptor antagonists.

The pediatric PH landscape is characterized by unique pathophysiological mecha-
nisms and age-specific considerations that necessitate a tailored, multidisciplinary ap-
proach. Among the World Health Organization (WHO) PH classifications, Group 1
PH—comprising idiopathic pulmonary arterial hypertension (iPAH), heritable forms
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(HPAH), and congenital heart disease-associated PAH (CHD-PAH), including Eisenmenger
syndrome—predominates in the pediatric population. In contrast, Group 2 PH, typically
driven by left heart disease in adults, is rare in children due to the absence of acquired
comorbidities such as diastolic dysfunction, left ventricular hypertrophy, or ischemic car-
diomyopathy. When structural left-sided lesions are present in children, they are often
corrected early or reclassified under CHD-PAH. Group 3 PH, secondary to developmental
lung diseases such as bronchopulmonary dysplasia (BPD), congenital diaphragmatic hernia
(CDH), or alveolar capillary dysplasia, is also common in infancy and early childhood,
while Groups 4 (chronic thromboembolic PH) and 5 (multifactorial or unclear mechanisms)
are rarely encountered and are managed in a case-specific manner. Management paradigms
for pediatric PH diverge significantly from those in adults, particularly due to the pre-
dominance of CHD and the dynamic nature of pediatric cardiovascular and pulmonary
development. CHD remains a principal driver of PH in children, and its associated patho-
physiology demands a nuanced approach. In advanced or irreversible cases, therapies
that target both RV and pulmonary vascular remodeling should be central to management
strategies. This review focuses on reversing RV remodeling and addressing PH broadly,
rather than concentrating on specific etiologies.

4. Pathophysiology of RVF Due to PH
The stroke work (SW) of the LV and RV differs due to several differences in the

embryological, morphological, and myocardial characteristics of the RV and LV, as well as
differences in the mean arterial pressure (MAP) and mPAP [9]. RV SW is calculated as the
product of stroke volume (SV) and the transpulmonary gradient, and it is a measure of the
RV’s efficiency in pumping blood [10]. RV elastance (Ees) is calculated from the slope of
the end-systolic pressure–volume relationship (Figure 2). The elastance of the PA (Ea) is a
measure of the total afterload faced by the RV and depends upon PVR and compliance. The
maximal transfer of mechanical SW from the RV to the PA occurs when Ees ≥ Ea (RV–PA
coupling) is present [11].
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Ea, arterial elastance; Ees, ventricular elastance].
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Persistent pulmonary vascular remodeling in PH is driven by a combination of vaso-
constriction and the excessive proliferation of pulmonary artery smooth muscle cells
(PASMCs). Initially, the RV adapts to increased afterload through compensatory mecha-
nisms such as hypertrophy and enhanced contractility to maintain RV-PA coupling. How-
ever, as PH progresses, RV-PA uncoupling (Ea > Ees) occurs, which is characterized by RV
dilation and increased wall stress and is a sign of impending RVF [12]. The progression
to RVF is marked by a decline in cardiac output (CO) and mPAP, as the RV can no longer
sustain the increased afterload (Figure 3). This hemodynamic deterioration often leads
to systemic congestion and end-organ dysfunction with New York Hearth Association
(NYHA) functional class III to IV. In patients with PH, RVF is the primary cause of mor-
tality, underscoring the importance of understanding its pathophysiology. Recent studies
have highlighted the role of advanced hemodynamic phenotyping and machine learning
in identifying distinct RV sub phenotypes, which may guide personalized therapeutic
strategies [13]. For example, cluster analysis has revealed subgroups of PH patients with
varying degrees of RV-PA coupling, diastolic stiffness, and afterload, providing insights
into the transition from adaptive to maladaptive remodeling.
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Figure 3. Hemodynamic progression in pulmonary hypertension (original diagram) [PAP, pulmonary
artery pressure; PVR, pulmonary vascular resistance; CO, cardiac output; NYHA, New York Hearth
Association; RV-PA, right ventricle—pulmonary artery].

Furthermore, a chronic elevation in afterload triggers metabolic reprogramming in the
RV, shifting its primary energy source from fatty acid oxidation (FAO) to glycolysis [14].
This shift is mediated by the downregulation of genes associated with oxidative phos-
phorylation and other key metabolic regulators, such as peroxisome proliferator-activated
receptor alpha (PPARα) and peroxisome gamma coactivator-one alpha (PGC-1α), which are
critical for energy metabolism and mitochondrial biogenesis [15]. Over time, this metabolic
adaptation leads to increased RV mass and microvascular ischemia, driven by a mismatch
between oxygen (O2) supply and demand. The RV reverts to a fetal-like metabolic profile,
characterized by reduced oxidative capacity and diminished ATP production, resulting in
energy deficiency and the loss of metabolic flexibility [16].

The pathogenesis of maladaptive RV remodeling involves a complex interplay of
multiple processes and signaling pathways (Figure 4). These include inflammation [17],
fibrosis [18], impaired calcium (Ca2+) homeostasis [19], endothelial dysfunction, impaired
nitric oxide (NO) synthesis [20], and the dysregulation of growth factor signaling pathways
such as transforming growth factor-β (TGF-β) and impaired angiogenesis [21]. These
interactions exacerbate the production of reactive oxygen species (ROS), which open mito-
chondrial permeability transition pores, inducing apoptosis by promoting fission, inhibiting
fusion, and impairing mitochondrial metabolism and mitochondrial dynamics [22]. These
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changes lead to mitochondrial fragmentation and the disruption of myocardial energetics,
further contributing to RV dysfunction.
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chloroacetate (DCA) has been effective in preclinical models by enhancing glucose oxida-
tion and suppressing glycolysis, thereby improving RV function and restoring mitochon-
drial dynamics [23]. Partial FAO inhibitors like trimetazidine and ranolazine have also 
demonstrated benefits by increasing glucose oxidation and improving RV function in 
models of RV hypertrophy [24]. Ranolazine, in particular, blocks the late Na+ current, re-
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Figure 4. Experimental therapies for right ventricular failure (RVF) targeting novel pathways and
therapeutic strategies (original diagram created for illustrative purposes). [Green arrows indi-
cate pathway activation or stimulation. Red lines denote pathway inhibition. Note: Some path-
ways have been simplified for clarity and visual representation. HIF, hypoxia inducible factor;
sGC, soluble guanylate stimulator; PDE5, phosphodiesterase 5; ECM, extracellular matrix;
TLR9, toll-like receptor 9 (TLR9); NF-kB, nuclear factor kappa-light-chain-enhancer of acti-
vated B cells; SERCA, sarcoplasmic/endoplasmic reticulum calcium ATPase; ARNI, angiotensin
neprilysin inhibitors; SGLT2i, sodium–glucose cotransporter 2 inhibitors; PDE3, phosphodiesterase 3;
VEGF, vascular endothelial growth factor; PDGF, platelet-derived growth factor; FDGF, fibroblast
growth factor; AMPK, 5′-adenosine monophosphate-activated protein kinase; MAPK, mitogen-
activated protein kinase; p53, tumor protein 53; PGC-1α, peroxisome gamma coactivator-one alpha
(PGC-1α); PARP, poly (ADP–ribose) polymerase; PPAR, peroxisome proliferator activated receptor;
ATP, adenosine triphosphate].

5. Experimental Therapies Targeting RV Remodeling
Several experimental therapies have shown promise in reversing maladaptive RV

changes (Figure 4). For instance, the pyruvate dehydrogenase kinase (PDK) inhibitor
dichloroacetate (DCA) has been effective in preclinical models by enhancing glucose ox-
idation and suppressing glycolysis, thereby improving RV function and restoring mito-
chondrial dynamics [23]. Partial FAO inhibitors like trimetazidine and ranolazine have
also demonstrated benefits by increasing glucose oxidation and improving RV function in
models of RV hypertrophy [24]. Ranolazine, in particular, blocks the late Na+ current, re-
ducing cytosolic Ca2+ levels and improving cardiac energy efficiency [25]. In a multicenter
study, ranolazine improved RV function, LV end-diastolic volume, and biventricular stroke
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volume [26]. Thiazolidinediones, such as pioglitazone and rosiglitazone, activate peroxi-
some proliferator-activated receptor gamma (PPARγ), a key regulator of glucose and lipid
metabolism, including mitochondrial FAO [27]. These agents normalize cardiac energy
metabolism and have shown potential in mitigating RV dysfunction [28]. Antioxidants,
including coenzyme Q, have been effective in reducing ROS production and improving
mitochondrial function in animal models of PH [29].

Metformin, a widely used antidiabetic drug, has shown promise in reducing RV
hypertrophy and improving diastolic function through the activation of 5′-adenosine
monophosphate-activated protein kinase (AMPK) and the inhibition of mitogen-activated
protein kinases (MAPKs) [30,31]. By reducing oxidative stress and preventing fibrosis,
metformin inhibits key contributors to RV hypertrophy [32].

RV maladaptation is closely linked to inflammation and fibrosis. Multikinase inhibitors
like nintedanib and sorafenib target vascular endothelial growth factor receptors (VEGFRs),
platelet-derived growth factor receptors (PDGFRs), and fibroblast growth factor receptors
(FGFRs) [33]. These agents inhibit cardiac fibroblast activity and reduce the expression of
profibrotic genes, such as alpha-smooth muscle actine 2 (α-SMA2), fibronectin, collagen,
matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs),
thereby improving RV function in preclinical models. Mast cell activation, for example,
releases inflammatory mediators that exacerbate RV remodeling [34]. Inhibitors such as cro-
molyn sodium and montelukast have been proposed to block mast cell activation, thereby
attenuating inflammation [35]. Anti-inflammatory agents like canakinumab, tocilizumab,
adalimumab, and etanercept target cytokines such as IL-1β, IL-6, and TNF-α, reducing
myocardial fibrosis in preclinical models of RV remodeling [36,37].

Hypoxia-inducible factor (HIF) plays a critical role in promoting angiogenesis via
VEGF, ensuring adequate coronary flow and O2 supply [38]. However, in advanced RV hy-
pertrophy, severe hypoxia and microRNA induction exacerbate ROS production, activating
the tumor suppressor protein p53 [39]. This inhibits the HIF pathway, impairing angio-
genesis and further stimulating ROS production. Mitochondrion-targeted antioxidants
like MitoQ and MitoTEMPO have shown potential in mitigating oxidative damage and
inflammation, reversing RV remodeling in experimental models [40]. Stem cell therapies
with proangiogenic properties represent a novel approach to improving RV function [41].
These therapies aim to enhance coronary flow and O2 supply, addressing the underlying
metabolic and structural deficits in RVF.

Several emerging therapies are being investigated for their potential to reverse RV
remodeling in children. Stem cells release extracellular vesicles (EVs), such as exosomes,
containing bioactive molecules that can influence recipient cell behavior, offering a cell-free
therapeutic strategy for PH. For example, EVs derived from neonatal heart tissues have
shown strong pro-proliferative, anti-apoptotic, and proangiogenic activities in preclini-
cal models [42]. These EVs, particularly those from regenerating neonatal tissues, have
demonstrated the ability to promote cardiomyocyte proliferation and reduce fibrosis in
experimental models of myocardial infarction, suggesting their potential applicability in
pediatric RVF. While many of these therapies are still in preclinical or early clinical stages,
their potential to address the unique pathophysiology of pediatric RVF is significant. Fur-
ther research and clinical trials are needed to validate their efficacy and safety in children,
but the current data provide a strong foundation for future therapeutic advancements.

6. Combination Therapy for RVF
ARNI, SGLT2 inhibitors, and soluble guanylate cyclase (sGC) stimulators repre-

sent promising therapeutic options for RVF due to their multifaceted mechanisms of
action [43–46]. SGLT2 inhibitors, such as dapagliflozin, empagliflozin, canagliflozin, and
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sotagliflozin, promote natriuresis and glucosuria, leading to enhanced interstitial fluid
loss compared to traditional diuretics [47]. Beyond their diuretic effects, these agents
modulate nutrient signaling pathways, improve mitochondrial function, reduce oxidative
stress, and attenuate inflammation and fibrosis, all of which are critical in RVF manage-
ment [48–53]. ARNI, which combines valsartan (an angiotensin receptor blocker) and
sacubitril (a neprilysin inhibitor), promotes vasodilation and diuresis by inhibiting an-
giotensin II type 1 receptors and increasing natriuretic peptide levels [54]. ARNI also
exhibits antifibrotic and anti-inflammatory properties, which contribute to improved RV
function [55–59]. Studies suggest that combining ARNI and SGLT2is is more effective in
reducing PH and treating RVF [60,61]. SGC stimulators, such as riociguat and vericiguat, en-
hance cGMP production, which contributes to the maintenance of vascular tone and cardiac
contractility while also reducing profibrotic and inflammatory pathways and counteracting
myocyte hypertrophy [62,63]. The combined use of ARNI, SGLT2is, and sGC stimulators
can maximize diuresis, reduce fluid retention, and decrease RV preload [64]. Their syner-
gistic metabolic and anti-inflammatory effects further mitigate fibrosis, prevent apoptosis,
and enhance myocardial energy efficiency by reversing adverse metabolic pathways and
reducing ROS production [65]. Large-scale randomized clinical trials in adults have shown
that none of the three drug classes led to a higher rate of treatment discontinuation due to
adverse effects when compared to placebo [66]. However, additional research is needed
to better understand the effectiveness of these medications across diverse patient groups,
particularly in individuals with mid-range or preserved ejection fractions. Most clinical
trials for ARNI, SGLT2is, and sGC stimulators have focused on adult populations, leaving a
significant evidence gap for pediatric applications. Children have unique physiological and
metabolic profiles, which may influence drug pharmacokinetics and pharmacodynamics.
For instance, the immature renal and hepatic systems in younger children could alter the
efficacy and safety of these therapies. Pediatric RVF often arises from congenital heart
defects (CHD), which differ pathophysiologically from adult-onset RVF. These differences
may limit the generalizability of adult findings to pediatric populations. The long-term
effects of these therapies on growth, development, and organ function in children are
unknown, necessitating cautious use and further research.

7. Current Treatment Approach to PH
Pharmacological therapies for pediatric PH primarily target three major pathways:

endothelin, nitric oxide, and prostacyclin (Figure 5). These agents have shown varying
degrees of efficacy in improving RV function and overall outcomes. Phosphodiesterase-5
(PDE-5) inhibitors such as sildenafil, tadalafil, udenafil, vardenafil, and avanafil prevent
PDE-5 degradation and enhance NO-mediated vasodilation by increasing cGMP. These
agents have shown significant benefits in improving RV function and hemodynamics in
pediatric PH patients [67–70]. Sildenafil is widely used due to its favorable safety profile
and efficacy in reducing PVR. Endothelin receptor antagonists (ERAs), such as bosentan,
ambrisentan, and macitentan, are commonly used to block the effects of endothelin, a potent
vasoconstrictor. ERAs have demonstrated efficacy in reducing PVR and improving exercise
capacity in children with PH [71–74]. However, their use is often limited by their side
effects, such as liver toxicity and fluid retention. Prostacyclin receptor (IP) analogs, such as
epoprostenol, treprostinil, iloprost, and beraprost, and the IP receptor agonists selexipag
and ralinepag, have been shown to decrease PVR and improve functional capacity in clinical
trials [75–77]. These drugs are potent vasodilators that also inhibit platelet aggregation.
These agents are particularly effective in severe PH cases, improving RV function and
survival. However, their administration routes (intravenous or subcutaneous) can be
challenging in pediatric patients. Recently, treprostinil inhalation powder has become
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available, offering effective once-daily dosing superior to that of beraprost [78]. Despite
advancements, the long-term outcomes remain suboptimal for many children with PH.
Factors such as disease severity, underlying etiology, and delayed diagnosis can impact
prognosis. A recent study found that adverse event-free survival rates for children with
PH remain suboptimal, highlighting the need for improved management strategies [79].
Effective risk stratification is crucial for optimizing personalized treatment approaches. The
key independent predictors of both early- and long-term adverse outcomes that have been
identified are age, etiology, WHO functional class, and PVR, and these serve as a foundation
for the ongoing development and refinement of treatment strategies and guidelines in
pediatric PH.
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Figure 5. Mechanisms of action of established therapies for pulmonary hypertension (PH) targeting
key signaling pathways (original diagram created for illustrative purposes). [Blue lines indicate
pathway activation or stimulation. Red lines denote pathway inhibition. Note: Some pathways
have been simplified for clarity and visual representation. ETA: endothelin receptor A; ETB: en-
dothelin receptor B; ERA, endothelin receptor antagonist; cAMP: cyclic adenosine monophosphate;
PGI2: prostaglandin I2; IP, prostacyclin receptor; NO: nitric oxide; sGC: soluble guanylate cyclase;
PDE5: phosphodiesterase type 5; GTP: guanosine diphosphate; cGMP: cyclic guanosine monophos-
phate; GMP: guanosine monophosphate].

The pharmacologic management of pediatric PH is highly individualized and is guided
by disease classification, severity, vasoreactivity testing, and developmental considerations.
PDE5 inhibitors, such as sildenafil, are considered a first-line therapy in Group 1 PH. ERAs,
such as bosentan, are also widely utilized, but necessitate regular hepatic monitoring due
to the risk of hepatotoxicity. Prostacyclin analogs—including intravenous epoprostenol
and subcutaneous or inhaled treprostinil—are reserved for advanced or refractory cases,
particularly in Eisenmenger physiology or rapidly progressive disease. Inhaled nitric
oxide (iNO) plays a critical role in acute neonatal PH (persistent PH of newborns) and
perioperative management for transient pulmonary vasodilation. Calcium channel blockers
are only indicated in a minority of patients who demonstrate positive vasoreactivity during
right heart catheterization.

Pediatric PH shares similarities with the adult form of the disease but also involves
the additional issues of pediatric-specific lung and heart disorders that necessitate unique
approaches. Due to the numerous challenges in conducting multicenter randomized
controlled trials in children with PH and the lack of robust scientific evidence on efficacy
and safety, regulatory authorities have not approved all PH medications for pediatric use.
As a result, the current pharmacological management of pediatric PH relies primarily on
real-world data, expert consensus statements on the off-label use of PH treatments, and
extrapolated data from large adult randomized controlled studies. The European Society of
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Cardiology (ESC)/European Respiratory Society (ERS) guidelines endorse the use of adult-
designed treatment algorithms for children, demonstrating the superiority of combination
therapy over monotherapy [6]. Compared to monotherapy, targeted drug combinations for
PH significantly enhance exercise tolerance, improve pulmonary hemodynamic parameters,
and decrease the risk of serious adverse events and clinical deterioration in patients [80–82].
The combinations of bosentan with sildenafil and bosentan with iloprost show notable
efficacy and a better safety profile than monotherapy for PH treatment [83]. Additionally,
the combination of sildenafil with epoprostenol exhibits a low risk of clinical worsening
in PH [83]. The proposed tailored strategy for choosing pharmacological therapy for
pediatric PH should be based on the patient’s hemodynamic profile, vasoreactivity testing
during right heart catheterization, and RV function (Figure 6). However, prior studies
were performed when the diagnostic criterion for PH was an mPAP of 25 mmHg by right
heart catheterization. Therefore, new randomized clinical studies are needed to know
which drug combinations are effective and which drug combinations are ineffective in
pediatric PH.
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catheterization; PDE-5: phosphodiesterase-5; ERA: endothelial receptor antagonists; IP: prostacyclin
receptor; sGC: soluble guanylate cyclase].

8. Disease-Modifying Agents Based on Preclinical and Clinical Trials
Current treatments for PH primarily focus on pulmonary vasodilation by addressing

imbalances in vasoactive factors. Differentiating between pulmonary vascular and RV-
targeted treatments requires a comprehensive approach that integrates experimental models
(PAB), imaging techniques (such as echocardiography and cardiac MRI for assessing RV
function), and biomarker analysis (NT-proBNP) [6]. While pulmonary vascular therapies
work to lower PVR, RV-targeted treatments aim to enhance RV function and prevent
failure. Recent studies have uncovered new disease pathways related to cell proliferation,
metabolism, and inflammation, leading to emerging therapeutic possibilities (Figure 7).
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inhibition. Some pathways have been simplified for the purposes of depiction within the diagram.
KIT, CD117 or c-lit; ASK1, apoptosis signal-regulating kinase 1; JAK, Janus kinase; BMP 9, bone mor-
phogenetic protein 9; mTOR, mammalian target of rapamycin; MAPK, mitogen-activated protein ki-
nase; PARP, poly (ADP–ribose) polymerase; PDH, pyruvate dehydrogenase; PDGFR, platelet-derived
growth factor receptor; PDK, pyruvate dehydrogenase kinase; PPAR-γ, peroxisome proliferator-
activated receptor gamma; ROCK, Rho-associated protein kinase; ACTRII, activin receptor type
II; DHEA, dehydroepiandrosterone; ALK, activin receptor-like kinase; CSF1R, colony-stimulating
factor 1 receptor; SMAD, SMA- and MAD-related proteins; STAT3, signal transducer and activator of
transcription; TP, thromboxane-prostanoid receptor].

Tyrosine kinase inhibitors like imatinib and seralutinib suppress tyrosine kinase activ-
ity through CD117 (KIT), PDGFR, CSF1R, and the MAPK pathway, thereby limiting PASMC
proliferation [84–86]. Sotatercept, a novel fusion protein, combines the extracellular domain
of activin receptor type IIA (ACTRIIA) with the Fc domain of human IgG1. It acts as a ligand
trap, regulating SMAD proteins within the TGFβ superfamily, balancing growth-promoting
and growth-inhibiting pathways (ACTRIIA and BMPR2, respectively) [87]. Additionally,
sotatercept reduces PASMC hyperplasia by blocking mTOR, with promising outcomes
confirmed in the phase 3 STELLAR trial, which showed significant improvements in the
six-minute walk test and other clinical measures compared to a placebo [88].

Variants in BMP9 have been linked to PH, and some patients have exhibited reduced
BMP9 expression even without these variants [89]. Recombinant BMP9 (rBMP9) mimics
natural BMP9 signaling and has demonstrated the ability to reverse pulmonary vascular
remodeling in severe PH models [90]. Therapies targeting sex hormones, such as anas-
trozole, tamoxifen, and dehydroepiandrosterone (DHEA), are under investigation for PH
treatment [91,92].

The metabolic modulator DCA triggers PASMC apoptosis, helping to prevent and
reverse chronic hypoxic PH in animal studies [93]. Anti-inflammatory agents, including
anakinra, sarilumab, and siltuximab, modulate immune responses by targeting cytokines
like IL-1 and IL-6 [94]. These cytokines activate the JAK-STAT pathway, leading to STAT3
translocation and the regulation of genes involved in PASMC proliferation, apoptosis, and
inflammation [95]. Relaxin, a hormone, binds to RXFP1, influencing angiogenesis, reducing
blood pressure, and improving cardiac output [96].

Rho-associated protein kinase (ROCK) inhibitors play a key role in vasoconstriction, vas-
cular reactivity, and PASMC proliferation in animal PH models. The ROCK inhibitor fasudil
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has been shown to reduce pulmonary artery pressure in rats [97]. Combining rosuvastatin with
fasudil resulted in greater reductions in RV pressure and hypertrophy compared to fasudil
alone [98]. Ifetroban, a selective thromboxane receptor (TP) antagonist, has anti-inflammatory,
vasodilatory, and anti-platelet aggregation effects [99]. Selonsertib, originally developed for liver
failure, inhibits apoptosis signal-regulating kinase 1 (ASK1), thereby reducing inflammation,
apoptosis, and fibrosis, making it a potential PH treatment [100].

Serotonin, a potent pulmonary vasoconstrictor and angiogenic agent synthesized
from L-tryptophan via tryptophan hydroxylase (TPH) and metabolized by monoamine
oxidase (MAO), is upregulated in the pulmonary arterial endothelial cells (PAECs) of
patients with PH, where it acts in a paracrine manner on PASMCs to promote proliferation,
contraction, and increased vascular tone [101,102]. Rodatristat ethyl, a TPH 1 inhibitor,
reduces serotonin release and has undergone clinical trials for PH [103]. VIP analogs such
as pemziviptadil and aviptadil have also shown promise in preclinical PH studies [104].
Further research is needed to assess the safety, effectiveness, and tolerability of serotonin
antagonists and VIP analogs for PH treatment.

MicroRNAs (miRs) are small non-coding RNA molecules that regulate gene expression
by binding to mRNA and inhibiting translation, playing a crucial role in disease processes,
including PH [105]. In PH, miR-21 has shown variable expression patterns, being downreg-
ulated in some preclinical models while being upregulated in hypoxic conditions, where it
contributes to pulmonary vascular remodeling by targeting BMPR2 [106,107]. Additionally,
miR-124 is downregulated in PH, facilitating fibroblast activation and PASMC dysfunction,
making miRs potential therapeutic targets for PH management [108].

9. Interventions for Children with Advanced Pulmonary Hypertension
Beyond pharmacologic intervention, comprehensive long-term management neces-

sitates a multidisciplinary approach that addresses the full spectrum of pediatric devel-
opment. Care extends beyond pulmonary hemodynamics to include somatic growth,
neurocognitive outcomes, exercise capacity, and psychosocial well-being. Regular surveil-
lance and reassessment are imperative given the evolving nature of cardiovascular and
pulmonary physiology in children. Specialized pediatric PH centers facilitate individual-
ized care plans, coordinate transition to adult services, and offer genetic evaluation and
counseling when indicated. Surgical and interventional decision-making in pediatric PH
requires careful consideration of operability, particularly in CHD-PAH. The early repair of
congenital defects is critical to prevent irreversible pulmonary vascular disease; however,
operability assessments must rely on invasive hemodynamic data and vasoreactivity test-
ing. In selected patients with borderline PVR elevation, a “treat-and-repair” strategy can
be used—initiating targeted PAH therapy preoperatively to optimize pulmonary vascular
hemodynamics prior to surgical repairs under active investigation, though its long-term
efficacy remains uncertain. Patients with Fontan circulation represent a distinct subgroup
in whom pulmonary vascular pathology deviates from conventional PH classifications,
necessitating specialized surveillance strategies.

There are no standardized guidelines for determining which patients who have not
responded to conventional medical therapy should undergo atrial septostomy, a pulmonary-
to-systemic shunt, lung transplantation, or a combination of these procedures. Generally,
a multidisciplinary team should assess each patient individually to decide on the most
appropriate approach. This evaluation should consider risk factors, technical feasibility,
available medical expertise, and the optimal sequence of interventions.
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9.1. Creation of Atrial-Level Communication

Creating a shunt at the atrial level can enhance LV preload and CO, but it comes
at the cost of reduced systemic oxyhemoglobin saturation. The risks associated with
atrial-level communication are higher in patients with significantly elevated right-atrial
pressure, pre-existing cyanosis, severe parenchymal lung disease, or an increased likelihood
of thromboembolic events. Notably, atrial-level intervention for a failing RV offers volume
relief rather than pressure relief, as it does not directly lower RV afterload. Recently,
transcatheter atrial shunt therapies including an atrial flow regulator-type device, designed
to prevent recurrent syncope, have been developed, which are safe and easily placed in
children with acute RVF [109–111]. The American Thoracic Society suggests atrial-level
shunt intervention for selected children with progressive PH and RVF despite undergoing
optimal therapy (conditional recommendation, very low certainty of evidence) [112].

9.2. Pulmonary-to-Systemic Shunt (Reverse Potts Shunt)

Like atrial-level communication, creating a Potts shunt through a transcutaneous or
surgical approach can decrease preloading of the RV and enhance overall CO, although
it results in decreased systemic oxyhemoglobin saturation distal to the shunt. Unlike
atrial-level communication, this procedure maintains normally saturated blood flow to the
cerebral and coronary arteries and significantly reduces RV afterload. The risk associated
with a Potts shunt is higher in patients with RVF, and those requiring ECMO support,
ICU admission, or mechanical ventilation. The approach to Potts shunt creation has
evolved over time, now incorporating the use of unidirectional valved shunts in patients
with suprasystemic PH [113]. When patient selection is performed thoughtfully and the
procedure is performed at a center with significant experience in both the creation of a Potts
shunt and the management of advanced pediatric PH, early mortality may be reduced, and
patients can be bridged successfully to lung transplantation.

9.3. Lung Transplantation

Atrial or systemic shunts are often considered palliative options for children with advanced
PH, while lung transplantation is seen as a more definitive treatment due to the normal pul-
monary vasculature of the allograft. If a patient is not eligible for a Potts shunt or the creation of
atrial level communication, despite receiving optimal medical treatment, an immediate eval-
uation for transplantation should be considered. Additionally, it is important to be familiar
with the policies of the local transplant center to determine the feasibility of lung transplan-
tation following a Potts shunt. Pediatric lung transplantation carries inherent risks and has a
5-year survival rate of 50–60% [114]. Recently, improvements in lung transplant outcomes have
been observed, along with the recovery of RV function post-transplant [115,116]. Combined
heart–lung transplantation for PH is reserved for rare cases involving uncorrectable CHD,
co-existing LV dysfunction, and technical issues such as significant right heart enlargement in
young children, donor lung constraints, and the risk of airway caliber compromise with tracheal
versus bi-bronchial anastomoses in small children.

10. Future Directions
The therapeutic and pathophysiological framework of pediatric PH thus stands in

contrast to adult paradigms, particularly given the rarity of Group 2 PH in children and the
limited applicability of conventional HF pharmacotherapy such as ARNI, SGLT2i, MRA,
and BBs. Treatment regimens are frequently off-label, dosed by body weight, and guided
by individual clinical trajectory and underlying diagnosis. CHD-PAH remains the most
clinically relevant and heavily researched category in children, with emerging therapeutics
increasingly focusing on this population.
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Although there has been significant progress in understanding the pathobiology of
maladaptive RV dysfunction due to PH, improving the outcomes for children with PH
remains a formidable challenge. This is largely due to the unique characteristics of pediatric-
specific disorders and the scarcity of randomized clinical trial data to guide evidence-based
therapeutic interventions. As a result, most RV-targeted drug therapies remain inadequately
studied in children, with most of the current evidence extrapolated from adult clinical or
preclinical trials. This gap in pediatric-specific data underscores the critical need for further
research to validate novel therapies, particularly for infants and young children. The early
detection of PH and the initiation of targeted therapies are critical for improving survival.
Besides advances in echocardiographic and cardiac MRI, biomarkers are essential for the
early diagnosis of PH. In addition to NT-pro-BNP (or BNP), several serum biomarkers
have been identified in pediatric PH studies, including the insulin-like growth factor
(IGF) [117], interleukin-6 [118], soluble suppressor of tumorigenicity (ST2) [119], and
survivin [120], which play a significant role in PH disease progression and are reported to
predict prognosis.

miRs have emerged as potential biomarkers for diseases involving impaired angiogen-
esis and may help to predict pediatric PH [121]. Circulating endothelial cells (CECs) and
endothelial cell progenitors (ECPs) are detected in the blood of PH patients, with rising
CEC levels preceding clinical deterioration in children with idiopathic PH and CHD-related
PH [122]. Additionally, elevated CEC levels have been linked to disease irreversibility in
CHD-related PH, highlighting their potential role in prognosis and monitoring treatment
responses. These biomarkers should be validated in future pediatric PH studies.

There are several ongoing clinical trials of pediatric PH to evaluate the efficacy and
safety of combination therapy and novel drugs in pediatric PH. A clinical trial of the sGC
stimulator riociguat in children aged 6–17 years on stable ERA or prostacyclin therapy
showed an increase in the 6 min walk distance and a decrease in NT-proBNP [123]. Addi-
tionally, a case series reported that young infants with neonatal PH were able to lower and
stop iNO with riociguat due to its effective sGC stimulation. These data reveal a knowledge
gap in the use of pulmonary vasodilators in neonatal PH [124]. There are several ongoing
clinical trials aimed at providing more evidence-based data for treating children with PH.
These include trials for macitentan (NCT02932410) and selexipag (NCT04175600), which are
currently underway. Additionally, sotatercept, which restores balance in BMP pathways,
is being tested in children (NCT05587712). Another key trial is a multicenter randomized
controlled study by the Pediatric Pulmonary Hypertension Network, comparing mono and
duo therapy in children at the time of PH diagnosis (NCT04039464).

Stem cell therapy has emerged as a promising approach for treating PH, aiming to
address the underlying vascular remodeling and RV dysfunction characteristics of the
disease. Stem/progenitor cells have demonstrated the ability to promote the endothelial
repair of dysfunctional arteries and induce neovascularization, which are crucial in counter-
acting the endothelial dysfunction observed in PH [125]. Mesenchymal stem cells (MSCs)
possess immunomodulatory properties that can attenuate inflammatory responses, thereby
reducing pulmonary vascular remodeling and the progression of PH [126].

Tailoring therapies based on individual patient profiles, including genetic and molecu-
lar markers, could enhance the durability of the reverse remodeling of RV due to PH and
long-term outcomes. Recent findings suggest that genetic factors in pediatric PH may influ-
ence outcomes and could be used in future risk stratification. For instance, children with a
TBX4 mutation exhibited better survival rates than those with a BMPR2 mutation in one
study [127]. While assessing the genetic causes of developmental lung disease offers valu-
able diagnostic and prognostic insights, the effects of individual variants on prognosis and
treatment responses in childhood-onset PH remain unclear and need future exploration.
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Low-intensity pulsed ultrasound (LIPUS) therapy has shown potential for activating
endothelial nitric oxide synthase (eNOS) in various cardiovascular diseases [128]. In
RVF due to PH, eNOS expression was downregulated [129]. In LIPUS-induced eNOS
activation in two animal models of RVF, eNOS expression and its downstream pathways
were improved [130]. These findings suggest that eNOS is a crucial therapeutic target
for RVF, and LIPUS therapy presents a promising mechanical approach to enhancing RV
function in PH patients.

Looking ahead, future directions in the management of RVF in children with PH
should focus on several key areas. First, there is an urgent need for well-designed, pediatric-
specific clinical trials to evaluate the safety and efficacy of emerging therapies. Collaborative
efforts among researchers, clinicians, and regulatory bodies are essential to overcome the
challenges of conducting trials in this population. Second, advancements in precision
medicine, including the use of biomarkers and personalized treatment approaches, may
enable more tailored and effective interventions. Finally, integrating pharmacological, me-
chanical, molecular, and regenerative therapies into a comprehensive treatment paradigm
will be critical for addressing the multifactorial nature of RVF.

11. Conclusions
Among the investigational therapies, sotatercept—a novel fusion protein and activin

signaling inhibitor that restores balance in the TGF-β/BMPR2 axis—has shown encourag-
ing preliminary results in adult PAH and is now under evaluation in pediatric trials for
iPAH and HPAH. The long-term prognosis in pediatric PH is multifactorial and hinges not
only on hemodynamic parameters and the therapeutic response, but also on neurodevelop-
mental outcomes, comorbid conditions such as prematurity or genetic syndromes, and the
quality of longitudinal multidisciplinary care. This underscores the need for an integrated,
etiology-driven approach to pediatric PH that encompasses not only survival but holistic
child health and development.

The balance between PH-specific therapies and RV-targeted interventions is pivotal
in reversing maladaptive RV remodeling and improving clinical outcomes. RVF presents
a complex clinical challenge due to its multifaceted pathophysiology and the limited
availability of effective treatments. However, recent advancements in understanding
the cellular and molecular mechanisms driving RVF have opened up new avenues for
innovative therapeutic strategies. These include targeted molecular therapies, gene-based
interventions, and regenerative approaches such as stem cell therapy, which hold promise
for addressing the underlying causes of RV dysfunction. In conclusion, while significant
challenges remain, the future of RVF management in children with PH is promising. By
bridging the gap between preclinical discoveries and clinical applications, and by fostering
collaboration across disciplines, we can pave the way for transformative therapies that
improve the lives of children with this devastating condition.
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Abbreviations
RVD Right ventricular dysfunction
RVF Right ventricular failure
MAP Mean arterial pressure
mPAP Mean pulmonary artery pressure
PH Pulmonary hypertension



Children 2025, 12, 476 16 of 22

ACEi Angiotensin-converting enzyme inhibitors
ARBs Angiotensin II receptor blockers
BBs Beta-blockers
ARNI Angiotensin receptor–neprilysin inhibitor
iNO Inhaled nitric oxide
CO Cardiac output
SW Stroke work
SV Stroke volume
RV-PA coupling Right ventricle–pulmonary artery coupling
LIPUS Low-intensity pulsed ultrasound
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