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Abstract: Natural and synthetic chalcones exhibit anti-inflammatory, antitumoral, antibacterial, anti-
fungal, antimalarial, and antitubercular activities. Isodorsmanin A (IDA), a chalcone, is a well-known
constituent of the dried seeds of Psoralea corylifolia L. (PC). Although other constituents of PC have
been widely investigated, there are no studies on the biological properties of IDA. In this study,
we focused on the anti-inflammatory effects of IDA and evaluated its effects on lipopolysaccha-
ride (LPS)-stimulated macrophages. The results showed that IDA suppressed the production of
inflammatory mediators (nitric oxide [NO] and prostaglandin E2 [PGE2]) and proinflammatory
cytokines (tumor necrosis factor-α [TNF-α], interleukin-6 [IL-6], and interleukin-1β [IL-1β]) without
cytotoxicity. In addition, it downregulated the mRNA levels of inducible nitric oxide synthase (iNOS)
and cyclooxygenase-2 (COX-2) within the treatment concentrations. In our mechanistic studies,
IDA inhibited the phosphorylation of the c-Jun N-terminal kinase (JNK), mitogen-activated protein
kinase (MAPK), and protected the nuclear factor of the kappa light polypeptide gene enhancer in the
B-cells’ inhibitor, alpha (IκB-α), from degradation, thus preventing the activation of the nuclear factor
kappa-light-chain-enhancer of activated B cells’ (NF-κB) transcription factor. Our results suggest that
IDA is a promising compound for attenuating excessive inflammatory responses.
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1. Introduction

Inflammation is an essential immune response to a physical or chemical stimulus,
such as a wound or bacterial infection, that plays a role in restoring damaged tissues
and protecting the body from pathogen invasion [1,2]. However, the inflammatory re-
sponse causes fever, redness, pain, and swelling, and an excessive response can lead to
inflammation-related chronic diseases, such as arthritis, multiple sclerosis, and cancer [3,4].
Inflammation begins when macrophages, which are immune cells, are activated by external
stimuli and secrete inflammatory mediators and proinflammatory cytokines, such as nitric
oxide (NO) and prostaglandin E2 (PGE2), as well as interleukin-6 (IL-6), interleukin-1β
(IL-1β), and tumor necrosis factor-α (TNF-α), respectively [5,6]. NO is a major inflam-
matory mediator secreted during inflammation and plays an important role in killing
bacteria or removing tumors. However, the overproduction of NO causes tissue and nerve
damage, as well as genetic mutations [7]. NO production is related to nitric oxide synthase
(NOS). Among the NOS, the neuronal NOS (nNOS) and endothelial NOS (eNOS) are con-
stitutive enzymes that are constantly expressed in neurons and vascular endothelial cells,
respectively, whereas the inducible NOS (iNOS) is expressed in macrophages in response
to stimuli, such as interferon-γ (IFN-γ), lipopolysaccharide (LPS), and proinflammatory
cytokines [8–12]. PGE2 is produced by cyclooxygenase-2 (COX-), which inhibits tumor cell
apoptosis and induces angiogenesis, leading to tumorigenesis. Macrophages stimulated
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by LPS or cytokines such as interleukin-1 (IL-1) increase COX-2 expression and promote
PG expression, thereby maintaining the inflammatory response [13,14]. The continuous
production of inflammatory mediators and proinflammatory cytokines is a major cause of
various inflammatory diseases.

The well-known inflammation related signaling pathways such as mitogen-activated
protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) act as regulators of the expression of proinflammatory cytokines and mediators
in LPS-activated macrophages. Normally, NF-κB is bound to the nuclear factor of the
kappa light polypeptide gene enhancer in B-cells’ inhibitor (IκB) and is present in an in-
active form in the cytoplasm of macrophages. However, upon stimulation with LPS or
cytokines, IκB is phosphorylated by IκB kinase (IKK) and degraded by the proteasome
through ubiquitination. The isolated NF-κB translocates to the nucleus, where it induces
the expression of inflammation-related genes. In addition, the MAPK family, namely, extra-
cellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 kinase, can
be activated concomitantly or independently through phosphorylation, thereby promoting
the expression of inflammatory factors [15–19].

Chalcone (1,3-diphenyl-2-propen-1-one) is a simple three-carbon α,β-unsaturated
carbonyl system known to exist as a precursor for flavonoid biosynthesis in plants and
has been reported to be easy to synthesize in the laboratory [20,21]. Natural and synthetic
chalcones have been reported to possess anti-inflammatory, antitumoral, antibacterial,
antifungal, antimalarial, and antitubercular activities. Therefore, chalcones have received
attention in many studies because of their wide range of biological and pharmacological
activities, ease of synthesis, and simple chemical structures [20,22,23].

Isodorsmanin A (IDA; [E]-1-[5-hydroxy-2,2-dimethyl-3,4-dihydrochromen-8-yl]-3-[4-
hydroxyphenyl]prop-2-en-1-one) is a chalcone present in the dried seeds of Psoralea corylifo-
lia L. (PC) [24]. The biological and pharmacological properties of PC and its constituents
have been thoroughly studied [25–31]. PC is associated with inflammatory signalling
pathways such as MAPK and NF-κB; moreover, it also has an influence on the reduction of
inflammatory cytokine [32]. In addition, the main constituents of PC are widely studied
and are known to have anti-inflammatory properties. For instance, angelicin and psoralen,
which are coumarins, are known to cause the inhibition of proinflammatory cytokines
expression by regulating NF-κB or MAPK pathways [33,34]. Moreover, bavachin and
bavachinin, which are flavonoids, have been reported to have antineuroinflammatory
activity, and can inhibit NO and proinflammatory cytokines expression via NF-κB [35,36].
It has also been reported that isobavachalcone and bavachalcone exhibit anti-inflammatory
activity in BV-Microglia by reducing NO and proinflammatory cytokines expression [35].
In addition, bakuchiol is known to inhibit NO production via the inactivation of NF-κB
transcription [37]. However, to date, there have been no studies on the biological or pharma-
cological properties of IDA. Therefore, in this study, we aimed to determine the biological
activity of IDA, confirm its anti-inflammatory effect, and examine the related molecular
mechanisms.

2. Materials and Methods
2.1. Cell Culture

Murine macrophages (RAW 264.7) were acquired from the American Type Culture Col-
lection (ATCC, Manassas, VA, USA). The cells were maintained and cultured in Dulbecco’s
modified Eagle’s medium (DMEM; HycClone, Irvine, CA, USA) containing 100 µg/mL
penicillin–streptomycin (P/S; Thermo Fisher Scientific Inc., Waltham, MA, USA) and 10%
fetal bovine serum (FBS; Gibco, Grand Island, NY, USA). The cells were incubated at 37 ◦C
with 5% CO2 and were sub-cultured every other day.

2.2. Measurement of Cell Viability

For measurements of cell viability, Isodorsmanin A, isolated from Psoralea corylifolia
L., was acquired from ChemFaces (Wuhan, USA, >99 purity). The CCK-8 assay (Cell
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Counting Kit-8; Dojindo Molecular Technologies, Inc., Rockville, MD, USA) was performed
to determine cytotoxicity. Briefly, macrophages (5 × 104 cells/well) were seeded and
incubated for 24 h. The cells were pretreated with isodorsmanin A (1.56, 3.13, 6.25, 12.5,
and 25 µM) for 3 h and then stimulated with 100 ng/mL of LPS (Sigma–Aldrich, St. Louis,
MO, USA) for another 21 h. Thereafter, CCK-8 was added to the microplate well, followed
by incubation for 3 h. The absorbance was measured at 450 nm using an enzyme-linked
immunosorbent assay (ELISA) microphotometer (BioTek Instruments, Winooski, VT, USA),
and the cell viability was analyzed using the measured values.

2.3. Measurement of Inflammatory Mediators and Proinflammatory Cytokines

Macrophages were cultured for 24 h and the IDA (1.56, 3.13, 6.25, 12.5, or 25 µM)
samples were pretreated for 3 h before induction with LPS at a concentration of 100 ng/mL.
After 21 h, 50 µL of the supernatant was added to 100 µL of Griess reagent (Promega,
Madison, WI, USA) mixture (0.1% N-1-napthylethylenediamine dihydrochloride in sterile
water, 1% sulfanilamide in 5% phosphoric acid; 1:1) and the absorbance was measured
at 450 nm using an ELISA (BioTek Instruments) and was quantified using a standard
(sodium nitrate). To determine the levels of PGE2, TNF-α, IL-6, and IL-1β, an ELISA from a
Quantikine® ELISA Kit (R&D Systems, Minneapolis, MN, USA) was used. The results are
presented as the relative percentage of the control (LPS-only group), whereas the percentage
of inhibition was calculated using the following formula:

Inhibition Percentage = 100−
(

Average control OD − Sample OD
Average control OD

)
× 100 (1)

where Average control optical density (OD) and Sample OD represent the concentration in
the LPS-only and IDA-treated groups, respectively.

2.4. Nuclear and Cytosolic Extraction

To compare the effect of IDA on NF-κB expression in the cytoplasm and nucleus, RAW
264.7 macrophages were aliquoted into a 60-mm dish, pretreated with IDA for 3 h, and then
treated with LPS (100 ng/mL) for different time intervals. Then, the cells were collected, and
the nucleus and cytoplasm were separated using the Nuclear and Cytoplasmic Extraction
Reagents Kit (Pierce Biotechnology, Rockford, IL, USA).

2.5. Western Blotting

Macrophages were cultured and treated with IDA (1.56, 3.13, 6.25, 12.5, or 25 µM) and
100 ng/mL of LPS, after which they were collected and rinsed with Dulbecco’s phosphate-
buffered saline (DPBS; Wellgene Inc., Gyeongsan, Korea). The cells were incubated in
M-PERTM Mammalian Protein Extract Reagent (Thermo Fisher Scientific Inc.) at 4 ◦C
for 20 min. The cells were lysed using vortex every 10 min, and then the supernatant
was separated via centrifugation (400× g, 15 min) and collected. The bicinchoninic acid
kit (BCA; Thermo Fisher Scientific Inc.) was used to adjust according to the amount of
protein contained in each supernatant, and Western blot samples were prepared using
equal amounts of protein. Each Western blot sample were loaded and separated on sodium
dodecyl sulfate–polyacrylamide gel using electrophoresis. The separated proteins were
transferred to a polyvinylidene difluoride membrane. Then, the protein-transferred mem-
brane was then placed in fish serum-blocking buffer (Thermo Fisher Scientific Inc.) at 25 ◦C
for 1 h and incubated at 4 ◦C overnight with the specific primary antibodies against β-actin
(1:5000), iNOS (1:5000), COX-2 (1:5000), p-p38, p38 (1:1000; Thr180/Tyr182), p-JNK, JNK
(1:1000; Thr183/Tyr185), p-ERK, ERK (1:1000; Thr202/Tyr204), p-IκB-α, IκB-α (1:1000; Ser
32), and p-NF-κB-p65 (1:1000; Ser 536) (Cell Signaling Technology, Danvers, MA, USA).
After incubation, each membrane was washed with TBST (20 mM Tris base, 137 mM NaCl,
pH 7.6, and 0.1% Tween-20). Subsequently, the membrane was incubated at 4 ◦C for 2 h
with secondary antibodies (1:1000; Cell Signaling Technology) and then washed three times.
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The target protein band images were detected using an Enhanced Chemiluminescence Kit
(ECL; Bio-Rad).

2.6. RT-qPCR Analysis

The total RNA was extracted using the RNeasy Plus Mini Kit (Qiagen, Hilden, Ger-
many). Equal amounts of RNA (2000 ng) were quantified, and cDNA reverse transcription
was performed using a cDNA synthesis kit (High-Capacity cDNA Reverse Transcription
Kit; Thermo Fisher Scientific Inc.). RT-qPCR was performed using a Taqman Gene Ex-
pression Master Mix (Thermo Fisher Scientific Inc.). The TaqMan probes (Thermo Fisher
Scientific Inc.) used are listed in Table 1.

Table 1. Gene name, assay ID, and NCBI reference sequence in quantitative reverse transcription
polymerase chain reaction (RT-qPCR).

Gene Name Assay ID NCBI Reference Sequence

Inducible nitric oxide synthase (iNOS) Mm00440502_m1 NM 010927.3
Cyclooxygenase-2 (COX-2) Mm00478374_m1 NM_011198

β-actin Mm00607939_s1 NM_007393.5

2.7. Statistical Analysis

The experimental values are presented as the mean ± standard error of triplicate
independent experiments. Statistical analysis was performed using one-way analysis of
variance (ANOVA) and GraphPad Prism version 9.4.1 (GraphPad Software Inc., La Jolla,
CA, USA) for comparisons between the control and multiple groups. The LPS-only and
IDA-treated groups at each time interval were compared using two-way ANOVA followed
by Turkey’s post hoc test. * p < 0.05 and ** p < 0.01 indicate significant differences.

3. Results
3.1. Effect of IDA on Cell Viability

To determine the range of cytotoxicity, LPS-stimulated RAW 264.7 macrophages were
treated with various concentrations of IDA and a CCK-8 assay was performed to measure
their viability. As shown in Figure 1b, there was no significant reduction in viability up to
12.5 µM, whereas viability was significantly reduced by 33.8% when treated with 25 µM
compared to that of the untreated control (** p < 0.01). Moreover, in comparison to the
untreated group, the cells’ viability increased slightly by 7.2%, 7.6%, 7.4%, and 1.8% at IDA
treatment concentrations of 1.56, 3.13, 6.25, and 12.5 µM, respectively (* p < 0.05). Therefore,
once cytotoxicity was established at 25 µM, experiments were conducted at a concentration
of 12.5 µM.
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values are presented as the mean ± standard error of triplicate independent experiments. * p < 0.05
and ** p < 0.01 indicate significant differences vs. the non-treated control (Normal).

3.2. Effect of IDA on Inflammatory Mediator Production

In LPS-stimulated macrophages, the production of NO and PGE2 increases rapidly.
Therefore, we examined the effect of IDA treatment on LPS-stimulated macrophages.
The production levels of NO and PGE2 were increased using LPS treatment, whereas
the expression levels of inflammatory mediators were significantly decreased using IDA
treatment (Figure 2). In particular, 12.5 µM, the highest treatment concentration, markedly
reduced NO and PGE2 production by 80.4% and 36.5%, respectively (** p < 0.01).
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Figure 2. Effect of isodorsmanin A (IDA) on (a) nitric oxide (NO) and (b) prostaglandin E2 (PGE2)
production in macrophages. Cells were pretreated with IDA (1.56, 3.13, 6.25, or 12.5 µM) for 3 h and
then stimulated with 100 ng/mL of LPS for another 21 h. The experimental values are presented as
the mean ± standard error of triplicate independent experiments. * p < 0.05 and ** p < 0.01 indicate
significant differences vs. the LPS-only group. ## p < 0.01 indicates significant difference vs. Normal
group. Dexamethasone (Dex); positive control.

3.3. Effect of IDA on iNOS and COX-2 mRNA Levels

To confirm the effects of IDA on the mRNA expression levels of iNOS and COX-
2, which are related with NO and PGE2 production, quantitative reverse transcription
polymerase chain reaction (RT-qPCR) analysis was performed. As shown in Figure 3, iNOS
gene expression was reduced by 32.5% and 65.1% at IDA concentrations of 6.25 and 12.5 µM,
respectively, compared to that in the LPS-only group (** p < 0.01). For COX-2, its expression
at 12.5 µM was reduced by 42.1% compared to that in the LPS-only group (** p < 0.01). The
results indicate that IDA downregulates the expression of iNOS and COX-2 mRNA levels.

3.4. Effect of IDA on Inflammatory Cytokine Expression

Enzyme-linked immunosorbent assay (ELISA) kits were used to determine the effect
of IDA on the expression of proinflammatory cytokines (TNF-α, IL-6, and IL-1β). The
results showed that LPS treatment markedly increased cytokine levels compared to the
non-treated control. In contrast, each level of proinflammatory cytokines was significantly
decreased by IDA treatment in a dose-dependent manner. Notably, 12.5 µM, the highest
treatment concentration, inhibited TNF-α, IL-6, and IL-1β expression by 18.6%, 45.1%, and
73.7%, respectively (* p < 0.05, ** p < 0.01) (Figure 4).
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Normal group. Dexamethasone (Dex); positive control.
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Figure 4. Effect of isodorsmanin A (IDA) on the expression levels of the proinflammatory cy-
tokines: (a) tumor necrosis factor-α (TNF-α), (b) interleukin-6 (IL-6), and (c) interleukin-1β (IL-1β) in
macrophages. Cells were pretreated with IDA (3.13, 6.25, or 12.5 µM) for 3 h and then stimulated with
100 ng/mL of LPS for another 21 h. The experimental values are presented as the mean ± standard
error of triplicate independent experiments. * p < 0.05 and ** p < 0.01 indicate significant differences
vs. the LPS-only group. ## p < 0.01 indicates significant difference vs. Normal group. Dexamethasone
(Dex); positive control.
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3.5. Effect of IDA on the Phosphorylation of MAPK

Increased phosphorylation of MAPK in macrophages regulates the synthesis of inflam-
matory factors, thereby increasing the inflammatory response [38]. Therefore, we examined
whether IDA affected MAPK phosphorylation in LPS-stimulated macrophages. As shown
in Figure 5, IDA treatment inhibited the phosphorylation of only JNK among the MAPK
family members; moreover, it did not affect the phosphorylation of ERK and p38 (data not
shown).
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3.6. Effect of IDA on the NF-κB Signaling Pathway

Phosphorylated NF-κB acts as a transcription factor that promotes the synthesis of
iNOS, COX-2, and inflammatory cytokines [39]. To determine whether IDA affects NF-κB
phosphorylation, we first observed variations in the expression of NF-κB-p65—one of the
subunits of NF-κB—over time in the cytoplasm and nucleus. As shown in Figure 6, after
2 h of LPS and IDA treatment, the cytoplasmic expression of p65 was increased compared
to that in the LPS-only group, whereas nuclear expression was decreased. As a result of the
2-h LPS treatment in a subsequent experiment, it was determined that NF-κB-p65 phospho-
rylation, increased by LPS, was inhibited in cells treated with IDA. In addition, it has been
reported that LPS-stimulated macrophages induce the phosphorylation and degradation of
IκB-α, thereby releasing NF-κB and promoting the activation of the NF-κB pathway [18]. In
this regard, our results showed that IDA treatment avoided the LPS-induced degradation
of IκB-α by inhibiting its phosphorylation (Figure 7). Therefore, our results suggest that
IDA suppresses the expression of NF-κB pathway-related inflammatory factors.
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Turkey’s post hoc test. ** p < 0.01. ns; not significant.
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factor kappa-light-chain-enhancer of activated B cells (NF-κB)-p65, (b) nuclear factor of kappa light
polypeptide gene enhancer in B-cells’ inhibitor, alpha (IκB-α), and p-IκB-α in macrophages. Cells
were pretreated with IDA (6.25 or 12.5 µM) for 3 h and then stimulated with 100 ng/mL of LPS for
another 2 h. Western blot results are from duplicate independent experiments. The results in the
graphs are presented as the mean ± standard error from triplicate measurements. * p < 0.05 and
** p < 0.01 indicate significant differences vs. the LPS-only group. ## p < 0.01 indicates significant
difference vs. Normal group. Dexamethasone (Dex); positive control.
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4. Discussion

Chalcone, an α,β-unsaturated ketone, is part of the flavonoid family. Chalcones are
widely present in plants and exhibit biological activity. Therefore, studies on the efficacy of
naturally present and synthetically produced chalcones have recently been conducted. To
investigate the anti-inflammatory effects of IDA, a chalcone present in the dried seeds of PC,
we examined the expression of inflammatory mediators and proinflammatory cytokines
within its non-cytotoxic range. Additionally, RT-qPCR and Western blot analyses were
performed to confirm the mechanisms involved in the expression of inflammatory factors.

Macrophages play an important role in both active and passive immune responses
and regulate various inflammatory mediators (including NO and PGE2) and proinflam-
matory cytokines (such as TNF-α, IL-6, and IL-1β) [40,41]. NO plays an important role in
killing bacteria and eliminating tumors; however, excessive NO production induces an
abnormal inflammatory response and causes inflammatory diseases [7]. In addition, PGE2
is generally known as a mediator that induces inflammatory activity through vasodilation,
as well as the activation of neutrophils, macrophages, and mast cells in the early stages of
inflammation [13]. A recent study showed that treatment with dimethylamino-chalcone in-
hibited NO production in LPS-induced RAW 264.7 macrophages. In another study, NO and
PGE2 production was inhibited in these cells through treatment with 2,4,6-trimethoxy-20-
trifluoromethylchalcone, a trimethoxy chalcone derivative [42–44]. Therefore, we examined
the effects of IDA on NO and PGE2 production and found that IDA treatment inhibited
LPS-induced NO and PGE2 production in RAW 264.7 cells without cytotoxicity (Figure 1).
iNOS expression is induced by proinflammatory and carcinogenic factors, leading to the
production of excess NO. In addition, COX-2 is induced by inflammatory factors, oxida-
tive stress, and cytokines, unlike COX-1, which is constantly expressed in tissues and is
known to be involved in PG production [8–14]. The natural chalcones, Xanthohumol and
dihydroxanthohumol, which are isolated from Humulus lupulus L., downregulated NO
production by suppressing LPS-induced iNOS in murine macrophages [45]. In addition,
methoxypenyl- and coumarin-based chalcone derivatives have an anti-inflammatory effect
by inhibiting iNOS and COX-2 expression in LPS-induced macrophages [46]. Therefore, we
used RT-qPCR to determine whether IDA affected iNOS and COX-2 mRNA expression. The
results showed that IDA treatment decreased NO and PGE2 production by downregulating
iNOS and COX-2 expression (Figure 2). Taken together, these results suggest that IDA
reduces the production of NO and PGE2 by downregulating iNOS and COX-2 mRNA
expression, respectively.

During an inflammatory response, macrophages induce the expression of proinflam-
matory cytokines, such as TNF-α, IL-6, and IL-1β, to promote the expression of other
inflammatory factors and recruit immune-related cells to the inflamed tissue, eventually
promoting the inflammatory response [47]. According to Kim et al., trans-1,3-diphenyl-2,3-
epoxypropane-1-one, a chalcone derivative, contributes to the attenuation of the inflam-
matory response by significantly reducing the secretion of proinflammatory cytokines in
LPS-induced RAW 264.7 macrophages [48]. Our results also consistently showed that IDA
significantly reduced LPS-induced TNF-α production at 12.5 µM, whereas IL-6 and IL-1β
production was significantly inhibited at all treatment concentrations. Therefore, these
results suggest that IDA suppresses the inflammatory response by inhibiting proinflamma-
tory cytokine expression.

Signaling pathways involved in various biological responses, including MAPK and
NF-κB, play an important role in the inflammatory response, and the regulation of their
phosphorylation is closely related to their anti-inflammatory effect [49]. The MAPK path-
way, which is composed of three types of kinase (ERK, JNK, p38 kinase), transmits stimuli
(e.g., cytokines and reactive oxygen species) from the cell membrane to the nucleus and
induces the synthesis of inflammatory factors [50]. Particularly, the phosphorylation of JNK
forms the AP-1 transcription factor, which translocates to the nucleus and is involved in the
transcription of NF-κB [51]. NF-κB is a transcription factor directly involved in the expres-
sion of inflammatory response factors, which is usually present in the cytoplasm in an inac-
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tive state, bound to IκB. However, when the IKK complex is activated by LPS stimulation,
IKK phosphorylates IκB, freeing NF-κB and allowing it to translocate to the nucleus, where
it initiates gene transcription. Therefore, it promotes the inflammatory response by increas-
ing the expression of inflammatory factors [18,52]. Recent studies have reported that several
chalcones, namely, 2′-hydroxychalcone, 2′,4-dihydroxy-6′-isopentyloxychalcone, YJI-7, and
2′,4-Dihydroxy-3′,4′,6′-trimethoxychalcone, have inhibitory effects on the inflammatory
response by downregulating the MAPK and NF-κB signaling pathways [53–56]. Our West-
ern blot results indicate that IDA treatment inhibits JNK phosphorylation (Figure 4), but
not that of ERK or p38 (data not shown). An examination of the effect of IDA on the
NF-κB pathway revealed that p65 expression was upregulated and downregulated in the
cytoplasm and the nucleus after LPS treatment, respectively. In addition, p65 phosphory-
lation was increased; however, this was inhibited in cells treated with IDA. Furthermore,
IDA significantly protected IκB-α against degradation by inhibiting its phosphorylation,
confirming its effect on IκB-α. These results suggest that IDA downregulates the NF-κB
signaling pathway by preventing the phosphorylation and degradation of IκB-α and the
resulting NF-κB translocation to the nucleus. Based on these mechanistic studies, IDA
suppresses the expression of inflammatory mediators and pro-inflammatory cytokines by
downregulating the JNK MAPK/NF-κB signaling pathways.

In conclusion, this study is the first to investigate the anti-inflammatory activity of IDA,
one of the main constituents of PC, in vitro. IDA was shown to have anti-inflammatory
effects in macrophages by suppressing inflammatory factor expression via the inhibition of
JNK and IκB-α phosphorylation in the MAPK and NF-κB signaling pathways, respectively.
These results suggest that IDA has the potential for attenuating inflammation; however,
in vivo studies are necessary to evaluate its safety and efficacy in detail.
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