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Abstract: The automated fault detection and diagnostics (AFDD) of heating, ventilation, and air
conditioning (HVAC) using data mining and machine learning models have recently received
substantial attention from researchers and practitioners. Various models have been developed over
the years for AFDD of complete HVAC or its sub-systems. However, HVAC complexities, which
partly have roots in its close coupling nature and interrelated dependencies, mean that understanding
the relationship between faults and the suitability of the techniques remains an unanswered question.
The literature analysis and interactive visualization of the data collected from the past implementation
of AFDD models can provide useful insight to further explore this question by applying artificial
intelligence (AI). Association rule mining (ARM) is deployed by this paper, using the frequent pattern
(FP) growth algorithm to generate frequent fault sets for most common HVAC faults from the body
of AFDD models developed in the literature to represent the status quo. A new model is developed
for common HVAC faults and the techniques most frequently used to detect and diagnose them. A
recommender system is developed using the ARM model to extract knowledge from the body of
knowledge of HVAC data-driven AFDD in the form of rule-sets that reflect the associations. Findings
of this review paper can significantly help civil and building engineers, as well as facility managers,
in better management of building HVAC systems.

Keywords: data mining; AFDD; HVAC; machine learning; association rule mining; FP-Growth

1. Introduction

The heating, ventilation, air conditioning (HVAC), and refrigeration systems are
arguably use up the most energy out of all a building’s physical assets. HVAC/R systems
regulate the temperature, humidity, quality, and air movement in buildings, making them
critical for occupant comfort, health, and productivity. In Canadian commercial stores,
HVAC and lighting combined contribute to 90% of energy consumption [1]. In 2011, heating
systems, particularly furnaces (57%), followed by electric baseboards (27%) and boilers
(5%), were the primary type of heating system used by Canadian households [2]. This
energy consumption indicates the dependency of Canadian households and commercial
buildings on the HVAC system, and hence emphasizes the importance of timely and
accurate identification of its faults.

Performance in HVAC systems and sub-systems are negatively affected by system
degradation, operational misuse, reduced maintenance, and sensor issues [3,4]. Many
HVAC faults that require repair or immediate attention go unnoticed and cause progressive
damages. The most common components where faults occur are the damper, fan, filter,
and other parts such as sensors [5]. Furthermore, faults in HVAC systems affect the
HVAC’s energy consumption. For example, when refrigerant charge is less than 25% of
the design value, it can reduce the energy efficiency by 15%. Moreover, 20% capacity
loss is also reported in such situations [6]. The reasons mentioned above can lead to
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increased energy usage in addition to user discomfort, shorter equipment life, and less
reliability [4]. Malfunctioning sensors, components, and control systems and degrading
systems in HVAC and lighting systems are the main reasons for energy wastage and an
unsatisfactory indoor environment [7].

Fault detection and diagnostics of the HVAC system allow the asset manager to isolate
and locate the faults in a timely manner. Current advancements in the Internet of Things
(IoT) have led to the application of big data for creating automated fault detection and diag-
nostic (AFDD) models, which can be developed using machine learning (ML) techniques.
The sensory data available in building automation systems (BAS) and building manage-
ment systems (BMS) are used to detect the HVAC’s faults and perform diagnostics. In asset
management of buildings, energy management and maintenance models differ in scope
and structure. While models for energy management describe continuous states (energy,
temperature, etc.) and usually assume the HVAC to be in a healthy condition, the models
used for maintenance do not consider human factors such as comfort and only describe
discrete states, such as faulty/non-faulty states of equipment and fault typology [8].

HVAC faults can be categorized in at least three ways. The first is based on the ‘cause
of the fault’. A fault can have a natural cause or be human-made. The second classification
is according to the ‘fault’s extent’, which categorizes a fault into soft fault and sudden
fault, also known as hard fault [9,10]. Hard faults can cause a system to stop working. A
soft fault, however, causes performance degradation [11]. ‘Sensor faults’ are inevitable in
HVAC [12] and have been subject to extensive research. Hence, they are considered the
third category consisting of component faults such as actuators, sensors, and feedback
controllers sensor fault [9,13]. Sensor faults can be further classified into bias, drifting,
precision degradation, and complete failure [14].

Generally, the AFDD procedure (also referred to as data-driven FDD) for HVAC can
be considered a multi-class classification problem. It uses/identifies relationships between
data patterns (usually collected from BAS or BMS) and fault classes in the modeling
process [9]. Fault detection can be defined as the process in which faulty operation is
identified and classified from normal operations. Fault detection consists of two steps:
(i) training and (ii) fault detection, also known as deployment. On the other hand, fault
diagnosis is the process that looks for the causality of the identified fault. Fault detection
can be performed independently, but generally, fault diagnosis is followed after a fault
detection step [15]. FDD techniques can help detect and locate the HVAC system faults
and mainly depend on having an accurate reference model and a sensitive fault detection
and identification method [16].

AFDD can be performed in both offline and online manners. Offline AFDD needs a
large amount of historical data and usually yields high accuracy rates due to the possibility
of sufficient training. However, in online AFDD, the aim is to find new faults without
necessarily being trained on the faulty sample [17]. Both offline and online AFDD widely
take advantage of machine learning in supervised and unsupervised learning formats
(usually respectively). In supervised learning-based techniques, online fault detection is
made possible by offline training and online fault detection. Both methods can be used
for fault detection purposes, as faults can be considered outliers or novelties. Unsuper-
vised methods are particularly suitable for imbalanced datasets and when labeled data
are unavailable [18].

While there has been a rich body of knowledge on the applications of ML in AFDD,
the studies to date have not investigated the status quo of the relationships between fault
classes and/or between the detection and diagnostics techniques used to identify them in
the literature. The occurrence of one or more faults in an HVAC system can be associated
with the appearance of other faults in the system. Revealing such interrelationships
among faults can allow the asset managers to expect the event of the occurrence of one
or more faults together to anticipate other associated faults. Additionally, certain AFDD
algorithms are used in the literature to detect specific fault types in particular HVAC
systems. Providing a comprehensive overview of this relationship among fault types and
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detection methods can allow the asset managers to better select proper algorithms(s) to
identify faults of interest. Accordingly, this paper implements a comprehensive analysis
of the AFDD models, reported to date for HVAC asset management and maintenance. It
analyses associations between the most common HVAC fault types and then scrutinizes the
affinity between AFDD techniques and the fault types they identify/diagnose, as per the
best practices from the literature. The latter will facilitate a more in-depth understanding
of relationships between the fault types and the suitability of the AFDD techniques.

In the upcoming sections of this paper, a holistic review of FDD and, in particular, data-
driven FDD models is performed. Further, the applicable machine learning FDD algorithms
utilized by the literature are reviewed, followed by the methodology implemented in this
study to allow literature analysis and visualization of data to create a recommender system
for the database under investigation and its validation process.

2. Literature Review

At a holistic level, HVAC can be studied at a system or local level [19]. Local-level
classification can be divided into (i) sub-system level and (ii) equipment/component
level [20], which we refer to as ‘HVAC levels’ in this paper. The full HVAC system consists
of the sub-systems and/or components coupled together. In the past two decades, fault
detection has been mainly applied to the HVAC at the sub-system level, and very few
researchers have looked at detecting faults at the whole building level [7]. Hereafter in
this paper, we use the term HVAC system in a general sense, by which we also refer to
sub-systems and pieces of equipment in HVAC. System-level faults refer to the occurrence
of a fault in one sub-system or equipment and its consequence at the system level [7].

Previous literature reviews in the domain of FDD have focused on overall FDD
modeling methods [21–25] or data-driven methods [26]. Another group of review studies
focuses on a specific step of the procedure, such as algorithms [27] or fault types [28].
However, the current paper is different in the way that it analyzes the models developed in
the literature by looking at the features used, fault types identified, corresponding HVAC
systems, and algorithms used for data-driven FDD models. Through an affinity analysis
of these studies, we extract knowledge in the form of association rules and deploy them
in the form of a recommender system. The scope of this study and the recommender
system is mainly commercial buildings since the majority of AFDD models developed in
the literature have been of this type.

2.1. FDD Approaches and Techniques

Fault detection generally refers to the process that discovers any faulty operation and
separates it from normal operations, and fault diagnosis refers to identifying the cause of
the faulty operation [15]. For, e.g., a chiller, examples of system-level faults are refrigerant
leak/undercharge, refrigerant overcharge, and excess oil. Sub-system-level faults can be
condenser fouling, reduced condenser water flow, and non-condensable in refrigerant and
reduced evaporator water flow [15]. While these are only some examples, a more complete
list of the faults can be seen in Table 1. An accurate model and an appropriate threshold
acre the critical factors in fault detection [3]. Common classifications of AFDD models
found in the literature are shown in Figure 1 and introduced in the following paragraphs.

One classification for AFDD methods is the top-down versus bottom-up approach.
The top-down approach detects faults that manifest themselves at the whole building level,
whereas the bottom-up approach focuses on the component or sub-system level. In both
approaches, models of ideal operation conditions are compared with actual measurements
to detect faulty or abnormal behavior [29]. Whole-building fault detection usually makes
use of a top-down fault detection strategy [7]; the top-down approach is comparatively
more difficult than the bottom-up. In the top-down approach, further analysis is required
to locate faults because of the system-level effect that causes the faults’ symptoms to spread
across the system [15,30].
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Table 1. Category of faults identified for data-driven techniques.

Rank Fault Category Count

1 Limit issue 68
2 Stuck/Partially closed 67
3 Flow problems 54
4 Bias/Drift/Calibration 49
5 Leakage 41
6 Foul 38
7 Other faults 20
8 Non-functioning 20
9 Non-condensable 18
10 Control 18
11 Temperature issue 12
12 Speed 12
13 Set point 8
14 Performance 8
15 Capacity reduction 5
16 Blockage 4
17 Schedule 3
18 Sizing issue 3
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Based on ASHRAE’s recommendations [31] as found in [32], the two main modeling
methods are the forward (classical) approach and the data-driven (inverse) approach. The
forward approach is known as white box/engineering methods. Forward approaches
usually require detailed knowledge of various system processes and interactions. Most
simulation software tools use such approaches. The data-driven and model-based classifi-
cations have been found to be the most common FDD classification approaches [33–36],
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which have also been referred to as model-free methods and model-based methods [37] in
the literature.

The other common classification found in the literature categorizes the AFDD tech-
niques into model-based methods, rule-based methods, and data-driven methods [5,38].
The data-driven methods are also called process history-based [30,39]. In some cases,
knowledge-based is also included in data-driven models [34]. Further, model-based clas-
sification is also referred to as quantitative [39,40]. The other classifications found are
analytical model-based, signal-based, and data-driven methods [11]. On the other hand,
the data-driven models are classified by ASHRAE to calibrated simulation models, grey-
box models, and black-box models/empirical approaches. In simple terms, calibrated
simulation is similar to forward approaches and requires detailed knowledge of the system
and processes, but black-box models are data-driven and use statistical or artificial intelli-
gence approaches to develop models. Grey-box models, on the other hand, are formulated
using training data and physical principles [32].

Another classification of AFDD techniques considers the nature of the data analysis
model used and provides two categories of multivariate statistical analysis and artificial
intelligence (AI) methods. While principal component analysis (PCA) is the classical
example of multivariate statistical analysis, artificial neural network (ANN) is a typical
example of AI-based methods [41].

In summary, the above classifications show how terminology tends to vary among
researchers and practitioners. Care should be taken as previous studies have used more
than one classification scheme for the available methods. There exists no hard classification,
and several AFDD models might lie in an intersection of various classes. Hence, the
modeling approaches are not necessarily mutually exclusive and often can be a combination
of one or more methods. The present study is dedicated to knowledge discovery from data-
driven methods, i.e., bottom-up approaches and algorithms used by them. In the process
of selecting relevant studies, we used ASHRAE’s recommendations [31] to verify whether
a model is data-driven. This was to overcome the literature discrepancies regarding the
classification and categories of FDD methods.

2.2. Data-Driven FDD Algorithms Based on Machine Learning Approach

The AFDD techniques reviewed in the literature are broadly grouped and categorized
into supervised and unsupervised learning. This study also covers more general algorithms,
such as Bayesian network (BN) and ARM algorithms, which may not traditionally fit in
any of these two broad categories. Most of the reviewed studies implementing AFDD are
supervised methods and treat the FDD as essentially a classification problem. Unsupervised
methods are mainly adopted in the pre-processing phase or are used for fault detection
through clustering.

Figure 2 shows the machine learning algorithms for FDD based on learning type.
SVM (support vector machine), decision tree, and regression methods are grouped into
supervised, and dimensionality reduction techniques, instance-based classification and
clustering belong to the unsupervised category. However, ANN/deep learning, ensemble
learning, Bayesian networks, and ARM in the literature have used both supervised and
unsupervised methods. Bayesian methods are used where event information is required
to be included in the models. The events describe the states of discrete or continuous
variables, such as a room being occupied or not by its occupants or considering the HVAC
operation schedule, respectively. In hybrid methods, the machine learning approach for
fault detection and diagnostics are different from one another. The algorithms are defined
as they have appeared in the literature and are explained below.

AFDD, based on supervised learning, approaches the problem as a classification
task. SVM is the most common FDD method of this type, used at the sub-system level.
It is used for binary classification problems to separate faulty from normal data. This
method finds a hyperplane in the high-dimensional feature space to separate the two types
of data. The other variant, multi-class SVM, is used when more than two fault classes
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exist [42]. Regression methods used in the AFDD literature for HVAC are commonly used
in combination with other modeling techniques for fault detection purposes. Regression
is often coupled with other methods and uses thresholds to determine faults in HVAC.
Instance-based classification compares new problem instances with instances seen in the
training set. K-nearest neighbor (k-NN) is a typical example of an instance-based classifier.
Instance-based classification is the least-used method in the literature and has been used to
identify a single type of fault or binary faults in the HVAC system.
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Unsupervised learning, including dimensionality reduction, instance-based classifica-
tion, and clustering, are used when the classes of faults are not known. Dimensionality
reduction methods such as PCA, Fisher discriminant analysis (FDA), and linear discrimi-
nant analysis (LDA) are used in this category. In PCA, which is the most commonly used
unsupervised learning method, raw data are decomposed into two subspaces: the principal
component subspace and residual subspace. The principal component data capture the
main normal statistical correlations, and the residual data quantify the main variances to
detect faults [36]. In clustering, two or more clusters are identified that separate normal
from faulty data.

While most applications of the deep learning methods in the energy field are in load
and power prediction, ANN/DL (deep learning) has also been extensively used for FDD
of HVAC. On the other hand, ensemble methods utilize multiple learning algorithms to
achieve better predictive performance than the same algorithms separately. Most of the
algorithms in ensemble learning can be considered weak learners. Therefore, ensemble
learning integrates multiple weak learners to create an improved FDD method.

Bayesian networks (BN) use graph theory and probability theory to perform data
analysis and are preferred for their reasoning ability. In the reviewed literature, it was
evident that BN is mostly used in system-level studies to detect and diagnose HVAC faults
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and support literature analysis results found for the type of HVAC used [43]. BN’s distinct
advantage is the ability to identify the causes and sort them from the most to the least
probable, which can be used to prioritize inspection and maintenance [39]. Association
rule mining (ARM) intends to identify a set of latent associations among attributes of a
dataset and express them in the form of if-then rules. Both unsupervised algorithms and
supervised learning algorithms are used in the literature for this purpose.

Last but not least, there are studies in the literature which utilize different machine
learning algorithms rather for detection than the diagnosis of faults, where for fault detec-
tion, the algorithm can be either supervised or unsupervised, and for fault diagnosis, it can
utilize the same or a different algorithm which can be either supervised or unsupervised.
In the present paper, we classify such studies as ‘hybrid methods’. It is worth mentioning
that in the AFDD literature, the term hybrid is used for a variety of purposes, such as for
the algorithms combining both supervised and unsupervised learning [26] and must not
be confused with what are referred to as hybrid methods in this paper.

3. Methodology of the Study

The high-level methodology of this study is as illustrated in Figure 3 and consists of a
systematic approach for collection, analysis and synthesis of academic studies related to
AFDD. The scoped literature included ‘data-driven’ studies (as defined earlier) between
the years 2015 and 2021. Major knowledge repositories, including Scopus, Web of Science,
and Google scholar were targeted for data collection. The criteria for initial screening of
studies to be included in the analysis were to have indicated (i) a complete list of features
being used, (ii) the faults being considered, and (iii) data-driven fault detection or both
fault detection and diagnostics techniques being developed. Focusing on both features
and analysis methods is instrumental for this research, since the aim is to provide the big
picture of data requirements and analysis for AFDD of the HVAC systems.
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A total of 109 papers were initially collected. Further, these studies were reviewed,
and the papers offering a complete FD (fault detection) model or FDD model were targeted.
Accordingly, a total of 82 studies were selected for analysis, which is listed in Table A1 in the
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Appendix A section of this paper. The machine learning algorithms used in pre-processing
and post-processing stages were excluded, and only those data-driven techniques that
have application during the fault detection and diagnosis of HVAC were considered. Other
supplementary information collected from each study includes the HVAC type, source of
data for the AFDD process, and the data collection frequency. The sources of data include
both synthetic and real data.

Initially, the features and faults are gathered for the respective HVAC systems inves-
tigated, and further, the analysis outcomes are visualized in the form of an interactive
Sankey diagram. Further, two separate models are trained to extract knowledge in the
form of association rules. The first model is developed specifically for common HVAC
faults reported in the literature. The second model includes the common HVAC faults
and the data-driven techniques used to detect them. The unsupervised machine learning
technique, association rule mining, is adopted through the Frequent Pattern (FP)-Growth
algorithm to find the frequent itemsets and associations among them. Finally, the rules
derived are validated using experts’ opinions through an online survey questionnaire.

4. Data Analysis and Knowledge Discovery for HVAC System AFDD

In the data analysis stage of this study, firstly, the inputs used for AFDD of building
HVAC were investigated and analyzed to understand the importance of various features in
fault detection. Then, the common faults associated with these features were investigated
and classified in accordance with the different HVAC levels (i.e., system, sub-system, and
component/equipment) that they correspond to. Furthermore, different algorithms used
for identifying and diagnosing the faults were studied and categorized within the big
picture of the current state of practice in AFDD. Finally, knowledge was extracted by imple-
menting and developing machine learning-based models that could indicate associations
among HVAC faults and detection/diagnosis methods reported in the literature.

4.1. Feature Analysis

Figure 4 summarizes the features used in the analyzed literature for AFDD. They are
ranked based on their frequency of use in the HVAC FDD models reported in the literature.
It is evident that ‘temperature’ is the single most crucial feature used for AFDD, as its
application also extends to the second most frequently used feature, i.e., the ‘calculated
measure’. This feature commonly uses arithmetic operations such as subtraction and
often uses features such as ‘temperature’ or ‘pressure’ as the calculation component; for
example, the calculated measure is used to show the temperature difference between the
supply and return air or pressure difference between the entrance and the exit (inlet and
outlet) to indicate pressure drop or increase. Other frequently used parameters include the
‘pressure’ and ‘flow rate’. State-representative information and energy-related parameters
such as ‘Opening/position’, which represents physical characteristics such as position or
percentage of a valve being open or closed, and ‘Load’ and ‘Energy’ categories are among
other attributes frequently used by AFDD models.

4.2. Fault Analysis

Before initiating the AFDD analysis, it is essential to identify the fault types. Several
fault classification systems exist in the literature, such as [10,44–46]; however, they cannot
be used in this study. Some classifications are specific to a particular sub-system, such as
chillers [10], or, if they cover the whole HVAC system [44–46], they are too detailed and
elaborate and cannot support the abstraction required for rule mining. Accordingly, in
this study, eighteen (18) fault categories were created and introduced to solely organize,
categorize and analyze more than 400 faults reported in the literature investigated for
HVAC’s most common faults detected using data-driven methods in this paper. It must
be noticed that the categories shown in Table 1 are not meant to provide a comprehensive
classification of all fault types. The faults considered apply to the HVAC system, sub-
system, and/or components. The faults are categorized based on the following procedure.
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The categories are created using a hypernym keyword. The faults are hyponym and belong
to only one of the eighteen hypernyms created. Then, logical reasoning is performed to
assign each fault to the category that it best represents. In cases where a hyponym consists
of more than one word in its description, the first word will be selected, and the assignment
is carried out based on that word. For example, for the fault type referred to as ‘control
unstable’, the term ‘control’ is considered the primary word, and ‘unstable’ is a condition
associated with controlling. Hence, the fault is assigned to the ‘control’ category. The only
exception applies to faults that include bias/drift. In particular, for sensor faults, we skip
the sensor type, even if it is the first word of the fault description, and look at the following
term in the description.
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The categories of the faults are sorted in Table 1 in descending order of occurrence
frequency in our database. The ‘Limit issue’, which is the dominant category, comprises
faults related to over/undercharge, excess oil, or reduced evaporator. The second cate-
gory, ‘stuck/partially closed’, includes faults such as exhausted air, damper stuck (fully
open), or cooling coil valve partially closed (15% open). The other categories’ names
such as ‘temperature issue’, ’blockage’, ’speed’, and ‘non-functioning’ are self-explanatory.
‘Flow problems’ and sensor-related faults, which are categorized as ‘bias/drift/calibration’
alongside ‘leakage’ and ‘foul’-related faults, comprise the top six frequent categories of
HVAC faults. The ‘other faults’ comprises of different types of faults that did not form
a category due to limited appearance in the database. The fault categories such as ‘set
point’ and ‘non-condensable’ belong to a particular type of fault, and on the other hand,
fault categories such as ‘control’ and ‘performance’ belong to a more diverse pool of faults
pertaining to their respective categories. It is evident that most studies have relied purely
on sensory data and very few categories with a small occurrence in our database represent
faults that may be detected given static information such as ‘schedule’ and ‘sizing issue’,
which are categories with the lowest counts in the table.

4.3. Analysis of Data-Driven FDD Algorithms

The AFDD algorithms utilized by the studies are as shown in Figure 5, along with
their frequency of occurrence in our database. It has to be noted that this distribution is
only reflective of ML-based models reported by the selected papers, and a large majority of



CivilEng 2021, 2 995

other types of algorithms (e.g., rule-based expert systems that are common in commercial
settings) are outside the scope, and hence are absent from the picture. The most commonly
adopted data-driven algorithms used for FDD are SVM, neural networks/deep learning
and dimensionality reduction techniques. On the other hand, algorithms such as regression,
clustering, instance-based classification, and ensemble learning methods are the least-
utilized algorithms for FD/FDD of HVAC systems. One possible explanation of the lesser
extent of adoption of other FDD algorithms can be that presently most researchers consider
FDD of HVAC a classification problem, and hence lesser research is invested in exploring
other methods.
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4.4. Analysis of HVAC’s Most Common Faults Detected through AFDD

Data collected for each category (features, faults, and FDD Techniques) were initially
analyzed separately to determine the current status of the AFDD for different HVAC
levels. The Sankey diagram shown in Figure 6 depicts the relationship between HVAC
levels, FDD techniques, and the faults associated with them. An online version of the
diagram is available in [47] and can be used interactively to precisely show the weight
of each node. Weights are representative of the count for the specific node (i.e., the
number of times they have appeared in our database). As seen from the Sankey diagram,
while the majority of the present works are focused on the sub-system level, the HVAC
system, the device, component, or part levels are least investigated. Hence, more studies
are needed to understand the effectiveness of AFDD at a component level. The recent
trends of studies indicate algorithms such as SVM and ANN have been used more than
other methods, including dimensionality reduction techniques such as PCA [27]. SVM
is almost exclusively adopted for sub-system HVAC fault detection, whereas ANN and
dimensionality reduction methods are split equally for HVAC system and sub-system FDD.
On the other hand, Bayesian networks and decision trees have mostly been utilized at the
whole system level.
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Certain methods are utilized more often for specific fault types. For example, from a
total of 68 ‘limit issue’ faults found in the literature, SVM (18 times), ANN (13), Bayesian
networks (11), and ARM (11 times) have been used frequently to detect this type of
fault. Nevertheless, for faults such as ‘stuck/partially closed’ and ‘flow problems’, neural
networks and deep learning appear to be the most utilized methods. On the other hand, the
clustering method has been mostly used for sensor-related faults such as ‘bias/drift’ and
less frequently for ’non-functioning’ and never been used for ‘limit issue’ faults. The other
approach for analyzing FDD techniques is to assess each method for the faults detected
individually. It can be seen that Bayesian networks, hybrid methods, and ARM methods
appear to be able to detect all of the six most common faults in the HVAC even though
these methods are comparatively used to a lesser extent.
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4.5. Knowledge Discovery through Machine Learning

In order to understand the latent relationships and associations between the common
HVAC faults and/or AFDD techniques, association rule mining (ARM) has been used.
ARM is an unsupervised machine learning procedure in which the aim is to observe the
frequently occurring patterns, correlations, and associations in a dataset. Association
mining is performed in two steps. The first step is to generate ’frequent itemsets’. The
second is generating rules, where rules are generated and filtered based on set constraints.
Two models were trained in this study: one for detecting affinity between various fault
types and a second model to investigate the association between the FDD techniques and
the HVAC’s most common faults.

The FP-growth algorithm is an improved affinity analysis algorithm, in which the
number of scans of the database is reduced to find the frequent itemsets [48]. In this study,
FP-growth was implemented in the model to generate frequent itemsets of fault types
and then extract relationships of a high level of support and confidence as rules. The rules
take the form of a ‘premise’, followed by a ‘conclusion’. The metrics considered in the
model development are support and confidence, where confidence is used as a measure of
the strength of the rule and support correlates to statistical significance. The equation for
support of a rule and confidence of a rule are as shown below:

Rule : (X → Y) (1)

Support(X → Y) = Pr(X, Y) =
n(X, Y)

N
(2)

Confidence(X → Y) = Pr(Y|X) =
Pr(X, Y)

Pr(X)
(3)

where X and Y are independent items or itemsets, n is the relative frequency of occurrence
and N is the total transaction numbers.

Minimum support and minimum confidence are needed to eliminate the unimportant
association rules [48,49]. Syntactic constraints were enforced for the second model to add
restrictions on items that can be included in the rule. The developed model using Python
and the dataset used for the analysis can be accessed online through Github (please see the
‘data availability statement’ at the end of the paper).

4.5.1. Model 1: Common HVAC Faults

The frequent itemsets are created using the FP-growth algorithm, which has been
assigned minimum support of 20% for the frequent itemsets and minimum confidence of
70% for detecting the association rules. By applying these criteria, five frequent fault types
and 13 rules are identified through the FP-growth algorithm as shown in Figure 7. On
the left-hand side of each rule are the premises and, on the right, after, the arrow is the
conclusion. For example, rule #5 indicates that “if ‘limit issue’ fault and ‘foul’ fault are found
simultaneously in the HVAC system for the designed FDD algorithm found in the literature, then
it is likely that the system is also designed to detect ‘flow problem’-related issues”, with 77.3%
confidence. The rules mined have either one or two fault categories in their premises. In
seven of the rules that have one fault category in their premises, rule #9 and rule #10 have
equal support of 22%, and confidence of 100%, which indicates “if ‘non-condensables’ fault
occurs then there are equal chances that ‘foul’ and ‘flow problems’ related issues can be existing
separately” or as per rule #11 the ’foul’ and ’flow problems’ can appear simultaneously. The
first rule mined indicates that when ‘flow problems’ are found using the particular FDD
algorithm, then it is likely that the FDD algorithm can detect ‘leakage’ in the HVAC system
considered, which shows the correlation among these two fault categories in the database
recorded. The other six rules mined show how the faults in the HVAC can be interrelated
as they have two premises. Rules #12 and #13 have the highest confidence and represent
how different combinations of fault in their premises and respective conclusion can be
indicative of the correlation between ‘foul’, ’non-condensable’, and ‘flow problems’ fault
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categories in the given database. Model 1′s mined rules only indicate correlations found
in the database for the select FDD algorithms specifically designed to detect the faults
investigated and cannot be used to investigate causality or indicate that FDD algorithms
were designed to detect faults simultaneously.
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4.5.2. Model 2: Common Data-Driven Techniques for Detecting Each HVAC Fault Type

A second ARM model is developed for faults and FDD techniques found in the
literature to determine the association between the faults and the methods used to detect
and diagnose HVAC faults. The accuracy and performance of the FDD methods are not
considered, and only their quantitative adoption in the literature is considered as a measure
for the effectiveness of an FDD algorithm for detecting certain fault types. The support for
FDD techniques was determined and selected to understand how frequently the items for
the methods under investigation appear in the dataset.

The followings are the frequency of occurrence, i.e., the support, of different analysis
methods in our database: 20% for SVM, 19% for ANN and 17% for dimensionality reduction
techniques, and 11% for Bayesian networks. A minimum support of 2% and minimum
confidence of 50% were selected for model 2, which is appropriate when compared to the
highest support (20%) found, which is indicative of a limited number of algorithms in our
database. Setting lower thresholds for the second model leads to the generation of a large
number of rules that need syntactic constraints to prune and only show the associated
faults and methods. The rules found for 100% confidence are removed at the 2% support,
as this was considered an indicator of the availability of a few examples, and hence may
not represent useful rules. We further limited the rules to those with a single item in their
conclusion, which should belong to one of the FDD techniques.
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A total of 16,703 rules were mined before being pruned (an excerpt of which is shown
in Figure 8). Four methods, namely SVM, ANN, dimensionality reduction, and decision
tree (with a confidence of 50%, 67%, 50%, and 67%, respectively) resulted in forming 12 rules
where eight rules belong to SVM; two rules were found for ANN, and dimensionality
reduction and decision tree have one rule each. Other than rule #9, which belongs to ANN,
all rules have more than one item in their premises.
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used for different HVAC fault types (minimum support = 2%).

At 50% confidence, the rules consist of the following fault categories, namely ‘leakage’,
‘control’, ‘stuck/partially closed’, and ‘speed’, which when combined form rule #9. The
initial four rules have two premises made up from the combination of these fault categories,
and rules #6 and #7 have three fault categories in their premises which are detected using
the SVM algorithm. The ANN algorithms are found to be utilized for diagnosing the ‘set
point’ faults or a combination of sensor-related issues and the ‘control’ category of faults.
Rule #11 indicates the applicability of dimensionality reduction techniques when ‘Foul’
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or ‘other faults’ are found together in our database. The decision tree technique, which
has the highest joint confidence of 67%, is used for detecting ‘non-functioning’ and ‘speed’
categories of faults. The findings of this study merely indicate how specific types of faults
are often addressed in the sampled research literature, using specific types of algorithms,
and they do not provide information on the actual co-occurrence of the faults in building
mechanical systems, nor on the performance of the data-driven algorithms with respect
to faults.

5. Validation and Discussion

The rules discovered through the first model, i.e., the association among HVAC’s most
common faults, were validated by taking experts’ opinions through structured surveys
and are validated in the context of the data gathered from the academic papers reviewed to
reflect experts’ opinions. For the second model, no survey was conducted since the results
represent the current state of application for AFDD literature considered in this study. The
rules are meant to help better understand the status quo and not necessarily represent best
practices. Further, the accuracy of the algorithms was set aside from the comparison due to
several reasons, such as comparison among the works based on algorithm performance
may not be a fair judgment due to the drastic changes among the contexts of problems
reported in the literature (e.g., the system level, fault type being detected, quantity and
quality of available data, etc.).Additionally, all studies have not reported their accuracy or
have not used the same performance measures.

The survey contained thirteen questions corresponding to the rules detected by the
first model. The correspondents were given the Likert scale anchors for the frequency
of use, i.e., ‘never’, ‘almost never’, ‘occasionally/sometimes’, ‘almost every time’, and
‘every time’. In addition to these, an ‘I do not know’ option was added to reduce the
uncertainty resulting from enforcing the respondents to answer all the questions in the
survey. The survey was made available to respondents with HVAC and FDD experience in
the industry or those with relevant research background expertise and was made available
for two months.

A total of 13 responses were recorded out of 117 circulated questionnaires (i.e., a
response rate of 11%). While the small number of participants may not allow for the
validation of results through a statistical analysis approach, here we provide a general
overview of the participating experts on the latent patterns detected from the analysis
of the literature. The survey results are shown in Figure 9; as can be seen, the scale
‘occasionally/sometimes’ is, in general, dominating. The criteria indicative of the accuracy
of rules is to have recorded a response to either of the following responses: ‘Almost every
time’ or ‘Every time’. The responses that receive ‘Never’, ‘Almost never’, or ‘I don’t know’
are considered not to be associated with actual rules based on expert opinion. However, the
experts’ ‘Occasionally/Sometimes’ response is neither an indicator for strong support or
rejection of survey questions, and can only suggest that the ARM supports the correlations
found in the investigated database.

Rules #5, #6, and #12 have the highest cumulative responses with above 30% of votes
in “Every time” and “Almost every time” categories of responses. For rule #5, when
‘limit issue’ and ‘foul’ issues are detected simultaneously by the FDD algorithm, it is
likely that the system has a ‘limit issue’-related problem. In rule #12, when ‘foul’ and
‘Non-condensables’ issues are found simultaneously, it is likely that the system has ‘flow
problems’-related problems. These three rules can be further investigated to understand if
they can be applied beyond the database under investigation. However, rule #7, i.e., “If the
‘foul’ and ‘f/low problems’ are detected in the HVAC system for the recorded faults associated with
the FDD algorithm being investigated, then the Non-Condensable fault in the system is also likely
to occur” is found to need further investigation as it has received the least support from
the experts.
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Figure 9. Diverging bar chart for the frequency of association among HVAC common faults. * Check Figure 7 for the rules.

A total of 25 rules are mined using the ARM models, which facilitates understanding
the relationship between the faults and the suitability of the techniques for FDD purposes.
The mined rules alongside the infographic presented in the form of the Sankey diagram
allow the asset managers to better comprehend the FDD procedure for different levels of
HVAC. In particular, the rules found in model 1, such as “When ‘foul’ and ‘non-condensables’
faults are found together, there is a high chance for ‘flow problem’ or When ‘flow problems’ and
‘non-condensable’ issues are found in an HVAC, then ‘foul’ fault will also occur” can be interpreted
as important rules, as the high confidence of 100% shows the significance of the mined rule,
and it is worthwhile to be further investigated when there are more data available.

Algorithms and faults at all three levels of HVAC were investigated. Our results
show that previous research endeavors have mostly been focused on the sub-system-level
FDD (as shown by the 56% share of this level from the whole studies reviewed) and
has often used the SVM, ANN, and dimensionality reduction techniques. The second
research area focuses on system-level FDD (taking a 40% share) where ANN, dimension-
ality reduction techniques, and Bayesian networks are the dominant algorithms. At the
component/device/part level, which covers only 4% of the studies, the SVM and ARM
methods are used; further data is needed to investigate the part and component-level FDD.

Additionally, model 2 provides four FDD algorithms and their associated faults in the
form of a set of rules that allows the asset managers to decide on the type of algorithm that
can be selected for AFDD of the HVAC system faults. For example, the SVM algorithm
is found to be effective in FDD when fault types belong to ‘leakage’, ‘stuck/partially
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closed’, and ‘control’ issues. It was found that some algorithms are used more often for
detecting particular faults. The algorithms that can be utilized for each category of the
top six common HVAC faults separately are shown in below Table 2 and are organized in
descending order.

Table 2. Recommend algorithms for an individual category of HVAC systems most common faults.

Fault Category Recommended Algorithms

Limit issue SVM–ANN-BN

Stuck/Partially closed ANN–SVM-DT

Flow problems ANN–SVM-BN

Bias/Drift/Calibration ANN-Dimensionality reduction methods-SVM

Leakage SVM–ANN-Dimensionality reduction methods

Foul SVM–ANN-Dimensionality reduction methods

6. Conclusions

In addition to data availability, understanding the association among faults (mani-
fested in the rules offered by this paper) and the suitability of data-driven algorithms to
detect and diagnose them is essential for AFDD. The knowledge extracted from the wealth
of reviewed machine learning techniques can aid in better comprehending the complexities
that exist in HVAC systems at various levels. The first model developed in this study
assists the asset managers/facility managers to better understand the associations among
faults and anticipation of other fault types that can be expected when certain faults are
identified in the HVAC system by the literature for the database considered. Moreover, the
association rules of the second model can be used to understand the status quo of FDD
algorithm adoption to assist asset managers to better train data-driven FDD systems using
the most suitable algorithms based on the fault(s) of importance.

This study contributes to the body of knowledge by exploring and analyzing the data
found in the literature to develop these two sets of rules based on the present status quo of
black-box models. The investigation of relationships between fault type co-occurrence, and
also associations among fault types and machine learning models used for data-driven FDD
can significantly help the implementation of AFDD in practice. Recommender systems can
be developed on the basis of the rules extracted and validated in this study to recommend
fault check and diagnosis techniques. Such a recommender system can facilitate realistic
anticipation of associated faults and provide support regarding the suitability of FDD
algorithms for a single fault or a combination of faults. In addition, the implementation
of such recommender systems can benefit both the building maintenance program and
energy consumption aspect of the facility management by identifying the likelihood of
occurrence of one or more fault(s) by the observation of other faults in the HVAC system.

Despite their capabilities, the currently available AFDD techniques less often make
use of any physical knowledge of the built facility and are mainly fed with features from
BMS/BAS. For example, due to the lack of knowledge of sensor locations, weather data,
and occupancy information, in many cases, it is difficult to effectively detect and diagnose
the cause of faults in HVAC systems. AFDD models can benefit from contextual and spatial
information from sources such as BIM to enhance the process of fault detection and diag-
nostics, fault propagation, and analysis in building HVAC systems at different levels. This
must be taken into closer consideration by future studies. Accordingly, the future work can
be divided into two streams: ones that can work on FDD models and improve the existing
challenges of FDD methods and create more accurate models with fewer false alarms. The
second direction is the analysis of the models developed using the same/different data
sources. Methods such as feature selection can be analyzed to understand the relationship
that may exist between them. All stated directions can be enhanced by adding contextual
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and spatial information, by improving the user’s understanding of the system and creating
more robust AFDD models.
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Appendix A

Table A1. List of the 82 studies considered for analysis.

No. Author(s) Title Year

1. K. Yan, J. Huang, W. Shen, and Z. Ji Unsupervised learning for fault detection and diagnosis of air
handling units 2020

2. K. Yan, A. Chong, and Y. Mo Generative adversarial network for fault detection diagnosis
of chillers 2020

3. A. Ranade, G. Provan, A. El-Din Mady, and
D. O’Sullivan

A computationally efficient method for fault diagnosis of fan-coil
unit terminals in building Heating Ventilation and Air
Conditioning systems

2020

4. S. Miyata, J. Lim, Y. Akashi, Y. Kuwahara,
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