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Abstract: The hazardous nature of the construction environment and current incident statistics indi-
cate a pressing need for safety performance improvement. One potential approach is the strategic
analysis of leading indicators for measuring safety performance as opposed to using only lagging
indicators, which has protractedly been the norm. This study presents a systematic safety perfor-
mance measurement framework and statistical modeling processes for analyzing safety incident data
for accident prediction and prevention on construction sites. Using safety incident data obtained
from a construction corporation that implements proactive safety management programs, statistical
modeling processes are utilized to identify variables with high correlations of events and incidents
that pose dangers to the safety and health of workers on construction sites. The findings of the study
generated insights into the different types and impacts of incident causal factors and precursors on in-
juries and accidents on construction sites. One of the key contributions of this study is the promotion
of proactive methods for improving safety performance on construction sites. The framework and
statistical models developed in this study can be used to collect and analyze safety data to provide
trends in safety performance, set improvement targets, and provide continuous feedback to enhance
safety performance on construction sites.

Keywords: analysis; construction safety performance; leading and lagging indicators; prediction;
safety incident data; statistical models

1. Introduction

The construction industry is one of the most hazardous industries worldwide in
which the highest rates of occupational injuries, illnesses, and fatalities are recorded when
compared with other industries [1–6]. Construction sites are characterized by rugged
environments, multiple resources, complex activities, and harsh working conditions that
endanger the safety and health of workers [3,7,8]. The safety and health of construction
workers is a complex phenomenon because of the risky nature of construction, which
involves outdoor operations, work at heights, and complicated on-site equipment opera-
tions coupled with workers’ attitudes and behaviors towards safety [9]. The high levels
of injuries, illnesses, and fatalities being experienced continuously in the construction
industry indicate poor safety performance and that a lot more is still required to reduce the
prevalence of these unwanted events. Poor safety performance on construction sites physi-
cally and psychologically affects workers and impacts the project financially by increasing
direct and indirect costs [1]. Incident reports in the construction industry suggest that there
is an urgent need to reduce the pervasiveness of fatal and non-fatal injuries in construc-
tion [10] and thus a need for continuous monitoring and measurement of construction
safety performance regularly updated through discovering leading indicators.
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Understanding and addressing the causal factors that lead to accidents could be found
to be very useful in developing effective accident prevention strategies [11]. Studies have
also expressed that the likelihood of injuries, illnesses, or accidents can be described as a
combined outcome of hazardous conditions and at-risk behaviors (such as near misses,
unsafe conditions, unsafe actions, etc.), and chance variations as theorized by Heinrich’s
safety pyramid [12,13]. In a recent study, a prioritized list of potential predictors of serious
injury and fatality events was generated [14]. Although it may not be generalized, investi-
gations conducted in these studies demonstrated that one major injury could be preceded
by a multitude of minor incidents or leading indicators (such as hazardous conditions and
at-risk behaviors), which can be collected, analyzed, and used to predict safety performance
and potentially prevent major injuries, illnesses, or fatalities on construction sites.

The proactive measurement of safety performance requires the adoption of a safety
approach that is not anchored on the monitoring of injuries or accidents after they occur.
This approach has its foundation in resilience engineering, which establishes some essential
requirements that are reflected in four abilities that must be properly managed to achieve
resilient construction safety performance [15,16]. The essential abilities include (a) respond-
ing (i.e., knowing what to do); (b) monitoring (knowing what to look for); (c) learning
(knowing what has happened), and (d) anticipating (knowing what to expect) [17]. Safety-
related practices can be actively measured during the construction phase to trigger positive
responses before an injury or accident occurs [18–20]. The primary goal of measuring
safety performance is to create and implement intervention strategies for the potential
avoidance of future accidents [21]. To achieve zero incidents, proactive and active methods
of safety management should also occur during the construction phase [18]. Current safety
performance and potential risks in the operation of the facility can be predicted in advance,
and one can take proactive actions to avoid the occurrence of an accident [22]. There is,
therefore, a need for continuous monitoring of safety performance indicators to reduce
illnesses, injuries, and fatalities on construction sites and enhance safety performance.

The purpose of this study is to present statistical models for analyzing safety incident
data and predicting safety performance in construction. A framework for monitoring and
measuring safety performance on construction sites is presented. Using safety incident
data obtained from a company that implements proactive safety management programs,
statistical modeling processes are utilized to identify specific variables that have high
correlations of events and incidents that pose dangers to the safety and health of workers
on construction sites.

2. Measuring Safety Performance in Construction

Safety performance in construction has historically been measured by “after-the-loss”
types of measurements and metrics (or lagging indicators) such as the Occupational Safety
and Health Administration (OSHA) recordable injury rate (RIR); days away, restricted work,
or transfer (DART) injury rate; or the experience modification rating (EMR) associated
with workers’ compensation insurance, such as accident and injury rates, incidents, and
costs [21,23]. However, most of these methods are reactive or subjective approaches because
accident statistics only show the performance of safety management in the past [24,25] and
are reactionary. In addition, these traditional safety metrics are out of date given the current
ability to collect, analyze, and share safety data [26]. An alternative form of safety metric
is the leading indicator. These proactive metrics assess safety performance by gauging
processes, activities, and conditions, defining safety performance by their adherence to
goals and future outcomes rather than relying on the past [19]. The measurement of
safety performance can be used to provide feedback for proactive safety management and
continuous improvement.

Indicators are observable measures that provide insights into a concept that is diffi-
cult to measure directly, and a safety performance indicator is a means for measuring the
changes over time in the level of safety as the result of actions taken [27]. An indicator
is a measurable and operational variable that can be used to describe the condition of a
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broader phenomenon or aspect of reality. An indicator can be considered any measure
(quantitative or qualitative) that seeks to produce information on an issue of interest [28].
Safety indicators can play a key role in providing information on organizational perfor-
mance, motivating people to work on safety, and increasing the organizational potential for
safety. Safety performance indicators can be considered as filters through which reality is
perceived, experienced, and understood.

The fundamental goal of measuring safety performance is to intervene in an attempt
to mitigate unsafe behaviors and conditions that can lead to accidents on construction sites.
Performance measurements can either be reactive monitoring or active monitoring [29].
The former means identifying and reporting on incidents, and learning from mistakes,
whereas the latter means providing feedback on performance before an accident or incident
occurs. Safety performance metrics can be divided into lagging indicators (which are linked
to the outcome of an injury or accident) and leading indicators (which are measurements
linked to preventive actions) [18,30]. These two categories of safety indicators are described
as follows.

2.1. Lagging Indicators

Lagging indicators are reactive monitoring that show when the desired safety outcome
has failed, or when it has not been achieved [31]. The use of lagging indicators involves
identifying and reporting incidents to check that controls in place are adequate, identifying
weaknesses or gaps in control systems, and learning from mistakes [29]. Common examples
of these indicators or metrics are accident rate, lost workday injuries, medical aid cases,
first aid cases, and Experience Modification Rate (EMR). These metrics are termed “lagging
indicators” because the measurement and analysis occur after an accident occurs. Lagging
indicators are unable to reflect if a hazard has been mitigated, the severity of an event, or
the event’s causation [32]. When a lagging indicator of safety is used, the information is,
by definition, historical in nature. If the number of injuries is unacceptable, a response is
generated that will hopefully prevent or reduce the number of future occurrences. Despite
such efforts, they are implemented only after injuries have already occurred [33]. Lagging
indicators do not provide further insights into the existing safety conditions once an
accident has occurred.

2.2. Leading Indicators

Leading indicators are a form of active monitoring that determines if risk control
systems are operating as intended [34]. Leading indicators are those metrics associated
with measurable systems or individual behaviors linked to accident prevention. Leading
indicators are measurements of processes, activities, and conditions that define performance
and can predict future results [18]. The common leading indicators used in construction are
near-miss reporting, worker observation (to determine unsafe conditions and acts), job site
audits, stop work authority, housekeeping, safety orientation, training, etc. These indicators
focus on maximizing safety performance by measuring, reporting, and managing positive,
safe behaviors [30]. Leading indicators of safety performance are used as predictors of
safety performance to be realized. They are used as inputs that are essential to achieving the
desired safety outcome [31]. Leading indicators provide a means of tracking or monitoring
the performance of a process as it is taking place, or they provide a way of showing whether
a particular process or processes are being implemented as planned [26]. Leading indicators
are directly related to the project that is to be undertaken and are concentrated on the safety
management process [33]. Leading indicators give the probability that a safe project will be
delivered by providing the opportunity to make changes as soon as there is an indication
that the safety program has a weakness. The predictive nature of safety leading indicators is
well-established [35] and studies have shown that leading indicators are not just predictors
but also very pivotal in the improvement of safety performance.
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3. Materials and Methods

The goal of this research is to analyze safety-leading indicator data and develop models
that can be used to predict and prevent injuries, illnesses, and fatalities on construction
sites. The research method adopted in this study was chosen in an attempt to provide a
practical and adaptable framework that could be used to systematically transition safety
performance measurement from the traditional to the modern approach. First, a conceptual
framework that juxtaposes the traditional and modern methods for identifying, collecting,
and analyzing safety indicators for incident prediction and prevention on construction
sites is presented and described. Thereafter, a series of statistical modeling processes are
utilized to analyze safety incident data and identify variables that can significantly impact
the probability of unhealthful and harmful acts, events, or conditions on a construction
site. Lagging indicators, including injuries, illnesses, and fatalities on construction sites,
can result from a variety of causal factors relating to construction materials, equipment,
work processes, and conditions of the sites and environments, which can be utilized to
predict the probability of leading indicators (such as unsafe acts and conditions) and, in
turn, the lagging indicators. The analysis of safety incident data presented in this study is
categorized into the following two stages: (1) the modeling of causal factors responsible for
safety leading indicators; (2) the modeling of the safety leading indicators that can be used
to predict the probability of lagging indicators.

3.1. Framework for Monitoring and Measuring Safety Performance

This framework is presented as the basic procedure for the identification, collection,
and analysis of safety performance indicators for incident prediction and prevention on
construction sites. This practical and adaptable framework implements a systematic and
statistical data collection and analysis technique and can be a vital component in the data
flow within a safety program of any construction company. Part of the important factors
considered when setting up a safety monitoring procedure is the size and structure of the
organization or company and the operational environment.

The scope of monitoring should encompass operational, technical, and organizational
safety management aspects that are rooted in the organization’s safety program. In addition,
the framework should incorporate safety performance functions that consider the temporal
instability of safety performance correlates [36] of different construction projects and com-
panies. The basic steps involved in the proposed framework for monitoring and measuring
safety performance in construction are illustrated in Figure 1 and further described in the
following sections.

3.1.1. Step 1: Identification of Safety Indicators

This step involves the identification of safety metrics or indicators that need to be
captured in order to measure safety performance on a given construction project. These
safety indicators will include both leading (proactive) and lagging (reactive) indicators as
described previously in this paper and can either be quantitative or qualitative. Information
about the types of indicators to be monitored can be obtained from the organization’s safety
program. The indicators selected are most efficient when they are aligned with the specific
safety goals of an organization and the associated work process. The criteria used to select
the indicators may involve the organization’s present safety performance level, such as the
stages of development of their safety program and their safety culture. For example, an
organization that is already implementing an auditing process to achieve safety compliance
can transition into continuous safety monitoring and measurement to improve its safety
program by introducing other leading indicator programs such as near-miss reporting,
worker observation process, safety activity analysis, etc. Examples of leading indicators
that can be tracked on construction sites are near-misses, unsafe behaviors or acts, unsafe
conditions, etc. Common lagging indicators that can be monitored on construction sites are
OSHA recordable incidents, lost workday injury or lost time, medical case injury, first aid,
property damage, environmental incidents, etc.
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3.1.2. Step 2: Collection of Safety Indicators Data

This involves the collection of safety indicator data through the active tracking or
monitoring of the work environment and workers’ activities on construction sites. This
process can be achieved through an effective safety program involving proactive safety
practices such as near-miss reporting, project management team safety process involvement,
worker observation process, job site audits, housekeeping programs, stop work authority,
safety orientation, training, and more recently, the implementation of cutting-edge sensing
technologies. The data obtained from these processes are documented and recorded in
a safety management repository for the organization with database capabilities to house
the collected data. The collection of data from all safety monitoring activities should be
a systematic process to ensure interrelationships are identified. Efforts should be geared
toward transitioning the traditional or manual methods of data collection, which are
common in the construction industry, to automated methods to increase the accuracy,
objectivity, and timeliness of the collected data. For instance, automated data collection
using sensing technologies [37,38] and computer vision [39,40] for the monitoring and
recognition of construction workers’ activities and their work environments can be used to
capture different types and categories of safety indicator data.

3.1.3. Step 3: Analysis of Safety Indicators Data

In this step, statistical modeling processes are used to analyze the safety indicators
data to identify specific variables that have high correlations and effects on events and
incidents experienced on the construction sites. The analysis could either be performed
non-real-time or in real-time, which is more desirable for rapid decision-making needed in
complex and dynamic construction work environments. The safety indicators are analyzed
and incidents trends, associated causes, and influencing factors are established. Details
from safety incident data will be analyzed to proactively identify predictor variables (e.g.,
hazardous acts and conditions) of future incidents on construction sites. Since leading
indicators of safety performance require meaningful and actionable metrics (which measure
actions and conditions that can be controlled), they must be quantifiable and numeric. For
instance, a hazardous act (i.e., unsafe act) that is qualitative in nature can be observed and
quantified numerically as binary data (which indicates either the absence or presence of
the act and is usually represented by 0 and 1) or count data (which indicates the number of
occurrences and can take only non-negative integer values). To supply deeper information
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on qualitative data such as a hazardous act or condition, a Likert scale can be used to
express the severity (e.g., low, medium, or high severity). A broad range of statistical and
machine learning prediction models or analytical tools (such as the Poisson regression
model, binary logistic regression model, decision tree, support vector machine, random
forest, etc.) can be implemented to identify correlations of multiple variables derived from
the safety incidents data obtained from construction sites [39,41]. These models are selected
based on the nature of variables extracted from the safety data. Additionally, various
computations are carried out on the collected data to transform the safety indicators data
into useful information. In a recent study, machine learning techniques were used to
analyze 16 critical accident causal factors and assess the impact of diverse combinations of
factors on the performance of predicting the severity of construction accidents [41]. The
graphical presentation of the results is also produced to reflect the measurements of safety
performance on the construction site.

3.1.4. Step 4: Application of Corrective Measures

This stage involves the correction of hazardous acts or conditions (such as near misses,
unsafe behaviors, and conditions) that have the potential for future accidents by training
the workers and making necessary changes on the construction site. At this stage, decisions
are made by the management of the organization based on the results of the analysis, and
recommendations for corrective measures and improvements are provided by the safety
management team in the organization. Corrective actions are determined and acted on
wherever the monitoring indicates that an element is approaching a point that may affect
safety to an intolerable level. Coordination with pertinent units and departments should
take place as required. Appropriate plans are made to implement the required corrective
measures, which should follow a continuous improvement process. Results are tracked
and feedback on performance is provided to the relevant audiences within the organization.
A broader audience (including all other site personnel) should be informed of the reported
indicator events and corrective actions taken; both steps should be communicated as soon
as possible (i.e., the next day’s toolbox talks if possible). Safety managers should integrate
lessons learned from the reported leading indicators events and data analysis results into
existing safety training.

3.2. Analysis of Safety Indicators Data

The analysis of safety incident data in this study is conducted in the following two
stages: (1) the modeling of causal factors responsible for safety leading indicators; (2) the
modeling of the safety leading indicators that can be used to predict the probability of
lagging indicators. In the first analysis, a data set consisting of 2551 observations of
safety incident data (collected from an airport construction project site over one year) were
used to model the causal factors (independent or predictor variables) that have the most
significant influence on safety leading indicators (dependent or response variables) on the
construction site. The construction company executes civil infrastructure and commercial
construction projects.

The analysis approach adopted in this research considers that each incident of the
construction safety leading indicators recorded is either related to a causal factor or not. In
the second analysis, 297 records of safety incident data (collected from the same construction
site over one year) were used to model the safety leading indicators and other metrics (set
as independent variables in this case) that have significant impacts on lagging indicators
(dependent variables in this case) on the construction site. The identified variables were
critically examined using the abridged model screening guide illustrated in Figure 2 as a
sample for the models used in this study as statistical predictive models to better understand
how individual safety metrics or indicators can predict incidents on construction sites. This
model screening guide was developed through the synthesis of the characteristics of the
statistical tools and techniques described and illustrated in [42].
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A large construction company in the U.S. that specializes in civil infrastructure and
commercial construction projects and implements proactive safety programs across their
projects provided the researchers access to a safety incident database reported by employees
and analyzed by safety managers at the company. Variables retrieved from employee
safety incident logs were organized by safety managers into company-specific safety
categories. To perform predictive statistical analysis, variable categories were defined as
either independent or dependent variables. The variables included all metrics associated
with the outcome of a reported incident such as an injury, illness, or fatality as described
in Table 1. The frequency of a given indicator category in Table 1 represents the number
of times each type of indicator category or event was observed as reported in the safety
incident logs. For instance, an unsafe act (a leading indicator) was observed 895 times
amounting to 35.08% of the total leading indicator events observed over one year as
reported in the safety incident logs. Similarly, events associated with site conditions were
observed and reported 625 times amounting to 24.50% of the total injury or accident causal
factors reported over one year as documented in the safety incident logs.

3.2.1. Binary Logit Model for Predicting Leading Indicators

Although several efforts have been made to mitigate injuries and accidents on construc-
tion sites, predictive models have not been developed to analyze the effects of construction
safety indicators. Injuries and fatalities on construction sites can result from a variety
of causal factors relating to construction materials, equipment, work processes, and the
condition of the construction site and environment. The analysis approach adopted in this
research considers that each incident of the construction safety leading indicators recorded
is either related to a causal factor or not. This gives a binary outcome that can be coded
as one of the recorded incidents is related to the causal factor and zero otherwise. When
developing a statistical model of such discrete outcome data, different modeling techniques,
including logit, probit, and mixed logit models, can be used [42]. If unobserved factors
influencing the probability of alternate discrete outcomes (disturbances) are assumed to be
generalized extreme value distributed, the standard multinomial logit formulation is given
by the following [43,44]:

Pin =
EXP[βiXin]

∑∀I EXP[βIXIn]
(1)

where Pin = probability that observation n results in discrete outcome I; Xin = vector
of characteristics that determine the probability of discrete outcome i for observation n;
βi = vector of estimable parameters; I = set of available discrete outcomes. According to
Washington et al. [42], the standard maximum likelihood methods can be used to estimate
the model. Thus, Pin = probability of a causal factor responsible for the recorded leading
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indicator n; Xin = vector of recorded leading indicator n; βi = vector of estimable parameters,
which includes a coefficient for each leading indicator in Xin; I = either 1 if the causal factor
is responsible for the recorded leading indicator or 0 if it is not. In this study, the two
possible outcomes are either a causal factor is responsible for the leading indicator or
not, hence, without loss of generality, βiXin for the not responsible outcome can be set to
zero [45]. Using Equation (1), the probability of a leading indicator n being related to a
causal factor Pcn is then given as follows:

Pcn =
1

1 + EXP(−βcXcn)
(2)

In order to assess the effect of the vector of estimated parameters βc, elasticities that
measure the magnitude of the impact of specific variables on the outcome probabilities are
computed as follows:

EPcn
xkcn

=
∂Pcn

∂xkcn
× xkcn

Pcn
(3)

Using Equations (2) and (3), this is given as follows:

EPcn
xkcn

= [1− Pcn]βkcnxkcn (4)

where βkcn = estimated parameter associated with the kth variable xkcn. Elasticity values
EPcn

xkcn can be interpreted as the percent effect that a 1% change in xki has on the probability
of a leading indicator n’s being related to a factor Pcn. It should, however, be noted that
Equation (4) is not applicable for indicator variables (i.e., variables taking on values of
0 or 1). In such a situation, pseudoelasticity can be calculated as follows [42]:

EPcn
xkcn

=

[
EXP[∆(βcXcn)][1 + EXP(βkcnxkcn)]

EXP[∆(βcXcn)][EXP(βkcnxkcn)]+1
− 1

]
×100 (5)

The pseudoelasticity of the variable with respect to a causal factor being responsible
for a leading indicator is the percent change in the probability of the causal factor being
present when the variable is changed from zero to one.

3.2.2. Poisson Regression Model for Predicting Lagging Indicators

Despite the efforts geared toward mitigating injuries and accidents on construction
sites, the benefits of developing predictive models to analyze the effects of construction
safety indicators need to be explored. In an attempt to create such a predictive model, a
possible mistake would be to simply opt for the traditional regression techniques using
linear regression methods. The use of linear regression analysis imposes certain limitations
on the model, especially because certain observations may be nonlinear and cannot be
modeled as such. The main drawback associated with nonlinear regression is the increase
in complexity compared with traditional linear regression. Poisson regression is rarely
mentioned as a modeling technique for construction concepts. Poisson regression is a form
of regression analysis used to model count data, which assumes that the dependent variable
consists of nonnegative integers. For example, the number of first aid cases or injuries
that occur on a construction site can be analyzed using a Poisson regression model. The
events must be independent in the sense that the occurrence of one will not make another
more or less likely, but the probability per unit time of events is understood to be related
to covariates.
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Table 1. Variables available for model specification.

Category Description Frequency Percentage

Lagging Indicators (dependent variables)

Property Damage Cases
An incident that results in the destruction of real or
personal property.

54 55.67%

First Aid Cases
Any incident that requires stopping work but does not
require a trained medical professional for assistance

41 42.27%

Medical Aid Cases
An injury or illness that results in death, days away from
work, restricted work, medical treatment beyond first aid,
or loss of consciousness

2 2.06%

Leading Indicators (dependent and independent variables)

Safe Work Observation
Counts of the number of safe actions or conditions in a
work area for a given time

223 8.74%

Safety Intervention
An attempt to change how things are performed in order
to improve safety

285 11.17%

Unsafe Act
Unaccepted practices that have the potential to contribute
to future accidents and injuries

895 35.08%

Unsafe Condition
A situation in which the physical layout of the workplace
or work location or the status of tools, equipment, and
material violates contemporary safety standards

1069 41.91%

Near Miss
An unplanned event or unsafe condition that has the
potential for injury or illness to people, or damage to
property, or the environment

79 3.10%

Causal Factors (Independent variables)

Heavy Equipment
Incidents associated with heavy construction equipment,
such as a truck, trailer, and excavator

267 10.47%

Vertical Access Equipment
Incidents associated with vertical access equipment, such
as ladders, scaffolds, and stairs

187 7.33%

Site Conditions
Incidents associated with site conditions, such as snow
and ice, hole and trench, and roadway

625 24.50%

Non-use of PPE
Incidents associated with failure to use PPE, such as
earplugs, hardhats, and safety glasses

733 28.73%

Incident Type Incident type, such as trip, slip, fall, and electrical 295 11.56%

Construction Materials
Incidents associated with certain construction materials,
such as steel/rebar, concrete, nail, and fuel

267 10.47%

Days of the Week Days of the week on which incidents occur
Months of the Year Months of the year in which incidents occur

Count data are often modeled as a continuous variable instead of a discrete variable,
using traditional least squares regression methods [46]. This approach is not strictly correct
because regression models yield predicted values that are non-integers and can also predict
negative values, both of which are inconsistent with count data. These limitations make
standard regression analysis inappropriate for modeling count data without modifying the
dependent variable [42]. For this analysis, 297 observations of leading indicators (unsafe
conditions, unsafe acts, and near misses), lagging indicators (property damage, first aid,
and medical aid), and other metrics for measuring safety performance were collected on
a construction site over a one-year duration. The data are non-negative integers with the
mean approximately equal to the variance; thus, the data are well suited to the Poisson
regression approach. The Poisson model is specified in Equation (6) as follows [42,47]:
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P(yi) =
EXP(− λi)λ

yi
i

yi!
(6)

where P(yi) is the probability of a construction site i having y number of lagging indicators
(e.g., first aid cases), and λi is the Poisson parameter for construction site i. The Poisson
parameter is equal to the expected number of lagging indicators (e.g., first aid cases)
that occur on the construction site [i.e., E(yi)]. The Poisson parameter is specified as
follows [42,47]:

λi= EXP(βXi) or equivalently LN(λi)= βXi (7)

where Xi is a vector of explanatory variables and β is a vector of estimable parameters or
coefficients. This model can, therefore, be estimated by using standard maximum likelihood
methods, with the likelihood function given in Equation (8) [42,47].

L(β) = ∏
i

EXP[−EXP(βXi)][EXP(βXi)]
yi

yi!
(8)

The log of the likelihood function is simpler to manipulate and more appropriate for
estimation and is given in Equation (9) [42,47].

L(β) =
n

∑
i=1

[−EXP(βXi)+yiβXi − LN(y i !)] (9)

4. Results and Discussion
4.1. Analysis of Safety Indicators Data

As indicated in Figure 3, 508 (i.e., 20%) of the observations were positive indicators
of safety performance, while the remaining 80% (i.e., 2043 observations) were leading
indicators with potential for negative outcomes if not controlled. While a slightly higher
percentage of safety interventions was recorded on the site than safe work observations for
the positive indicators, unsafe conditions had the highest percentage of observations for
the negative indicators, followed by unsafe acts. Near misses had the lowest observation
rate. This could be due to the complexities involved in the reporting of near-misses on
construction sites. Moreover, the construction company may not have a dedicated near-miss
reporting program for appropriately capturing near-miss information on the site.

Figure 4 also shows the periodic distribution of safety leading indicators over one year.
The records of each of the safety leading indicators are expressed in terms of percentages,
while the total number of leading indicators per period is expressed in terms of frequency of
observation. The results indicate that the highest number of leading indicator observations
was recorded during the fall season with a total of 861 observations. This large observation
could be because of the high volume of construction activities going on during the period.
Moreover, the fall season has been touted as the best period of the year for outdoor work
due to the mildness of the weather.

4.2. Results of Binary Logit Model

The model estimation results and the corresponding variable elasticities for the safety
leading indicators are shown in Table 2. All the estimated parameters are statistically
significant, and the model coefficients show plausible relationships among the variables.
The overall model fit is quite good, with log-likelihood increasing from −1652.963 when
βc = 0 to −1380.781 when βc is at its converged value for unsafe acts; from −1734.639 to
−1451.982 for unsafe conditions, finally, from −352.273 to −301.606 for near-misses. These
result in ρ2 of 0.165, 0.163, and 0.144 for unsafe acts, unsafe conditions, and near-misses,
respectively (computed as one minus the ratio of log-likelihood at convergence to the
log-likelihood at zero). These results indicate that the process and relationships described
by the model are reflective of the data observed.
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The model estimation results and the corresponding average elasticities are presented
in Table 2. Out of the variables available for model estimation, a good number of the
variables were found to have significant effects on the number of unsafe acts, unsafe
conditions, and near-misses recorded on the construction site. The results of the model
estimation show that the day of the week had a significant effect on near-miss incidents but
not on unsafe acts and conditions. For instance, the results indicate that more near-misses
are more likely to be experienced midweek and the value of the average elasticity indicates
a probability of 0.017%. These showed that the workload might be different on certain days
of the week. For instance, Bryson and Forth [48] stated in their study that people tend to
work longer days, on average, in the middle of the week.
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Table 2. Model estimation results and elasticity estimates for unsafe act, unsafe conditions, and near miss.

Variables Description
Mean

(Std. Dev.)

Unsafe Act Unsafe Condition Near Miss

Parameter
Estimate t-Statistic Average

Elasticity
Parameter
Estimate t-Statistic Average

Elasticity
Parameter
Estimate t-Statistic Average

Elasticity

Constant −0.709 *** −10.150 −1.185 *** −17.470 −4.160 *** −18.090
Midweek Indicator 0.213 (0.409) 0.528 *** 1.990 0.017
First Month of Spring Indicator 0.105 (0.307) −1.232 *** −6.560 −0.198 −0.652 *** −3.930 −0.120 0.853 *** 2.860 0.031
Last Month of Spring Indicator 0.083 (0.277) 0.577 *** 3.630 0.110
First Month of Summer Indicator 0.118 (0.323) 0.669 *** 4.860 0.128
Last Month of Fall Indicator 0.297 (0.457) 1.095 *** 10.950 0.229 −1.146 *** −3.000 −0.025
Incident Related to the Use of Ladder 0.030 (0.170) 0.861 *** 3.420 0.166
Incident Related to the Use of Scaffold 0.023 (0.150) −0.667 * −1.820 −0.113 0.911 *** 2.850 0.184 1.191 * 1.830 0.053
Incident Involving Stairs 0.020 (0.141) −1.089 * −1.880 −0.172 0.998 ** 2.500 0.201
Roadway Incident 0.044 (0.205) 0.856 *** 4.040 0.172
Incident Involving Truck 0.073 (0.259) 0.523 *** 3.080 0.099
Incident Involving Trailer 0.032 (0.176) −0.706 ** −2.010 −0.119 1.068 *** 3.680 0.215
Incident Related to the Use of PPE 0.287 (0.452) 1.086 *** 6.690 0.215 0.757 *** 3.060 0.023
Incident Related to Hearing and Use of
Earplugs 0.111 (0.314) 0.559 *** 2.990 0.109

Incident Related to the Use of Hardhat 0.080 (0.271) −0.516 ** −2.550 −0.089
Incident Related to Eye and Use of Glasses 0.044 (0.206) 0.454 * 1.860 0.087
Incident Related to Snow and Ice 0.177 (0.382) −1.015 *** −6.920 −0.172 1.156 *** 9.580 0.239 −1.435 *** −2.980 −0.027
Trip Incident 0.054 (0.227) −1.737 *** −5.390 −0.248 1.453 *** 6.460 0.293 1.146 *** 2.940 0.049
Slip Incident 0.028 (0.165) −2.789 *** −4.500 −0.312 1.492 *** 4.460 0.297 1.332 *** 2.910 0.063
Fall Incident 0.046 (0.209) −0.747 *** −2.840 −0.125 0.403 * 1.870 0.080 1.762 *** 5.330 0.095
Incident Related to Hole and Trench 0.024 (0.154) −0.686 ** −2.170 −0.116 0.828 *** 2.970 0.167 1.097 * 1.950 0.047
Electrical Incident 0.046 (0.209) 0.691 *** 3.390 0.138
Incident Related to the Use of Fuel 0.042 (0.201) 1.252 *** 2.990 0.056
Incident Involving Nails 0.040 (0.196) −1.628 *** −4.290 −0.235 2.362 *** 7.970 0.437
Incident Related to Steel and Rebar 0.033 (0.180) 1.008 ** 2.110 0.042

Number of Observations 2551 2551 2551
Log-likelihood at Zero −1652.963 −1734.639 −352.273
Log-likelihood at Convergence −1380.781 −1451.982 −301.606

Note: ***, **, * ==> Significance at 1%, 5%, 10% level.
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The findings also point out that while the probability of recording a near-miss incident
increased in the first month of spring, it decreased for unsafe acts and conditions as
indicated by their parameter estimates (−1.232 and−0.652) and average elasticities (−0.198
and −0.120). Moreover, in the last month of spring and the beginning of the summer
season, the probability of having an unsafe act increased with a parameter estimate of 0.577
and 0.669 and an average elasticity of 0.110 and 0.128, respectively. While the probability of
having an unsafe act in the last month of spring and the first month of summer increased,
the last month of fall saw an increase in the probability of an unsafe condition and a
decrease in the likelihood of having a near-miss incident.

These findings indicate that changes in season accompanied by variations in weather
conditions could impact the safety performance of a construction project, being that con-
struction workers predominantly work outdoors and are constantly exposed to the mer-
curial and harsh weather elements. The uncertainties caused by weather, such as extreme
cold, heat, wind, or precipitation, can adversely affect workers both psychologically and
physiologically, thereby influencing the safety performance of the project. Extreme hot
weather conditions can increase the health and safety risk to construction workers, the
likelihood of workers suffering from heat-related illnesses, workers’ absenteeism, and
turnover [49]. Strong winds can also make it more dangerous for construction workers to
operate at heights [50].

The results also indicate that while the probability of having an unsafe act increased
due to incidents related to ladders, trucks, and PPE (including earplugs and glasses), it
decreased due to incidents related to scaffolds, stairs, trailers, hardhats, snow and ice,
trips, slips, falls, holes and trenches, and nails. Barkhordari et al. [51] have stated that
it is essential to identify the factors that influence unsafe acts because unsafe acts and
individual factors have been identified as one of the most important causes of accidents in
the past. Abdelhamid and Everett [12] cited a few examples of unsafe acts on construction
sites and emphasized, in their accident root causes tracing model (ARCTM), the need
to investigate why workers act unsafely. The findings of this modeling also show that
the probability of unsafe conditions increased due to incidents related to scaffolds, stairs,
roadways, trailers, snow and ice, trips, slips, falls, holes and trenches, electricity, and nails.
While the likelihood of having a near-miss decreased due to incidents related to snow and
ice, it increased with incidents related to scaffolds, PPE, trips, slips, falls, holes and trenches,
fuels, steel and rebar.

The model estimation results as presented in Table 3 indicate that in the first month of
spring, the probability of having a safe work observation and safety intervention increased.
In the first month of summer, the probability of having a safe work observation decreased
by 0.038%, as indicated by the value of the average elasticity of 0.038. In the last month of
the fall season, the probability of having a safe work observation and safety intervention
decreased as indicated by the average elasticities of −0.095 and −0.069. These results also
indicate that changes in weather conditions caused by seasonal changes can influence safety
performance on construction projects. The probability of having a safe work observation
related to the use of ladders and PPE decreased by 0.078 and 0.054%, respectively, while it
also decreased expectedly with snow and ice and electrical incidents. On the other hand,
the probability of having a safety intervention related to snow and ice increased while the
likelihood of having a safety intervention for trip and slip incidents decreased.

4.3. Results of Poisson Regression Model

From the summary statistics, the mean of the number of first aid cases experienced on
the construction site was 0.138 while the standard deviation was 0.383 (i.e., the variance
of 0.146). Since, the mean, E(yi) and variance, var(yi) are very close (i.e., approximately
equal), the assumption of a Poisson regression model for the analysis of this distribution
holds. The model estimation results and the corresponding average partial (marginal)
effects are presented in Table 4. Out of the variables available for model estimation, five
variables were found to have significant effects on the number of first aid cases recorded
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on the construction site. One of the variables was the indicator for midweek which had a
parameter estimate of 0.789 and a z-statistic of 2.110. These results indicate that more first
aid cases are more likely to be experienced midweek and the partial effects also show that
the number of first aid cases recorded is likely to increase by 0.141. Similarly, first aid cases
are more likely to be experienced on the fourth day of the workweek as indicated in the
parameter estimate (0.569) and the value of the partial effects implies that the number of
first aid cases recorded on the construction site is likely to rise by 0.097 on that day. The
reasons for these results could be that construction activities on the site might be at their
peak midweek and the day after which can correspondingly increase the number of first
aid cases. According to Bryson and Forth [48], people work the longest days, on average,
in the middle of the week. These days can be taken as the days in the middle of the week
and the workers would have been very much submerged in their various tasks on those
days of the week. The busier the workers are (i.e., the longer they work), the more likely
it is that they experience more incidents due to fatigue and other harsh conditions of the
construction environment.

Table 3. Model estimation results and elasticity estimates for safe work observation and
safety intervention.

Variable Description
Mean

(Std. Dev)

Safe Work Observation Safety Intervention

Parameter

Estimate
t-Statistic

Average

Elasticity

Parameter

Estimate
t-Statistic

Average

Elasticity

Constant −1.869 *** −17.360 −2.100 *** −22.280

First Month of Spring Indicator 0.105 (0.307) 1.282 *** 7.520 0.128 1.044 *** 6.490 0.130

First Month of Summer Indicator 0.118 (0.323) −0.615 ** −2.290 −0.038

Last Month of Fall Indicator 0.297 (0.457) −1.983 *** −6.450 −0.095 −0.853 *** −4.550 −0.069

Incident related to the use of Ladder 0.030 (0.170) −2.186 ** −2.150 −0.078

Incident related to the use of PPE 0.287 (0.452) −0.852 *** −4.610 −0.054 0.357 *** 2.610 0.036

Incident related to Snow and Ice 0.177 (0.382) −0.450 ** −2.090 −0.029

Trip Incident 0.054 (0.227) −1.070 ** −2.300 −0.071

Slip Incident 0.028 (0.165) −2.425 ** −2.380 −0.103

Electrical Incident 0.046 (0.209) −1.077 ** −2.280 −0.056

Number of Observations 2551 2551

Log-likelihood at Zero −756.422 −893.101

Log-likelihood at Convergence −657.333 −837.514

Note: ***, ** ==> Significance at 1%, 5% level.

Table 4. Truncated Poisson model and average partial (marginal) effects of first aid cases.

Variable Description Estimated Parameter z-Statistic Partial Effect Mean (Std. Dev)

Constant −1.912 *** −8.540
Midweek Indicator 0.789 ** 2.110 0.141 0.000 (0.000)
Fourth Day of Workweek Indicator 0.569 1.370 0.097 0.000 (0.000)
Last Month of Autumn Indicator −1.413 −1.390 −0.112 *** 0.283 (0.452)
Safe Work Observations Indicator −0.448 * −1.710 −0.062 * 0.657 (1.521)
Near Misses Indicator −0.486 −1.260 −0.067 0.259 (0.082)

Number of Observations 297
Log-likelihood (at Zero) −124.960
Log-likelihood at Convergence −116.858
Chi-Squared 16.202

Note: ***, **, * ==> Significance at 1%, 5%, 10% level.
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The other variable that significantly affected the number of first aid cases was the
last month of the autumn indicator, which had a parameter estimate of −1.413 and z
statistics of −1.390. This implies that first aid cases are less likely to be recorded during
that month. The result of the partial effects also suggests that the number of first aid cases
recorded on the construction site is likely to reduce by 0.112 in the last month of autumn.
This could be due to the peculiarities of the construction project, such as the nature of
tasks executed in that month of the year. It could also be that a lesser amount of work is
undertaken in that month due to weather, which might reduce the number of first aid cases
experienced during that period. Another major variable that had a significant influence on
the number of first aid cases recorded on the construction site was the number of safe work
practices observed on the site. This variable had a parameter estimate of −0.448 and a z
statistic of −1.710, which implies that the greater the number of safe work observations,
the lower the number of first aid cases recorded on the site. The partial effects also show
that the number of first aid cases experienced will be reduced by 0.062 when workers are
seen exhibiting safe work practices. This result is very realistic in the sense that workers’
exposure to hazards or unforeseen events is reduced if workers engage in safe practices by,
for instance, exhibiting safe working behavior, working in a safe condition, and using the
correct personal protective equipment.

The last variable that significantly impacted the number of first aid cases experienced
on the construction site was the number of near-misses. This variable had a parameter
estimate of −0.486 and a z statistic of −1.260. This indicates that the greater the number of
near-misses experienced, the less likely it is to experience first aid cases on the construction
site. The result of the partial effects also suggests that near-miss reporting is likely to reduce
the number of first aid cases by 0.067. The justification for these results could be that the
construction workers are using the lessons learned from near-miss reporting to forestall or
prevent lagging indicators such as first aid cases. The ρ2 statistic (or McFadden ρ2), which
gives a measure of the overall model fit, is computed in Equation (10) [42].

ρ2= 1− LL(β)
LL(0)

= 1− −116.858
−124.960

= 0.065 (10)

where LL(β) is the log-likelihood at convergence with parameter or coefficient vector β and
LL (0) is the initial log-likelihood (with all parameters or coefficients set to zero).

The perfect model would have a likelihood function equal to one (all selected alter-
native outcomes would be predicted by the model with probability one, and the product
of these across the observations would also be one) and the log-likelihood would be zero,
yielding ρ2 of one. The ρ2 statistic will be between zero and one, while the closer it is to one,
the more variance the estimated model explains. For the model in this study, ρ2 = 0.065.

5. Conclusions

In this paper, a framework for monitoring and measuring construction safety perfor-
mance, juxtaposing traditional and modern methods, was presented. Construction safety
indicators were analyzed to determine their level of significance and their relative effects
on the safety performance of a construction project. One key research finding is the pro-
motion of proactive methods for the improvement of safety performance on construction
sites. By identifying hazardous categories before an accident occurs, construction safety
managers can eliminate hazardous situations and conditions within the work environment.
The novelty and contributions of this study lie in the provision of a systematic safety
performance measurement framework and statistical modeling processes for analyzing
safety incident data for accident prediction and prevention on construction sites. The
practical and adaptable framework presented in this study provides a simplified model that
can be easily incorporated into an existing safety program for the active monitoring and
measurement of safety performance on construction sites. The framework and statistical
models developed in this study can be used to collect and analyze safety data to provide
trends in safety performance, set improvement targets, and provide continuous feedback to
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enhance safety performance on construction sites. This research draws out the benefits of
proactive and active monitoring to enhance safety performance on construction sites. The
study was limited in scope to the data provided by one company and may not necessarily
reflect safety challenges across the industry. To make the results more reliable, it would be
worthwhile to conduct this analysis using data obtained from the same company after a
certain time or using data from other companies in the construction industry. In addition,
future research can include the application of emerging systems and techniques such as
automated sensing and computer vision technologies and machine learning to proactively
monitor workers’ activities and the construction work environment capture and analyze
data in real-time to alert construction site personnel of conditions or situations that have
previously experienced a high probability of accidents.
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