
����������
�������

Citation: Wang, M.; Yang, X.; Qian,

Y.; Lei, Y.; Cai, J.; Huan, Z.; Lin, X.;

Dong, H. Adaptive Neural Network

Structure Optimization Algorithm

Based on Dynamic Nodes. Curr.

Issues Mol. Biol. 2022, 44, 817–832.

https://doi.org/10.3390/

cimb44020056

Academic Editor: Rafael Franco

Received: 13 January 2022

Accepted: 31 January 2022

Published: 7 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Adaptive Neural Network Structure Optimization Algorithm
Based on Dynamic Nodes
Miao Wang 1 , Xu Yang 1,* , Yunchong Qian 1, Yunlin Lei 1, Jian Cai 1, Ziyi Huan 1, Xialv Lin 1 and Hao Dong 2

1 School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China;
3220201093@bit.edu.cn (M.W.); 3120205507@bit.edu.cn (Y.Q.); 3120201035@bit.edu.cn (Y.L.);
3120201001@bit.edu.cn (J.C.); 3220200891@bit.edu.cn (Z.H.); 3220201066@bit.edu.cn (X.L.)

2 Suzhou Automotive Research Institute, Tsinghua University, Suzhou 215299, China;
donghao@tsari.tsinghua.edu.cn

* Correspondence: yangxu@tsinghua.edu.cn; Tel.: +86-010-6891-346

Abstract: Large-scale artificial neural networks have many redundant structures, making the network
fall into the issue of local optimization and extended training time. Moreover, existing neural network
topology optimization algorithms have the disadvantage of many calculations and complex network
structure modeling. We propose a Dynamic Node-based neural network Structure optimization
algorithm (DNS) to handle these issues. DNS consists of two steps: the generation step and the
pruning step. In the generation step, the network generates hidden layers layer by layer until accuracy
reaches the threshold. Then, the network uses a pruning algorithm based on Hebb’s rule or Pearson’s
correlation for adaptation in the pruning step. In addition, we combine genetic algorithm to optimize
DNS (GA-DNS). Experimental results show that compared with traditional neural network topology
optimization algorithms, GA-DNS can generate neural networks with higher construction efficiency,
lower structure complexity, and higher classification accuracy.

Keywords: Adaptive Neural Network Structure; genetic algorithm; Hebb’s rule; Pearson correlation
coefficient

1. Introduction

Nowadays, artificial neural networks scale rapidly as performance increases. However,
traditional artificial neural networks use full connections between layers, which leads
to redundant structures that waste hardware and software resources. And the existing
network structure optimization algorithm has a complicated construction process and high
time complexity, which is not conducive to application.

So, in this paper, we aim to: (1) enhance the adaptability of the neural network con-
struction, with pruning method to remove redundant structures in the network; (2) ensure
the functionality after network structure simplification, with the help of heuristic methods.

Inspired by the in-generation constructing process of biological neural networks, we
presented an adaptive neural network algorithm based on dynamic nodes. In order to
remove redundant network structures and make the network neurons adaptive, we need
to establish a way to measure the correlation between neurons. Firstly, we consider using
Hebb’s rule [1] to quantify the correlation. Hebb’s rule is one of the basic synaptic plasticity
rules in the brain. When the neurons on both sides of a connection are activated simulta-
neously, this connection should be retained; otherwise, it should be deleted [2]. However,
it requires that the neurons on both sides of the connection be activated simultaneously.
In practice, we found that this condition is harsh. Sometimes, even the two neurons are
not activated, they still have a certain correlation (this will be proved in the experimental
part). Thus, we also used the Pearson correlation coefficient [3] to measure the correlation
of neurons in adjacent layers and designed our Dynamic Node-based neural network Struc-
ture optimization algorithm (DNS). There are two steps in DNS, namely the generation

Curr. Issues Mol. Biol. 2022, 44, 817–832. https://doi.org/10.3390/cimb44020056 https://www.mdpi.com/journal/cimb

https://doi.org/10.3390/cimb44020056
https://doi.org/10.3390/cimb44020056
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cimb
https://www.mdpi.com
https://orcid.org/0000-0002-8938-720X
https://orcid.org/0000-0001-7983-6473
https://doi.org/10.3390/cimb44020056
https://www.mdpi.com/journal/cimb
https://www.mdpi.com/article/10.3390/cimb44020056?type=check_update&version=2

Curr. Issues Mol. Biol. 2022, 44 818

step and the pruning step. In the generation step, the network generates hidden layers.
In the pruning step, the network uses Hebb’s rule or Pearson’s correlation to measure
the importance of connections and prune according to this. In DNS, both the number of
neurons in the network and the structure of synapses are dynamically changed, and both
adapt to the current task.

Inspired by the among-generation construction process of biological neural networks,
we combine genetic algorithm (GA) [4,5] to optimize our DNS algorithm. When used
to solve complex combinatorial optimization problems, GA can usually obtain better
optimization results with faster speed [6]. It has strong versatility and robustness and is
suitable for parallel computing [7]. So, in our GA-DNS algorithm, the neural network
model generated by DNS is used as the seed network of GA, and the final result of optimal
neural network model is generated by GA.

In summary, our main contributions are:
(1) Inspired by the construction process of the biological brain, we propose a Dynamic

Node-based neural network Structure optimization algorithm (DNS) to remove redundancy
in neural network structure; (2) Explore the feasibility of using GA to optimize DNS.

Through experimental comparison, we prove that DNS can significantly simplify the
network structure, and has high modeling efficiency. In addition, when combined with GA,
the GA-DNS could largely enhance the accuracy and availability of DNA, even maintain a
good performance compared to other SOTA methods.

The structure of this paper is: Section 2 describes the related work of network topology
optimization, and introduce the design methods and flowcharts of DNS and GA-DNS
algorithms. Section 3 designs three experiments: GA-DNS performance comparison experi-
ment, pruning algorithm selection experiment, and pruning threshold experiment. Finally,
the discussion and conclusion is elaborated in Section 4.

2. Materials and Methods
2.1. Related Works

This work attempts to solve the issue of artificial neural network topology optimization.
There are two main ways to solve this problem: (1) generate a complex network structure
and then remove the redundancy through the pruning algorithm [8]; (2) evolutionary
neural network [9].

The method of generating a neural network first and then pruning is to start with
a small-scale network structure and continuously generate hidden layer neurons in an
iterative process until the network’s performance reaches the expectation. It is a bottom-up
design idea. Kwok and Yeung classified the construction algorithms [10], among which the
classic methods are Dynamic node creation(DNC) algorithm [11] and cascade correlation
algorithm(CC) [12]. The idea of DNC construction is simple, and only one sigmoid node
is added to the network at a time [11]. Therefore, DNC has a high time complexity when
the network scale is too large, making DNC difficult to apply. So, CC was born. The
construction process of the CC method is similar to that of the DNC, but the BP algorithm is
replaced by a correlation-based training method during training, which makes the learning
speed of the CC algorithm fast. Sin et al. proposed a module construction idea [13] to
solve construction of CC is slow. Sin added a network module instead of one neuron.
The module includes multiple neurons or a new hidden layer. Mezard went one step
further and proposed the Tiling algorithm [14]. Tiling can add hidden layers and units
in hidden layers at will until convergence. In 2018, Kamath proposed EnvelopeNets to
build neural networks [15], which allows CC not to be limited to static expansion methods.
It can be seen that the current CC learning efficiency is high, but the accuracy is slightly
insufficient. GA-DNS has computational efficiency close to CC while maintaining high
classification accuracy.

After the network becomes complex, the pruning method needs to remove redundancy.
Reed classified pruning algorithms in 1993 [16], and now the more commonly used method
is the pruning method based on correlation. In 2015, Han S proposed a new compressing

Curr. Issues Mol. Biol. 2022, 44 819

neural networks based on this pruning method [17]. Then, he also proposed a new pruning
algorithm, DSD [18], which prunes the branches based on the importance of the connection
between the front and back layers [19]. Frankle’s paper in 2018 pointed out the importance
of sparse structure to the network [20], and it makes exploring better pruning algorithms
a hot research topic. In 2019, Denttmers proposed a new pruning idea to find the best
connection scheme given the sparseness of the network, that is, sparse momentum pruning
algorithm [21]. In the same year, Lin and Liebenwein’s work pointed out that it can
be pruned by generating adversarial networks [22] or by sampling [23]. In 2020, Tang
combined the pruning process with cybernetics to reduce noise interference during the
pruning process and allow the pruning to be performed in a near-stable system [24]. The
pruning method of DNS belongs to the correlation-based pruning method. Unlike Tang
et al., this pruning method realizes pruning from the perspective of bionics. An Evolution
Algorithm (EA) [25] is a random search algorithm that can simulate natural selection and
evolutionary processes. NEAT is considered a typical EA, which realizes network structure
and weights co-evolution. NEAT [26] is a method of optimizing the network topology. It
directly encodes the weight and structure through mutation and lossless recombination.
HyperNEAT [27] is a variant of NEAT, and the difference is that HyperNEAT chooses
indirect encoding, called Compositional Pattern Producing Networks(CPPN) [28]. CPPN
allows the repetition and symmetry of the neural network structure, which more accurately
reflects the composition of the human brain. Subsequently, biological inspiration took
NEAT one step further. In 2010, the ES-HyperNEAT [29] method was inspired by biological
coding, allowing denser bases in the coding of CPNNs. At the same time, ES-HyperNEAT
uses a quadtree structure to determine the density and location of hidden nodes. In
2019, CoDeepNEAT [30] used EA and distributed to improve the performance of NEAT.
However, NEAT and its optimization algorithms have shortcomings. The computational
complexity of NEAT is very high. The computational complexity of GA-DNS is lower than
that of NEAT. AmoebaNet-A [31] give evidence that evolution can obtain results faster
with the same hardware, especially at the earlier stages of the search, and it surpasses
hand-designs for the first time. Xue et al. introduce a novel EA-NAS algorithm based
on a multi-objective modeling of the network design problem to design accurate CNNs
with a small structure [32]. The use of reinforcement learning is also a design direction of
neural structure evolutionary algorithms [33]. In neural structure optimization algorithms
without evolutionary algorithms, DARTS [34] is based on the continuous relaxation of
the architecture representation, allowing efficient search of the architecture using gradient
descent. Wang R et al. also proposed an improved DARTS algorithm [35]. At the same time,
a sequential model-based optimization (SMBO) strategy can also be used to optimize the
neural network structure [36]. Mingxing Tan et al. proposed a neural architecture search
algorithm—EfficientNet to uniformly scales all dimensions of depth/width/resolution
using a simple yet highly effective compound coefficient [37].

2.2. Dynamic Node-Based Neural Network Structure Optimization Algorithm

The construction process of a biological neural network is complex to simple [38]. In
the initial state, biological neurons are connected. In the subsequent learning process, some
of the connections of neurons will begin to “weaken” or “enhance” with the frequency of
signal transmission between neurons. This construction process is heuristically applied to
the construction of neural networks, and an adaptive neural network algorithm based on
correlation analysis–neural network structure optimization algorithm based on dynamic
nodes(DNS) is proposed. DNS is a heuristic algorithm that can complete the construction
and pruning operations of the network structure simultaneously in the iterative process
and realize the optimization of the network structure.

The network only contains a fully connected input layer and an output layer in the
initial stage. After one or several rounds of output are completed, the connections between
neurons and neurons in the neural network structure are pruned according to the pruning
strategy. The pruning strategy reduces the structural complexity of the model while

Curr. Issues Mol. Biol. 2022, 44 820

ensuring specific performance. After pruning, if the stopping condition is not reached, a
layer of hidden neurons is added to continue the iteration and pruning operations until the
network performance meets the set requirements or reaches the set maximum number of
iterations. Unlike cascade correlation networks, DNS will add neurons layer by layer, and
the newly added hidden layer is located between the previous layer of neurons and the
output layer. It is fully connected to other hidden, input, and output layers. In the initial
state, neurons in the same layer are not interconnected. DNS algorithm is a process similar
to brain growth and development. The data generated in the iterative process determines
whether the connection in the model is deleted or retained. In summary, the DNS algorithm
is as Figure 1 shows.

Begin

Initialize and

input data

Training

Get correlation

of synapse

Add a hidden

layer

Sufficient

performance or

enough

iterations

Structure

optimization

Output model

End

NO

YES

Figure 1. DNS algorithm.

DNS has a process of network complexity after the initial network input. The tra-
ditional network construction method adds neurons to the network one by one, which
is inefficient. The complication of DNS is to add the entire layer of neurons directly and
then optimize the structure through the pruning algorithm, which is more efficient. At
the same time, the complexity of DNS has a bionic significance. It is a simulation of the
construction process of a biological specific neural network [39] and a guarantee of network
self-adaptation.

After the network becomes complex, the network uses the pruning strategy to prune
the connections with lower correlation. The relevance of the connection can be understood
as the scoring of the connection. The pruning algorithm based on Hebb’s rule and the
pruning algorithm based on Pearson’s correlation coefficient is described below.

We divide the pruning algorithm involved into four categories to explain the differ-
ences of pruning methods with different principles, namely:

(1) Frequent pruning strategy based on Hebb’s rule.
The DNS network does pruning every U epochs. For the neurons on the both sides of

connection C, each iteration gets M outputs, denoted as Cl , Cr, subscripts l and r indicate
left and right, T is neuron activation threshold, T ∈ (0, 1). The connection correlation γ is
calculated as follows:

f (Cm
l , Cm

r) =

{
1 Cm

l > T, Cm
r > T

0 other
(1)

γi =
M

∑
m=1

f (Cm
l , Cm

r) (2)

γ =

e·U
∑

i=1
γi

e ·U (3)

In function (3), e means the number of iterations per epoch, U means the number of
epochs; here, this is 5. The above three formulas illustrate the conditions of Hebb’s rule.
Only when the neurons on both sides of the connection C are activated at the same time,

Curr. Issues Mol. Biol. 2022, 44 821

the C is considered effective. γi counts the number of samples in which the neurons on
both sides of C are activated at the same time among the M samples participating in the
iteration. Frequent pruning strategy based on Hebb’s rule is as follows:

f (C) =
{

1 γ ≥ p ·M
0 γ < p ·M (4)

In function, (4), p means pruning threshold, p ∈ (0, 1).
(2) Exponential weighted pruning strategy based on Hebb’s rule.
Method (1) Only focus on the information generated by the current iteration, and

the training of the BP algorithm is a continuous process, so the exponential weighting
method is used to combine information from previous rounds. The specific calculation
process becomes:

f u(Cm
l , Cm

r) =
e

∑
j=1

f j(Cm
l , Cm

r) (5)

γ =

U
∑

u=1
(qU−u ·

M
∑

m=1
f u(Cm

l , Cm
r))

U
∑

u=1
qU−u

(6)

In function, Equation (6), q means the base of the exponential weighting method.
Generally speaking, as the number of iterations increases, the effect of the network will get
better and better.

However, the pruning strategy based on the Hebb rule may ignore some synaptic
correlations. For example, when the output of the neurons on both sides of the connection
does not reach the activation threshold, there may still be a certain correlation, but the
Hebb rule will not calculate these correlations. As Figure 2 shows, the change rule of the
neurons on both sides of the connection(namely neuron1, neuron2) has a sure consistency,
and the correlation acquisition based on Hebb’s rule ignores this information. So, we also
tried to use the pruning strategy based on the Pearson coefficient.

(3) Frequent pruning strategy based on Pearson correlation coefficient.
The design method differs from the previous only in the measurement of connection

correlation. We use Pearson correlation coefficient here. The calculation of γ is:

γ = |pearson(C̄l , C̄r)| (7)

C̄l and C̄r are the output vector groups obtained after e ·U iterations. The pruning
strategy is:

f (C) =
{

1 γ ≥ p
0 γ < p

(8)

The range of the pruning threshold p is still (0, 1). The larger the p, the harder the
connection is to be retained. Unlike (1) and (2), p is not fixed.

(4) Exponential weighted pruning strategy based on Pearson correlation coefficient.
Similarly, the correlation γ is weighted exponentially.

γ =

U
∑

u=1
qU−u · |pearsonnu(C̄l , C̄r)|

U
∑

u=1
qU−u

(9)

Curr. Issues Mol. Biol. 2022, 44 822

0 2 4 6 8 10 12
Number of iterations

0.3

0.4

0.5

0.6

0.7

Ou
tp

ut
 o

f n
eu

ro
n

neuron1
neuron2

Figure 2. Neuron output curve.

2.3. Optimize DNS with Genetic Algorithm

As previously described, the idea of DNS has specific feasibility. The main existing
problems are as follows: (1) The final network generated by the pruning strategy based on
Hebb’s rule or Pearson coefficient still has room for performance improvement. (2) The
DNS network is not stable, and the algorithm can only control the overall optimization
direction of the network. The final network structure may not be the same for the same
data set and the same set of parameters. In order to solve the above shortcomings, this
paper learned from the idea of an evolutionary neural network and combined DNS with
GA. This combination can better solve the problem of network stability and improve the
network’s generalization ability. Therefore, we proposed GA-DNS and designed a unique
encoding method and genetic operator.

The flowchart of GA-DNS is shown in Figure 3. The neural network output by DNS is
used as the seed network of GA, then we encode it by appropriate coding method, get locus
of seed network and complete the population initialization process. Next, GA performs the
iterative evolution of the population. When the maximum number of iterations is reached,
or the maximum fitness has reached the threshold, the neural network with the highest
adaptability can be obtained.

Begin

Input data

Initialize network

and training

Get correlation

of synapse

Neural network

complexity

Sufficient

performance or

enough

iterations

Structure

optimization

Genetic algorithm

optimize

End

NO

YES

Output model

Encode seed

networks

Figure 3. GA-DNS algorithm flowchart.

Curr. Issues Mol. Biol. 2022, 44 823

2.3.1. Encoding Method

The research in this article only involves the connections between neurons, and there
is no interconnection operation in a single neuron itself. In simple terms, there are two
attributes of a connection. Attribute 1 is described as existence or non-existence, a binary
classification value that identifies whether the connection exists in the existing model.
Attribute 2 is described as the weight of the connection, which is a continuous float number.
We can separately encode the connection status (existence or absence) and the connection
weight of the connection and use the encoding method of two DNA strands to encode the
structure and weight of the neural network generated by the DNS.

Figure 4 shows a simple diagram of DNS network coding. The upper part of the
figure is a simple neural network structure diagram constructed by the DNS algorithm.
The dotted line represents the connection deleted during the construction of the network.
The solid line represents the real connection, which is the connection retained during the
construction of the network. The connection between neurons is a simple binary value
(exist or not), and the connection weight is a float number. The lower half of Figure 4 shows
the network’s structural coding and weight coding. Structural encoding is the encoding of
the connection state in the network, the value range of each locus is 0, 1, which is a typical
symbol encoding method. The numbers 1 and 0, respectively, represent the existence and
deletion of connections. The encoding length is the maximum number of connections
network construction, including deleted connections and remaining connections. Weight
encoding is an encoding method for encoding connection weights. Each gene of the weight
encoding represents the connection weight of the connection corresponding to the index of
the structure encoding. There is a one-to-one correspondence between structure encoding
and weight encoding.

1 0 0 1 0 1 0 1 0 0 1

0.1 4.1 1.6 1.5 0.1 1.9 3.1 8.1 10 1.8 6.1

Index:0 Index:10

Structure Encoding

Weight Encoding

0

1

2

34 5
6

7
8

910

Figure 4. Schematic diagram of encoding method.

2.3.2. Fitness Function

The DNS algorithm uses so f tmax loss function in the iterative process. Combined
with the previous description, the reciprocal of the loss function can be selected as GA-DNS
fitness function F:

F =

∣∣∣∣ 1
E

∣∣∣∣ (10)

where E represents the loss function value of the model, here is so f tmax loss function.
Generally speaking, fitness is a non-negative number, so the value of fitness F needs to add
an absolute value.

2.3.3. Selection Operator

The function of the selection operator is to select the parent individual. The parent
individual is used to participate in genetic crossover and mutation operations. This paper

Curr. Issues Mol. Biol. 2022, 44 824

intends to use the more commonly used roulette selection method and the optimal individ-
ual retention method as the selection operator. The advantages are: (1) ensure that the best
individuals in the current population can be preserved intact to the next generation; (2)
ensure that the better genes in the population (highly adaptive individuals) can be inherited
to the next generation of individuals in the population. The specific process of selection
operator is as follows:

1. Search for the individual with the highest fitness in the population and mark it as the
best individuals.

2. Traverse the individuals in the current population. If the fitness of the current individ-
ual is higher than the optimal individual, replace the optimal individual.

3. Roulette selects the remaining next-generation individuals.
4. Iterative training of the current population generates the next-generation population,

and the optimal individual does not participate in training.
5. The best individual enters the next generation and replaces the least adaptive individ-

ual in the offspring population.

2.3.4. Crossover Operator

Structural coding is binary, so the crossover operator needs to be designed separately.
The specific approch is:

1. Select parent, select two paired DNAs.
2. Parental crossover, crossover operation is performed on the two DNAs. The same

gene remains unchanged for the part where the corresponding locus has the same
gene, and the gene selection is performed for different genes.

It should be noted that step1 is selected by fitness value. Therefore, the calculation
method of the degree of fit is as follows:

ρ =
l

∑
i=1

(f (x1
i , x2

i) +
1

(w1
i − w2

i)
2) (11)

f (x1
i , x2

i) =

{
1 x1

i = x2
i

0 x1
i 6= x2

i
(12)

Among them, ρ represents the degree of fitness between individuals. x1
i , x2

i represent
the coding information on the i-th locus in the structural coding of two individuals. w1

i , w2
i

represents the encoding information on the i-th locus in the weight encoding of the two
individuals. l is length of genotype.

2.3.5. Mutation Operator

The structural and weight coding methods are different, so the mutation operator
design of structural coding and weight coding is different. The structural coding adopts
the mutation method of basic bit mutation, and the weight coding adopts the mutation
method of Gaussian mutation.

Structural coding adopts the mutation method of basic bit mutation because basic bit
mutation is easy to implement and can ensure the diversity of the network structure to a
certain extent, which is very suitable for the binary coding chain. The specific steps are
as follows:

1. Parameter setting, the mutation probability of the basic position mutation pm.
2. Traverse gene locus, randomly generate a float number between 0 and 1, and traverse

each gene in the individual structure code.
3. Replace gene. If the float number is less than the mutation probability pm, use the

opposite character to replace the corresponding current code (when the locus is 1,
replace it with 0, and vice versa); otherwise, it remains unchanged.

Curr. Issues Mol. Biol. 2022, 44 825

The weight coding adopts the mutation method of Gaussian mutation. The specific
operation is as follows:

Suppose there is a population of individuals X, the genotype of X is expressed as
X = x1x2x3 · · · xk · · · xl , the value range of the gene on the locus of X is [Uk

min, Uk
max]. The

Gaussian mutation operation process to X′ = x1x2x3 · · · x′k · · · xl is calculated as follows:

µ =
Uk

min + Uk
max

2
(13)

σ =
2 · (Uk

max −Uk
min)

l
(14)

The new gene x′k is:

x′k =
Uk

min + Uk
max

2
+

2 · (Uk
max −Uk

min)

l
· (

l

∑
i=1

ri −
l
2
) (15)

3. Results

We design three experiments on the Nursery dataset from the UCI Machine Learning
dataset. The first experiment compares the performance difference between GA-DNS and
existing methods. The second experiment selects the best pruning strategy, and the third
explores the pruning threshold’s effect on the pruning strategy.

The Nursery dataset comes from the UCI machine learning database. The total number
of samples is 12,960, the number of features is 8, including five categories. The specific
description of Nursery is as Table 1. Use one-hot encoding on the eight features in turn,
and get a dataset with 12,960 samples, 27 features, and five categories. Each feature is a
binary attribute. The ratio of cross-validated training set to test set is 8:2, and the order of
the data in the sample is randomly shuffled.

The Adult Dataset is also a UCL machine learning database data set. It is extracted from
the 1994 census database, including 48,842 samples, 14 attributes, and 81 attribute values.
The classification task is whether the annual income exceeds 50,000. Firm-Teacher_Clave-
Direction (referred to as FTCD) dataset also comes from UCL. It is a data set about music,
including 10,800 samples and 16 attributes, quantifying a measure of 16th note music. The
four categories correspond to the four-beat modes.

Table 1. Attribute information of Nursery.

Attribute Detail

Parents
usual
pretentious
great_pret

Has_nurs

proper
less_proper
improper
critical
very_crit

Form

complete
completed
incomplete
foster

Housing
convenient
less_conv
critical

Curr. Issues Mol. Biol. 2022, 44 826

Table 1. Cont.

Attribute Detail

Children

1
2
3
more

Finance
convenient
inconv

Social
non-prob
slightly_prob
problematic

Health
recommended
priority
not_recom

3.1. Comprehensive Performance of GA-DNS

This article first continues to use the Nursery dataset to explore the comprehensive
performance of GA-DNS. The parameter settings of the GA part are shown in Table 2.

Table 2. Parameters of GA-DNS.

Parameter Parameter Description Value of Parameter

D Maximum number of hidden layers added 2
V Maximum number of hidden neurons added 10
nin Number of input neurons 27
nout Number of output neurons 5
U Number of epochs between pruning 5
p pruning threshold 0.65
population Total number of individuals in the population 100
numIter Population iterations 50
crossPro Crossover probability of crossover operator 0.75
mulPro Mutation probability of mutation operator 0.1

Accuracy (ACC), model structural coefficient (MSC), and total run time of the four
GA-DNS, DNS, NEAT, and fully connected network (FC) models are tested simultaneously.
MSC describes the sparseness of the final output neural network model. The larger the
MSC, the more connections are deleted during the construction of the model, and the
lower the structural complexity of the model. The calculation of total run time such as
function (16). All experiments are done on a computer with a CPU model of i7-7700k, two
GPU of NVIDIA GeForce GTX 1080, 32g RAM, and an operating system of Ubuntu 20.04.2.
The experimental results are in Table 3.

Trun =
TR
TFC

, (TR ∈ (TDNS, TGA−DNS, TNEAT , TFC)) (16)

In function (16), Trun is “Total Run Time”, TR means the time it takes for the models to
complete the classification.

Curr. Issues Mol. Biol. 2022, 44 827

Table 3. Comparison of GA-DNS and DNS, NEAT, fully connected network, DARTS on Nursery.

Algorithm Perfermance MSC Total Run Time

GA-DNS 89.62% 0.5667 0.92
DNS 79.41% 0.6841 0.89

NEAT 95.20% – 1.10
DARTS 95.37% – 1.14

FC 96.11% 0 1.00

It can be seen from Table 3 that GA has a very large impact on DNS, which greatly
improves the accuracy of DNS on the Nursery data set. GA-DNS’s MSC is a slight decrease,
which shows that the model structure is slightly more complicated than DNS, and the
decrease also leads to a slight increase in Total Run Time. The GA-DNS’s accuracy is
slightly flawed than the NEAT model, but it is better than the simple structure. NEAT is
NeuroEvolution of Augmenting Topologies, a network of structural expansion and lacks a
process to simplify the model. So, the MSC cannot be calculated for NEAT.

In order to ensure that the experiment is not affected by the dataset, the GA’s effect
experiment on DNS has also been verified on Adult Dataset and FTCD Dataset. The
experimental results are shown in Table 4.

Table 4. Experiment results of Adult Data Set and FTCD.

Dataset Algorithm Accuracy MSC Total Run Time

Adult

GA-DNS 91.81% 0.6075 0.91
DNS 78.72% 0.6211 0.86

NEAT 95.21% - 1.04
Hyper-NEAT 95.47% - 1.07

DARTS 96.81% - 1.00
FC 96.84% 0 1.00

FTCD

GA-DNS 92.23% 0.6450 0.88
DNS 78.28% 0.6725 0.84

NEAT 95.15% - 1.10
DARTS 96.02% - 1.24

FC 96.64% 0 1.00

The following points can be seen from the above experiments:

(1) The impact of GA on DNS is very large. The longer total run time is acceptable
compared to the increase in accuracy. GA-DNS verifies that using GA to find the best
network structure is feasible.

(2) Compared with the NEAT algorithm and fully connected network, the percentage
of accuracy of the GA-DNS algorithm is slightly lower by about 4–6%. However,
the advantage of the GA-DNS lies in a simpler network structure. Fully connected
network is the most complex network structure, while NEAT is expanding the network
structure. It is not as complicated as the BP network or as simple as the GA-DNS
network structure.

(3) Both DNS and GA-DNS have a short Total Run Time. DNS is the fastest among them,
but the cost is the lowest accuracy. GA-DNS has found a balance between accuracy
and Total Run Time.

3.2. Reasonable Pruning Algorithm

The following is a comparative experiment on the Nursery data set to choose the best
pruning strategy. The number of pruning is the same as the number of hidden layers. The
basic parameters of each experiment remain the same, which are two hidden layers, and
10 neurons are added each time. The experimental results are in Table 5.

Curr. Issues Mol. Biol. 2022, 44 828

Table 5. Experimental result on nursery.

Purning Srategy Based on Hebb’s Rule Purning Srategy Based on Pearson Coefficient

Frequent Exponential Weighted Frequent Exponential Weighted

Performance 69.4% 75.2% 78.7% 83.5%
Recall rate 70%, 68%, 60%, 79%, 73%, 75%, 74%, 80%, 78%, 80%, 81%, 77%,

62%, 71% 71%, 66% 72%, 62% 75%, 65%
MSC 0.56 0.72 0.57 0.68

In Table 5, the accuracy, recall rate and MSC are selected as evaluation indicators. It
can be seen that:

(1) The accuracy of the DNS network hovered between 70–80%, which shows that the
neural network model optimized by the DNS algorithm has a certain ability to classify.
However, the accuracy rate is not very high. Therefore, it can be further optimized.

(2) The model structure coefficient is between 0.55–0.75, indicating that the network scale
has a certain degree of optimization compared with the traditional ANN, which is
in line with the expected design of the algorithm, indicating the realization of the
algorithm has certain feasibility.

(3) From the perspective of accuracy and model evaluation coefficients, compared with
frequent pruning strategies, the pruning strategy based on exponential weighting
is better.

(4) From the perspective of accuracy and model evaluation coefficients, the pruning
strategy based on the Pearson coefficient is more effective than the pruning strategy
based on Hebb’s rule.

3.3. Effect of Pruning Threshold

Different pruning thresholds p will lead to DNS generating different network struc-
tures, affecting the network’s performance and availability. Therefore, we adopt the method
of controlling variables to observe the influence of different p. The DNS directly uses the
exponentially weighted pruning strategy based on the Pearson coefficient. The parameter
settings are as Table 6:

Table 6. DNS algorithm parameter table of exponential weighted pruning strategy based on Person
coefficient.

Parameter Parameter Description

D Number of hidden layers
V Number of neurons added
M Mini-batch subset sample number
nin Number of input neurons
nout Number of output neurons
U Number of epochs between pruning
p pruning threshold

Among them, the number of hidden layers and the number of neurons added can
be set based on experience, and there is no strict requirement. In this paper, based on the
research theory of Frankle et al. [20], the number of additions is selected in the interval
[nin, nout].

Through many experiments, we found that when the accuracy ofM p is 0.05, the change
in the p-value caused the change in the model results was easily observable. Figure 5 shows
the experimental results with p ∈ [0.1 : 0.05 : 0.9].

We can see from Figure 5:

(1) When the value of the pruning threshold p is small, the accuracy of the model is
not high, and the model structure coefficient is very low. This means that the DNS

Curr. Issues Mol. Biol. 2022, 44 829

algorithm retains most of the connections, the network structure is highly complex
and over-fitting.

(2) As the pruning threshold p increases, the model structure coefficient increases simulta-
neously. This shows that some connections are pruned when the threshold p becomes
larger and the streamlined network structure. However, the model’s accuracy fluctu-
ates up and down, indicating that the model has not reached its optimal structure at
this time, and there is room for further improvement in accuracy.

(3) When the pruning threshold is between [0.55, 0.7], the structure of the model has
been greatly simplified, and the accuracy of the model is relatively stable at this time.
However, the relationship between model structure coefficients and pruning threshold
p is not strictly monotonic.

(4) When the pruning threshold is large enough, close to 0.9, the model structure coef-
ficient is also close to the peak value, indicating that most of the connections in the
model are deleted during the iteration process, and the accuracy of the model begins
to decrease, indicating that the model is under-fitting at this time state.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Pruning threshold

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
SC

 &
 A

CC

label
MSC
ACC

Figure 5. Line graph of the model accuracy rate and the model structure coefficient (MSC) under
different p. The x-axis represents the pruning threshold and the y-axis represents the changes of MSC
and accuracy.

The choice of pruning threshold p cannot be too wide or too small. The model with
too small p value will enter the over-fitting state, and the model with too large p value will
enter the under-fitting state, which is in line with the design philosophy of DNS. Different
data sets may correspond to different optimal p values and network structures. On the
other hand, the accuracy of the network is still not ideal, and the experimental results show
that the accuracy is only 78% when the accuracy is the highest. So, the DNS algorithm
needs to further optimize its performance. Simply adjusting the p will not bring further
improvement inaccuracy. Therefore, it is necessary to use GA to optimize DNS to obtain a
more available network.

In summary, GA-DNS is an algorithm with strong comprehensive performance and
high modeling efficiency. However, GA-DNS is limited by the pruning threshold p, and
practical applications require multiple experiments to determine the selection range of p,
which limits the use of GA-DNS to a certain extent.

Curr. Issues Mol. Biol. 2022, 44 830

4. Discussion

Efficient structure, easy modeling, and strong usability are all essential contents in
exploring neural network generation algorithms. This article first proposes a DNS method
inspired by the construction process of biological neural networks. Then, we introduce
GA-DNS to improve DNS’s accuracy and availability. Finally, the network generated by
DNS is used as the seed network of GA, and the final output model is obtained after
several population iterations. The overall performance of the network model output by
GA-DNS on the Nursery dataset, Adult dataset, and Firm-Teacher_Clave-Direction dataset
is reasonable compared to SOTA methods.

In our opinion, DNS represents the in-generation learning process of a biological
neural network, while GA-DNS represents the among-generation evolution process of a
biological neural network. GA-DNS shows higher accuracy than DNS, which means that
the property of the population overall is stronger than an individual. We strongly believe
that inspiration from biology will give us more hints towards better algorithms with better
interpretability and higher learning efficiency.

The GA-DNS algorithm can be further optimized. Maybe we can optimize search
methods to find the pruning threshold p and improve its engineering application capa-
bilities in the future. It is also necessary to optimize the genetic algorithm to improve the
accuracy of GA-DNS results. GA-DNS builds very quickly and guarantees a sure accuracy.
In the future, we will consider using GA-DNS in the autonomous driving dataset to verify
the practical application ability of GA-DNS.

Author Contributions: Conceptualization, X.Y. and Y.Q.; methodology, Y.Q., M.W. and Y.L.; software,
Y.L.; validation, J.C., M.W. and X.L.; formal analysis, Z.H.; investigation, Z.H.; resources, H.D.; data
curation, X.L.; writing—original draft preparation, M.W.; writing—review and editing, X.Y. and
H.D.; visualization, X.L.; supervision, X.Y.; project administration, X.Y.; funding acquisition, X.Y. All
authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China under Grant
No. 91846303, and the Beijing Municipal Natural Science Foundation under Grand No. 4212043.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are openly available
in: UCI Machine Learning Database at https://archive.ics.uci.edu/ml/datasets.php (accessed on
2 January 2022). The address of each data set is as follows: Nursery Data set: https://archive.ics.
uci.edu/ml/datasets/Nursery (accessed on 2 January 2022); Adult Data set: https://archive.ics.
uci.edu/ml/datasets/Adult (accessed on 2 January 2022); Firm-Teacher_Clave-Direction Data set:
https://archive.ics.uci.edu/ml/datasets/Firm-Teacher_Clave-Direction_Classification (accessed on
2 January 2022).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Sompolinsky, H. The theory of neural networks: The hebb rule and beyond. In Heidelberg Colloquium on Glassy Dynamics; Springer:

Berlin/Heidelberg, Germany, 1987; pp. 485–527.
2. Sejnowski, T.J.; Tesauro, G. The hebb rule for synaptic plasticity: algorithms and implementations. In Neural Models of Plasticity;

Elsevier: Amsterdam, The Netherlands, 1989; pp. 94–103.
3. Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech Processing; Springer:

Berlin/Heidelberg, Germany, 2009; pp. 1–4.
4. Whitley, D. A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85. [CrossRef]
5. Mirjalili, S. Genetic algorithm. In Evolutionary Algorithms and Neural Networks; Springer: Berlin/Heidelberg, Germany, 2019;

pp. 43–55.

https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets/Nursery
https://archive.ics.uci.edu/ml/datasets/Nursery
https://archive.ics.uci.edu/ml/datasets/Adult
https://archive.ics.uci.edu/ml/datasets/Adult
https://archive.ics.uci.edu/ml/datasets/Firm-Teacher_Clave-Direction_Classification
http://doi.org/10.1007/BF00175354

Curr. Issues Mol. Biol. 2022, 44 831

6. Johnson, E.G.; Kathman, A.D.; Hochmuth, D.H.; Cook, A.; Brown, D.R.; Delaney, W.F. Advantages of genetic algorithm
optimization methods in diffractive optic design. In Diffractive and Miniaturized Optics: A Critical Review; International Society for
Optics and Photonics: Bellingham, WA, USA, 1993; Volume 10271, p. 1027105.

7. Leung, F.H.-F.; Lam, H.-K.; Ling, S.-H.; Tam, P.K.-S. Tuning of the structure and parameters of a neural network using an improved
genetic algorithm. IEEE Trans. Neural Netw. 2003, 14, 79–88. [CrossRef]

8. Castellano, G.; Fanelli, A.M.; Pelillo, M. An iterative pruning algorithm for feedforward neural networks. IEEE Trans. Neural
Netw. 1997, 8, 519–531. [CrossRef] [PubMed]

9. Rocha, M.; Cortez, P.; Neves, J. Evolutionary neural network learning. In Portuguese Conference on Artificial Intelligence; Springer:
Berlin/Heidelberg, Germany, 2003; pp. 24–28.

10. Kwok, T.Y.; Yeung, D.Y . Constructive algorithms for structure learning in feedforward neural networks for regression problems.
IEEE Trans. Neural Netw. 1997, 8, 630–645. [CrossRef]

11. Ash, T. Dynamic node creation in backpropagation networks. Connect. Sci. 1989, 1, 365–375. [CrossRef]
12. Fahlman, S.E.; Lebiere, C. The Cascade-Correlation Learning Architecture. Adv. Neural. Inf. Process. Syst. 1997, 2, 524–532.
13. Sin, S.K.; Defigueiredo, R.J.P. An incremental fine adjustment algorithm for the design of optimal interpolating neural networks.

Int. Pattern Recognit. Artif. Intell. 1991, 5, 563–579. [CrossRef]
14. Mezard, M.; Nadal, J.P. Learning in feedforward layered networks: the tiling algorithm. J. Phys. Math. Gen. 1989, 22, 2191–2203.

[CrossRef]
15. Kamath, P.; Singh, A.; Dutta, D. Neural Architecture Construction using EnvelopeNets. Neural Evol. Comput. 2018. Available

online: https://arxiv.org/abs/1803.06744 (accessed on 2 January 2022).
16. Reed, R. Pruning algorithms-a survey. IEEE Trans. Neural Netw. 1993, 4, 740–747. [CrossRef] [PubMed]
17. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and

huffman coding. arXiv 2015, arXiv:1510.00149.
18. Han, S.; Pool, J.; Tran, J.; Dally, W.J. Learning both weights and connections for efficient neural network. Adv. Neural Inf. Process.

Syst. 2015, 15, 1135–1143.
19. Hassibi, B.; Stork, D.G. Second order derivatives for network pruning: Optimal brain surgeon. In Advances in Neural Information

Processing Systems; Morgan Kaufmann: Burlington, MA, USA, 1993; pp. 164–171.
20. Frankle, J.; Carbin, M. The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv 2018, arXiv:1803.03635.
21. Dettmers, T.; Zettlemoyer, L. Sparse networks from scratch: Faster training without losing performance. arXiv 2019,

arXiv:1907.04840.
22. Lin, S.; Ji, R.; Yan, C.; Zhang, B.; Cao, L.; Ye, Q.; Huang, F.; Doermann, D. Towards optimal structured cnn pruning via generative

adversarial learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA,
USA, 15–20 June 2019; pp. 2790–2799.

23. Liebenwein, L.; Baykal, C.; Lang, H.; Feldman, D.; Rus, D. Provable filter pruning for efficient neural networks. arXiv 2019,
arXiv:1911.07412.

24. Tang, Y.; Wang, Y.; Xu, Y.; Tao, D.; Xu, C.; Xu, C.; Xu, C. Scop: Scientific control for reliable neural network pruning. arXiv 2020,
arXiv:2010.10732.

25. Bäck, T.; Schwefel, H.-P. An overview of evolutionary algorithms for parameter optimization. Evol. Comput. 1993, 1, 1–23.
[CrossRef]

26. Stanley, K.O.; Bryant, B.D.; Miikkulainen, R. Real-time neuroevolution in the nero video game. IEEE Trans. Evol. Comput. 2005, 9,
653–668. [CrossRef]

27. Gauci, J.; Stanley, K. Generating large-scale neural networks through discovering geometric regularities. In Proceedings of the 9th
annual conference on Genetic and evolutionary computation, London, UK, 7–11 July 2007; pp. 997–1004.

28. Stanley, K.O. Compositional pattern producing networks: A novel abstraction of development. Genet. Program. Evolvable Mach.
2007, 8, 131–162. [CrossRef]

29. Risi, S.; Lehman, J.; Stanley, K.O. Evolving the placement and density of neurons in the hyperneat substrate. In Proceedings of the
12th Annual Conference on Genetic and Evolutionary Computation, Porland, OR, USA, 7–11 July 2010; pp. 563–570.

30. Miikkulainen, R.; Liang, J.; Meyerson, E.; Rawal, A.; Fink, D.; Francon, O.; Raju, B.; Shahrzad, H.; Navruzyan, A.; Duffy, N.; et al.
Evolving deep neural networks. In Artificial Intelligence in the Age of Neural Networks and Brain Computing; Elsevier: Amsterdam,
The Netherlands, 2019; pp. 293–312.

31. Real, E.; Aggarwal, A.; Huang, Y.; Le. Q.V. Regularized evolution for image classifier architecture search. Proc. Aaai Conf. Artif.
Intell. 2019, 33, 4780–4789. [CrossRef]

32. Xue, Y.; Jiang, P.; Neri, F.; Liang, J. A multi-objective evolutionary approach based on graph-in-graph for neural architecture
search of convolutional neural networks. Int. J. Neural Syst. 2021, 31, 2150035. [CrossRef] [PubMed]

33. Stanley, K.O.; Clune, J.; Lehman, J.; Miikkulainen, R. Designing neural networks through neuroevolution. Nat. Mach. Intell. 2019,
1, 24–35. [CrossRef]

34. Liu, H.; Simonyan, K.; Yang, Y. Darts: Differentiable architecture search. arXiv 2018, arXiv:1806.09055.
35. Wang, R.; Cheng, M.; Chen, X.; Tang, X.; Hsieh, C.J. Rethinking architecture selection in differentiable NAS. arXiv 2021,

arXiv:2108.04392.

http://dx.doi.org/10.1109/TNN.2002.804317
http://dx.doi.org/10.1109/72.572092
http://www.ncbi.nlm.nih.gov/pubmed/18255656
http://dx.doi.org/10.1109/72.572102
http://dx.doi.org/10.1080/09540098908915647
http://dx.doi.org/10.1142/S0218001491000326
http://dx.doi.org/10.1088/0305-4470/22/12/019
https://arxiv.org/abs/1803.06744
http://dx.doi.org/10.1109/72.248452
http://www.ncbi.nlm.nih.gov/pubmed/18276504
http://dx.doi.org/10.1162/evco.1993.1.1.1
http://dx.doi.org/10.1109/TEVC.2005.856210
http://dx.doi.org/10.1007/s10710-007-9028-8
http://dx.doi.org/10.1609/aaai.v33i01.33014780
http://dx.doi.org/10.1142/S0129065721500350
http://www.ncbi.nlm.nih.gov/pubmed/34304718
http://dx.doi.org/10.1038/s42256-018-0006-z

Curr. Issues Mol. Biol. 2022, 44 832

36. Liu, C.; Zoph, B.; Neumann, M.; Shlens, J.; Hua, W.; Li, L.J.; Fei-Fei, L.; Yuille, A.; Huang, J.; Murphy, K. Progressive neural
architecture search. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September
2018; pp. 19–34.

37. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.

38. Kohonen, T. An introduction to neural computing. Neural Netw. 1988, 1, 3–16. [CrossRef]
39. Maind, S.B.; Wankar, P. Research paper on basic of artificial neural network. Int. J. Recent Innov. Trends Comput. Commun. 2014, 2,

96–100.

http://dx.doi.org/10.1016/0893-6080(88)90020-2

	Introduction
	Materials and Methods
	Related Works
	Dynamic Node-Based Neural Network Structure Optimization Algorithm
	Optimize DNS with Genetic Algorithm
	Encoding Method
	Fitness Function
	Selection Operator
	Crossover Operator
	Mutation Operator

	Results
	Comprehensive Performance of GA-DNS
	Reasonable Pruning Algorithm
	Effect of Pruning Threshold

	Discussion
	References

