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Abstract: Photovoltaic systems for pumping water, based on direct current powered motor pumps,
have great application in small rural regions without electrical networks. In addition, these systems
provide environmental benefits by replacing fossil fuels. However, these systems reduce their
performance due to partial shading, which is magnified by the internal mismatch of the PV modules.
This work proposes an intelligent, low-cost, and automatic method to mitigate these effects through
the electrical reconfiguration of the PV array. Unlike other reported techniques, this method considers
the pump head variations. For that, the global voltage and current supplied by the PV array to the
motor pump subsystem are introduced to an artificial neural network and to a third-order equation,
which locates the shaded PV module and detects the pump head, respectively. A connection control
implements the optimal electrical rearrangement. The selection is based on the identified partial
shading pattern and pump head. Finally, the switching matrix modifies the electrical connections
between the PV modules on the PV array without changing the interconnection scheme, PV array
dimension, or physical location of the PVMs. The proposed approach was implemented in a real PV
water pumping system. Low-cost and commercial electronic devices were used. The experimental
results show that the output power of the PV array increased by 8.43%, which maintains a more
stable level of water extraction and, therefore, a constant flow level.

Keywords: photovoltaic water pumping; artificial intelligence; reconfigurable array; partial shading;
changing pumping head

1. Introduction

Pumping systems are essential due to their great diversity of applications, including
water supply, which is extracted from wells, rivers, or underground. Water availability is
crucial to community development and food production [1]. The electrical grid or fossil
fuels conventionally energize water-pumping systems. The continued use of fossil fuels,
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their negative environmental impact, and the lack of electricity availability in some rural
regions have boosted the use of renewable energy sources, such as wind, biogas, and
photovoltaic (PV) [2].

Photovoltaic water pumping systems (PVWPS) comprise hydraulic, mechanical, elec-
trical, and electronic elements. These components are part of power generation, conversion,
and control. There are several PVWPS models whose element selection depends on water
demand and location conditions (Figure 1). There are PVWPS off-grid and grid-connected,
with and without maximum power point tracking (MPPT), and with and without battery,
different power controllers, or different motors and pumps [3].
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The installation of solar pumping systems without a power grid connection has
provided benefits to rural and remote areas where there is no electricity or access to
electricity is limited, and where water availability is required for essential functions or
small crop cultivation.

Several types of AC motors (induction or synchronous) or DC motors (Brush or
Brushless) are used in PVWPS without a power grid connection [4]. But DC motors
coupled to DC pumps are usually used for low-power pumping (5 kW) when a small
community requires it. This type of motor pump does not require inverters or controllers
to convert the DC output of the photovoltaic array (PVA), as its output can be used directly
by the DC motor pump or using the energy stored in batteries [5]. For PVA-based energy-
saving systems, a PVWPS without a battery and which is interconnected to the grid is
usually preferred because of the fast investment return and low-cost implementation.

In [6], the study presented a PVWPS based on a DC motor pump. The authors
compared the investment costs and amortization periods of systems using DC and AC
components. The results revealed a clear economic benefit for the DC-based system, with
an estimated investment payback period of 2.5 years, compared to 8 years for the AC-
based system. This stark contrast highlights the short-term economic efficiency of the DC
option. Furthermore, despite conversion losses, the DC system demonstrated higher water
throughput. Compared to DC systems, AC systems typically incur higher initial investment
costs, exhibit lower efficiency, and necessitate measures to manage high-surge currents. On
the other hand, DC water pumps offer technical solutions that are robust and cost-effective.
However, the direct connection of the DC motor pump is reliable and straightforward, but
it cannot operate at the maximum PVA power point when solar radiation varies during the
day. That is, PVWPS, when adequately designed, are high-performance systems, but their
performance depends mainly on environmental conditions, such as changes in irradiance,
temperature, and partial shading (PS). In addition, other factors include the size of the
photovoltaic matrix, the total dynamic height (TDH), and the optimization method applied.
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Over the years, advances in research have been reported in the literature to improve
the performance, efficiency, and economy of DC motor-pump-based PVWPS. These benefits
are achieved by designing new optimization strategies and improving control methods.
These strategies include the implementation of different types of pumps and motors, the
use of various photovoltaic module technologies, the design of power converters, the
implementation of control techniques for the maximum power point tracker (MPPT),
and methods of electrical reconfiguration of the PVA [7]. Among the main optimization
techniques are sizing [8,9], control optimization [10,11], and performance prediction [12,13].

The current PVWPS uses electronic systems that increase output power, performance,
and efficiency. Most of the proposed DC PVWPS methods have focused on reducing
the number of DC-DC converter stages, improving MPPT controller performance, or
developing specific power control systems (PCS). This proposal is due to the nonlinear
relationship between water flow rate and solar power. The DC–DC converters most
commonly used are the boost converter (29.27%) and buck-boost converter (19.51%) [4].
Regarding the MPPT, their algorithms are classified into (a) conventional/traditional and
(b) evolutionary [14].

On the other hand, PCS is designed to operate with a specific motor pump or a limited
group of motor pumps, which usually restricts the number of usable options [15]. A trend that
some research groups have worked on is using conventional electric motor pumps coupled
with standard industrial-use frequency converters or variable speed drivers [16–20]. However,
problems have been encountered in the implementation related to adapting the frequency
converters to the PVWPS operating requirements. According to [21], one of the problems is
the difficulty of implementing maximum power point tracking (MPPT), which was solved by
adding a basic industrial programmable logic controller to the system. Other solutions are the
fuzzy controllers, external to the frequency converter, operating in an open loop, and whose
control action is based on obtaining the dynamic behavior of the irradiance [21].

Two critical aspects have yet to be considered in designing PVWPS control systems:
the variation of the pump head (H), and the mismatch of the photovoltaic modules (PVMs).
Many authors have considered the photovoltaic modules to be identical and the pumping
height to be constant; however, both considerations are wrong. In a photovoltaic water-
pumping system (PVWPS), several photovoltaic modules (PVMs) are often interconnected
in various configurations, such as series, parallel, or series-parallel, to meet the voltage
and current requirements of the system. The overall performance of the PVWPS depends
on the collective performance of its component PVMs or PV strings. However, despite
being of the same brand and power rating, PV modules have inherent variability due
to manufacturing or cell differences, resulting in internal mismatch losses. In addition,
external factors such as shading or uneven lighting contribute to power losses, called
external mismatch losses. In situations where PVMs in the same string experience different
levels of sunlight exposure, especially critical in series-connected strings, these differences
intensify power losses within the PVWPS, mainly derived from current losses, since the
PVM voltage having a weaker dependence on irradiance [22]. Conversely, the partially
shaded PVM provides the smallest current of the PVMs; this restricts the available current
of the string.

Whereas, referring to the pumping head variation, the flow rate (Q) depends on the
pumping head and the insolation level, as the system efficiency increases with the decrease
in the pumping head at a uniform irradiation level. This increase is because the PVA can
consistently supply the energy demanded by the motor-pump subsystem. A pump requires
a precise supply of energy to deliver water at the desired head and flow rate, and the PVA
must be carefully dimensioned to provide the required power. A larger PVA capacity allows
the pump to start operating at lower irradiance levels, thus starting pumping activity earlier
in the day with a higher power output. However, opting for a larger installation involves a
significant increase in the initial investment [2].

As mentioned earlier, the presence of shaded PVMs is a cause of the low performance
of a PVA. A shaded PVM reduces its output current, consequently reducing the output
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current of the string where the shaded PVM is located. However, shading is not the only
cause of output current variation between PVMs. Some of these causes are due to physical
defects and other times by internal variations during the manufacture of internal cells,
which is called internal mismatch. Some methodologies are reported to overcome the
abovementioned drawbacks, focused on improving the per-day pumping output. These
works are based on a reconfigurable photovoltaic array (RPVA), which does not require
a power converter and ensures a high percentage of power conversion by electrically
rearranging the PVMs on each string with the least current difference. Conventional
multistage and other PVWPS methods differ from an RPVA system in that the latter does
not always operate with the PV field at its MPP under all irradiance and pumping head
conditions. However, the potential increase in daily pumping output could compensate for
this limitation and offer advantages comparable to those of MPPT techniques. In [23,24],
RPVA systems choose a configuration of the PVA by sensing the input irradiance only.
Whereas in [25], a four-module PVA changes its configuration based on the irradiance
received by the PVA, a high H, and a PS condition. The PVA output or motor-pumping
voltage is continuously sensed and compared with a reference voltage set to identify the
favorite configuration. The reference voltages are determined by inspection from the
simulation plots. It can also be calculated by solving the different configuration equations.
The H variation and the PVM mismatch are not considered. In addition, the reference
voltage must be recalculated if any system component is changed. For this, the user
manually develops multiple experimental tests. These drawbacks allow for a research
opportunity to develop new algorithms as alternatives to increase the performance of PVAs
under PS conditions and changes in H.

This paper proposes an intelligent method based on machine learning techniques,
which allows for the electrical reconfiguration of PVM connected in a series-parallel PVAs
to optimize water pumping. This proposed method reduces the effects of external and
internal mismatches. Such reconfiguration consists of detecting the shaded PVM, and
then considers its electrical reconnection based on the internal parameters of the rest of
the PVMs, because the real PVCs or PVMs have different properties or are subjected to
different conditions. In consequence, the solar cell with the lowest output, in the worst-case
scenario, determines the output of the entire PV module; mismatch losses can be a serious
issue in PVMs and PVAs. That means that the power generation and physical integrity of
the PVMs are jeopardized by partial shading.

This method is an alternative to optimize the performance of PVWPS based on con-
ventional CD motor pumps, which are implemented in water wells of low depth (less than
20 m) and with little recovery power. This alternative allows for the system operation, even
in periods of lower production, for example, in cloudy days or periods or variable pumping
heights, avoiding oversizing the PVA, as well as in installing a variable frequency drive for
a conventional AC motor pump (not solar) or by acquiring a controller and special solar
pump. The method is based on an artificial neural network (ANN), connection control,
and switching matrix. The electrical connections between the PVMs on the entire PVA
are modified, while the same series-parallel scheme, the PVA dimension, and the physical
locations of the PVMs are maintained. Auxiliary PVMs are not required.

The suggested approach was tested experimentally in a real PVA and was implemented
in hardware, in contrast to other PVWPS methods that have been reported. The method
functions in real-time and online. It is easy to use and reasonably priced because it only
needs a small number of sensors and does not require costly or specialized equipment.

This paper is organized into five sections. Sections 1 and 2 present the introduction
and the causes–effects of mismatch in the PVMs, respectively. The proposed method and
the experimental validation are presented in Sections 3 and 4. Finally, Sections 5 and 6
present the results, discussion, and conclusions.



Clean Technol. 2024, 6 736

2. Causes and Effects of Mismatch in Photovoltaic Elements

The one-diode model is the most common equivalent electrical circuit of an ideal
crystalline solar cell, which comprises the output current ( I), the photocurrent ( Iph

)
, the

reverse saturation current ( I0), the series resistance ( Rs), the output voltage (V), and the
parallel resistance ( Rp

)
. This model is described using Equation (1) [22].

I = Iph − I0

(
exp

[
V + I × Rs

Vt

]
− 1

)
− V + I × Rs

Rp
(1)

Variations of the one-diode model parameters affect the output of a photovoltaic cell
(PVC) [22]. The variations are due to internal or external factors. The internal factors
are changes in the material properties, such as variability of the cell properties during
their fabrication, whereas external factors are failures such as cracked cells, soiling, and
soldered cells. Environmental conditions, such as irradiation, non-uniform irradiation, cell
temperature, dust, bird droppings, angle, humidity, wind speed, and temperature, are also
external factors that affect the performance of photovoltaic devices.

The interconnection of real PVCs or PVMs that have different properties or that are
subjected to different conditions results in mismatch losses. Because the solar cell with the
lowest output, in the worst-case scenario, determines the output of the entire PV module,
mismatch losses can be a serious issue in PVMs and PVAs. This means that the power
generation and physical integrity of the PVMs are jeopardized by partial shading. This is
because the shaded module forces the rest of the modules connected to the series to reverse
their bias and power dissipation [22]. When a PVM or PVC is in reverse bias, heat causes it
to lose power. Unprotected cells experience a thermal breakdown at high temperatures.
For protection, bypass diodes are connected in parallel with the PVM or PVC. When the
voltage of the diode drops, it activates, forming a short circuit that allows the current to
flow through it [26,27]. In addition, a blocking diode can be used in each PV string to avoid
failure [28].

In addition to these techniques for protecting external factors, there are methods for
reducing internal effects or both. One of these methods is the reconfiguration of the PVA.
Such a reconfiguration consists of detecting the shaded PVM, and then considering its
electrical reconnection based on the internal parameters of the rest of the PVMs.

3. Reconfiguration Method for PVWPS

The method is applied in a PVWPS composed of a PVA in a series-parallel intercon-
nection scheme and a conventional motor-pump subsystem. The electrical connections
between the PVMs in the entire PVA are modified during the PS conditions and change in H.
However, the physical location of the PVMs, interconnection scheme, and PVA dimension
are not changed during the reconnections, and auxiliary PVMs are not requested. The
proposed method uses a neuronal algorithm, a system of equations of the characterized
motor pump system, a connection control, and a switching matrix. The global voltage (V)
and the global current (I) supplied by the PVA to the motor pump subsystem are required.
The temperature (T) of the PVMs also is needed. Figure 2 shows the flowchart of the
proposed method.

The procedure incorporates the training and optimization stage, since the method
is predicated on a supervised learning machine. The training is required due to the com-
mercial variety of PVAs and motor-pump subsystems. Similar irradiance and temperature
conditions are used for the entire training stage. The linear dependence of voltage on
temperature, as well as the linear relationship between current and irradiance, are the
reasons for these considerations [4].
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The steps for the training stage are:

1. Execution of all the electrical rearrangement configuration (ERCs) between PVMs in
the PVA, considering each partial shading location (PSLs) and changing H.

2. Acquisition and storage of the I, V, T, and Q signals.
3. Pre-processing of the I and V signals.
4. Training of the ANN partial-shading locator.
5. Training of the H detector.
6. Selection of the optimal ERCs.

Details of each step of the training stage are described below. The number of the ERCs
is obtained by Equation (2).

ERCs = (NM!)/(NM − NMC)! (2)

where NM is the number of PV modules on the PVA, and NMC is the number of PVMs for
each combination.

A switching matrix automatically carries out the ERC in both stages of the method.
The decision parameters for the electrical changes are different in each stage. In the training
stage, all the ERCs are carried out for each PSL and change in H. In the optimization
stage, only the selected ERC is performed. The switching matrix components were chosen
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considering power, electrical properties, robustness, and lower implementation costs. In
the present study, the switching matrix is the same as that proposed in [29]. This switching
matrix comprises several blocks of single-pole double-throw (SPDT) relays. The total
number of blocks depends on the number of PVMs, whereas the total number of relays per
block is given by Equation (3). The schematic diagram and connection points for each PVM
are shown in Figure 3.

TotalRelayPVM = 2(n− 1) + [(n− 1)(m− 1)] = (n− 1)(m + 1) (3)

where n is the number of PVMs in series, and m is the number of strings in parallel.
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The connection control system independently operates the relays of each block for
every PVM (Figure 3), providing the connection of each module (Mi) to the connection
points of the PVA, named A, D, Bj, and Cj, as shown in Figure 4. The A and D connection
points represent the terminals (or extreme buses) of the PVA. In contrast, the Bjs and Cjs
points serve as intermediate points within each PVS, where j = 1, 2. . ., r, are the number
of strings, and r is the maximum number of strings in the PVA. The electrical locations of
PVMs in the schematic diagram (Figure 4) were named POSk with k = 1, 2. . ., x, where x
is the maximum number of positions. In addition, the PVMs were labeled as Mi, where
i = 1, 2. . ., z, is the number of modules and z is the total number of PVMs. These nota-
tions allow us to distinguish among the possible electrical locations that each number
of modules could take, without changing their physical location but with changing their
electrical connections.
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On the other hand, the pre-processing of the I and V signals involves applying a
weighted average filter and a moving average filter. The pre-processing is applied to
various data samplings for all the ERCs. This averaging process allows for the acquisition
of more accurate and representative data of the phenomenon. However, a lower number of
samples was required for the optimization stage. In both cases, the experiment has been
performed by collecting the same length of data for each sample in the two stages. To
mitigate false positives and ensure the disappearance of shadowing, measurements are
repeated after a delay. This step is necessary due to the transient nature of the phenomenon.

A feed-forward multilayer perceptron structure is used for the ANN partial-shading
locator. The structure consists of one input layer, one output layer, and two hidden layers.
Each hidden layer has fifteen neurons. A linear activation function was used for the
output layer, and the tangent-sigmoidal function was used for the remaining layers. The
Levenberg–Marquardt algorithm (Equation (4)) was used to train the artificial neural
network (ANN) used in this work [30]. The parameters considered are the weight vector
(w), the iteration index (k), the Jacobian matrix (J), the transpose (G), and the training
error (e).

wk+1 = wk −
(

JG
k × Jk + µ× I

)−1
Jk × ek (4)

The weights and biases calculated from the training stage are input as variables that
the ANN will use in the optimization stage.

The training of the H detector is based on the characterization of the motor pump
subsystem. For that, the current and voltage signals are acquired from the PVA, and then
the P–Q curve is obtained. The measurement and acquisition of Q is required only in
this step.

Finally, there are several ERCs for the PVA (Equation (2)). However, only some of
these combinations are the most optimal to mitigate the PS conditions and the changing H.
Selecting the set of optimal ERC follows a simple but effective process during the training
stage, as follows:

1. Acquisition and storage of the I and V signals of all the combinations of ERC per-
formed for the different PSLs and changing H. Numbers identify each combination to
have a database.

2. Obtaining of the Power–Voltage (P–V) curves of all the combinations of ERC for the
different PSL and changing H.

3. Selection and storage of the ERCs with the MPP of each PSL and each H. This process
is carried out multiple times to pre-select the set of consistent ERCs.

The steps of the optimization stage are:

1. Acquisition, processing, and storage of the I and V signals.
2. Pre-processing of the I and V signals.
3. Localization and detection of the PVM with partial shading through the ANN partial-

shading locator.
4. Detection of H.
5. Selection of the best ERC.
6. Reconfiguration of the electrical connections between PVMs of the PVA.

The value of H is detected without requiring a water-level sensor. For that, a third-
order Equation is used (Equation (5)). This equation has constants, which were obtained
from the analysis of the motor-pump system. This equation is based on the flow through
the piping system, as well as the friction losses in pipes of the primary and secondary
sections of the pumping system. The acquired I and V are used to calculate P. Then, this
calculated value is used to obtain Q from the P–Q curve, which was previously performed
in the training stage.

H = 1.7284Q3 + 16.468Q2 − 82.119Q + 83.395 (5)
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Experimental results can be validated by Equation (6). This equation allows the
electrical power consumed by the pump-motor subsystem to be obtained according to the
pumping head and flow rate.

P = (Q× H × g× ρ)/(367× η) (6)

where η is the motor pump efficiency, g is the gravity, and ρ is the flow density.

4. Experimental Validation

The method was implemented in hardware and experimentally tested in a real PVWPS.
The tests were conducted at the Polytechnic University of Chiapas in Suchiapa, Chiapas,
Mexico, located at latitude 16.6153◦ N and longitude −93.08974◦ W. The tests were con-
ducted outdoors under natural environmental conditions. The temperature range was
24 ◦C to 37 ◦C, and the irradiance range was 300 W/m2 to 950 W/m2. The ERC of each
PSL and each H were carried out sequentially during the training stage.

Before testing, the I–V curve of each PVM was obtained for two purposes: to verify
the physical condition, and to illustrate the real internal mismatch. The verification tests
were conducted ten times in each PVM at 20 ◦C, with a uniform irradiance of 150 W/m2. A
4899 controller, a 500 Ω and 200 W rheostat, and a NEMA 17 stepper motor were used to
establish the variation in I–V data.

Figures 5 and 6 depict the block diagram of the experimental configuration and the
components needed to put it into practice, respectively. The experimental configuration
diagram comprises four main sections. The first section contains a PVA connected in an
S–P configuration, a sensors unit, a data acquisition system (DAS) unit, and a digital signal
processing unit. The processed signals are voltage (V), current (I), temperature (T), flow
rate (Q), and configuration number (Y). The second section comprises a water pumping
system, whereas the third section contains a connection control unit and a switching matrix,
both enabling the order of the ERCs in the PVMs to be changed. Finally, the fourth section
comprises an ANN-based locator of partial shading (ANN-BLPS), a pump head detector,
and a configuration selector.
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Figure 6. Experimental setup.

Commercial elements were used for the implementation of the proposed method. Six
polycrystalline PVMs of 150 W (Imp of 8.06 A and Vmp of 18.61 V) were connected in a
topology 3S × 2P. A conventional water motor pump of DC, submersible with a power
of 1 Hp, was used. The current sensor was an ACS712, a linear current sensor based on
the Hall effect, with a range of ±5 A, an approximate sensitivity of 66–185 mV/A, and an
analog output of 0 to 5 Volts. The temperature sensors were DS18B20, which were placed
in each of the PVMs. Finally, a voltage divider circuit was connected before acquiring the
voltage signal. Due to the maximum output voltage of the array being 60 Volts, signal
conditioning was required.

In contrast, the maximum voltage measured with the DAS is 5 Volts. The irradiance
of the solar simulator was verified with a solar radiation sensor QMS101, which was
conditioned with an ADS1115. Moreover, the water flow sensor was a Digiten G1/2′′, with
a flow rate range of 1 L/min to 30 L/min.

Experimental tests were undertaken on the PVA under different PSL and changing H.
The PSLs were identified with numbers assigned from 1 to 7 (Table 1). A translucent canvas
with an irradiance reduction of 90% was used to artificially produce the patterns (Figure 7).
Moreover, the H variation was emulated with an arrangement of valves (Figure 8). This
arrangement avoids adding too much tubing to the pumping system. The pump heads
were 10 m, 15 m, 20 m, 25 m, 30 m, and 40 m. A water storage tank and a water source
were used to recycle the water.
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Table 1. Identifier number of the PSLs.

Partial Shading Location Identifier Number

M1 1
M2 2
M3 3
M4 4
M5 5
M6 6

Without shading 7
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There are 720 potential ERCs in a 3S × 2P PVA (Equation (2)). The training stage
involved acquiring, storing, and processing data from the 720 ERCs of each PSL and of
each changing H. The training of the ANN-BLPS was conducted using MATLAB software
version R2020a. On the other hand, the optimization phase comprised collecting, storing,
and analyzing data from PVA experiments conducted with any PSL and changing H.

The ANN-BLPS was implemented in an Arduino Mega with a typical clock speed
of 16 MHz, and the signal acquisition and conversion were carried out using the 10 bit
ADC of the Arduino Mega, enabling the DAS to be configured for a 1 kSa/s sampling rate.
Five consecutive signal samplings were acquired from the ERC of each PSL and H in the
training stage. Each sampling contains 1000 samples, resulting in a total of 5000 samples
for each of the seven locations considered in Table 1 and each pump head, H. Then, the
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acquired data are transferred to a computer, preprocessed as mentioned above, and used in
the ANN-BLPS during the training stage.

In contrast, in the optimization stage, the microcontroller uses only one sampling of the
acquired data. The acquired data are pre-processed before being used by the ANN-BLPS. A
moving and weighted average filter is applied to I and V signals, respectively. In addition, Q
data are of vital importance for system performance analysis. A second acquisition, processing,
and storage system is required for that. The second system comprises a 16 × 2 liquid crystal
display (LCD), an Arduino UNO, and a Shield Micro SD (Figure 6).

The switching matrix for 3S × 2P PVA needs 36 SPDT relays in order to complete the
720 ERC. An SPDT relay is needed for every PVM. Figure 3 displays the block of relays for
each PVM. An Arduino Mega controls the switching matrix (Figure 9). A power protection
circuit was implemented to activate the reconfiguration matrix switches. This conditioning
includes protection diodes, transistors, optocouplers, and resistors.
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As mentioned above, it is necessary to use six relays or one relay block (Figure 3) to
control the electrical location of each PVM. Therefore, six digital pins are required to control
the six relays of each PVM. In this experimental validation of a PVA of six PVMs, 36 digital
pins are required to control the reconfiguration matrix. The controller device used has
preset functions for activating a group of specific digital pins, known as the output pot,
which has eight pins or bits. However, in this case, only the six less significative pins were
used. Through a programming sequence, an algorithm was generated to control the ports
and, thus, digitally control the relay blocks of each PVM. The Port A, Port B, Port C, Port F,
Port K, and Port L were assigned to control the relay block belonging to the M1, M2, M3,
M4, M5, and M6, respectively. The digital control words sent to the switching matrix circuit
by each port are displayed in Table 2. These characters control the electrical connection of
each PVM within the PVA. As an illustration, if partial shading was detected on the PVA,
then the electrical connections of the PVA must be reconfigured. In this case, the M1 and
M2 modules must be electrically located on the POS4 and POS3 (Figure 4), respectively. In
this case, the control words 00101000 and 00111111 are written in the Port A and the Port B,
respectively (Table 2). It is essential to mention that the two more significative bits are not
used, so zero values were assigned.
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Table 2. Control words for the switching matrix.

Electrical Location of
the PVM

Control Word

Relay Number Decimal Value

1 2 3 4 5 6

POS1 0 0 1 1 1 1 23
POS2 1 0 1 1 0 1 45
POS3 1 1 1 1 1 1 63
POS4 1 0 1 0 0 0 19
POS5 1 1 1 1 1 0 40
POS6 0 0 0 0 1 0 62

5. Results and Discussion

The I–V curves, obtained from four experimental tests carried out to individually
verify the six PVMs, are present in Figure 10. This Figure shows the I–V curve shapes
and the variation in current and voltage levels on each PVM. The I–V curves show that
the maximum current was 1.38 A, which was obtained in M3. The minimum current was
1.15 A, and it was obtained in M1. Regarding the voltage, the maximum value was 19.5 V,
and the minimum value was 17 V. These voltages were obtained in M5 and M2, respectively.
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Table 3 shows the average maximum power generated by each PVM. The highest
average maximum power value was 18.15 W, obtained in M3. Meanwhile, the lowest
average maximum power value was 13.62 W, obtained in M1. These results coincide with
the results analyzed in Figure 10.
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Table 3. Average output power generated by each PVM during characterization tests at an irradiance
of 150 W/m2.

PVM Average Maximum Power [W]

M1 13.62
M2 17.61
M3 18.15
M4 16.48
M5 16.25
M6 17.02

It is important to note that the curves of Figure 10 and the values of Table 3 show
variations, even though all PVMs are from the same model and manufacturer, and the
tests were conducted under identical controlled conditions of temperature and uniform
irradiance. The internal mismatch, presented in real PVMs, is illustrated by these results,
which are not considered in reported PVWPS that have been validated through simulation.
This drawback makes applying the reported methods in an actual PVWPS more difficult.

Figure 11 shows the P–H curves of the PVA obtained during the 720 ERCs due to the
presence of the six PSL and the changing H. On each subplot, each one of the 720 ERCs
are represented by a different color. The P–H curves show that the output power of PVA
decreases more strongly in some specific combinations of PSL and ERCs. The lowest
maximum output power value is 800 W. This value is obtained during PSL on M1, the PVM
with the lowest performance.
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The power decrease is due to the significant variation of internal mismatch among
some PVMs and the external mismatch caused by shading. Equation (1) demonstrates
that the output current of photovoltaic devices is affected by the variation of their model
parameters. This variation can be due to internal or external factors. The effect on the
performance of the six PVMs due to different levels of internal mismatch is shown in
Figure 10 and Table 3. In addition, Figure 11 shows that pump head variations influence
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the power demand, which causes the motor-pump system to need more power to pump
the different pump heads that were evaluated. In some cases of PS, the system cannot reach
a load of 40 m; this effect is due to the maximum power capacity generated by the PVA. The
discrepancies in internal parameters of each real PVM, the electrical alterations produced
in each PVA position, the influence of PS, and the changing H are the main causes of these
results. The ERC that lessens these conditions can be found by analyzing the differences
between the P–H curves to extract characteristics related to the PS and H effect in each
PVM. In addition, Figure 11 shows that many configurations of the same test have similar
maximum points, and some curves do not have substantial differences. These demonstrate
that not all 720 ERCs of each PSL and each H contribute to the output power increase.
Because only the configurations that permit the maximum output power of the PVA are
selected, these results simplify the suggested system.

Figure 12 shows the results obtained from the training of the ANN-BLPS. This Figure
reveals that the recognized PSLs agree with the patterns set on the PVA (Table 1). These
results are reaffirmed in the experimental results obtained.

Clean Technol. 2024, 6, FOR PEER REVIEW  15 
 

 

The power decrease is due to the significant variation of internal mismatch among 
some PVMs and the external mismatch caused by shading. Equation (1) demonstrates that 
the output current of photovoltaic devices is affected by the variation of their model pa-
rameters. This variation can be due to internal or external factors. The effect on the perfor-
mance of the six PVMs due to different levels of internal mismatch is shown in Figure 10 
and Table 3. In addition, Figure 11 shows that pump head variations influence the power 
demand, which causes the motor-pump system to need more power to pump the different 
pump heads that were evaluated. In some cases of PS, the system cannot reach a load of 
40 m; this effect is due to the maximum power capacity generated by the PVA. The dis-
crepancies in internal parameters of each real PVM, the electrical alterations produced in 
each PVA position, the influence of PS, and the changing 𝐻 are the main causes of these 
results. The 𝐸𝑅𝐶 that lessens these conditions can be found by analyzing the differences 
between the 𝑃– 𝐻 curves to extract characteristics related to the PS and 𝐻 effect in each 
PVM. In addition, Figure 11 shows that many configurations of the same test have similar 
maximum points, and some curves do not have substantial differences. These demon-
strate that not all 720 𝐸𝑅𝐶𝑠 of each PSL and each 𝐻 contribute to the output power in-
crease. Because only the configurations that permit the maximum output power of the 
PVA are selected, these results simplify the suggested system. 

Figure 12 shows the results obtained from the training of the ANN-BLPS. This Figure 
reveals that the recognized PSLs agree with the patterns set on the PVA (Table 1). These 
results are reaffirmed in the experimental results obtained. 

  
Figure 12. Results obtained from the training of the ANN-BLPS. 

Table 4 presents the output power of the PVA without reconfiguration with PS and 
different pumping heads. This Table also shows the detected pumping head and the out-
put power of the PVA with reconfiguration due to PS during the optimization stage. As 
can be seen, the intelligent reconfiguration of the PVA increases the output power in all 
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Table 4 presents the output power of the PVA without reconfiguration with PS and
different pumping heads. This Table also shows the detected pumping head and the output
power of the PVA with reconfiguration due to PS during the optimization stage. As can
be seen, the intelligent reconfiguration of the PVA increases the output power in all the
tests, compensating for the power losses due to shading in the PVMs; this compensation
is achieved without oversizing the PVA. The maximum output power improvement is
8.43%. This improvement is achieved with the electrical reconfiguration of the PVMs
during shading in M1, which coincides with the PVM detected with lower performance.
In this case, the output power of the PVA without reconfiguration was 692.14 W, but after
intelligent reconfiguration, the output power value was 750.48 W. From Table 4, it can also
be observed that there is a relationship between the output power improvement and the
number of shaded PVM. The higher and lower performance improvements are obtained
when the PS is applied on M1 and M3, respectively. M1 has the worst individual output
power, and M3 has the best individual output power of all the used PVMs (Table 3).
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Table 4. PVA output power with and without intelligent reconfiguration during PS in each PVM.

Partial Shading
Localization

Detected Pumping
Head [m]

Output Power without
Reconfiguration

[W]

Output Power with
Reconfiguration

[W]

Performance
Improvement

[%]

Without shading 40.03 746.36 788.68 5.67
M1 33.42 692.14 750.48 8.43
M2 37.12 736.25 774.58 5.20
M3 37.92 741.16 779.44 5.16
M4 34.92 708.65 746.25 5.30
M5 34.90 706.58 743.56 5.23
M6 35.32 716.58 758.65 5.87

6. Conclusions

The combination of artificial intelligence techniques and the electrical reconfiguration
of the PVMs, connected in a series-parallel PVA:

• Allows for the development of an alternative method for optimizing the performance
of low-power PVPWS. The reconfiguration is carried out without changing the inter-
connection scheme, PV array dimension, and physical location of the PVMs.

• Mitigates the double effect of internal and external mismatch caused by partial shading
and photovoltaic cell variations during manufacture. In addition, the proposed method
considers power requirements for dynamic changes in the pump head based on the
characterization of the motor-pump system.

• Is a feasible alternative for water pumping in small communities without electricity.
This feasibility is due to its low implementation cost. Since this method does not
require an inverter, it avoids oversizing the PVA and installing a variable frequency
drive for a conventional AC motor pump (not solar) or acquiring a controller and
special solar pump. Because the method requires a conventional DC motor pump,
additional low-cost and commercially available electronic devices are used. In addition,
all the PVA is dynamic, and no auxiliary PV modules are required.

• Was implemented in hardware and validated experimentally in a real PVPWS, unlike
other methods reported for PVWPS.

• Achieves a maximum output power improvement of 8.43%. This result demonstrates
the ability of the method to maintain a more stable level of water extraction and,
therefore, a constant flow level, and this capacity offers greater efficiency in two
aspects. On the one hand, it can increase the efficiency and, thus, the productivity
of the soil in case it is used in irrigation systems. On the other hand, this ability to
maintain an almost constant level of water extraction causes solar pumping to be
especially effective in water wells with little recovery power.
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Abbreviations

Symbol Description
H Pump head [m]
I Output current [A]
Iph Photocurrent [A]
I0 Reverse saturation current [A]
Rs Series resistance [Ohms]
V Output voltage [Volts]
Rp Parallel resistance [Ohms]
T Temperature [◦C]
ERCs Electrical rearrangement configurations [-]
NM Number of PVM [-]
NMC Number of PVMs for each combination [-]
w Weight vector [-]
k Iteration index [-]
J Jacobian matrix [-]
G Transpose [-]
e Training error [-]
Q Flow rate [m3/h]
P Pump power [W]
η Motor-pump efficiency [%]
g Gravitational constant [m/s2]
ρ Flow density [kg/dm3]
n Number of PVMs in series [-]
m Number of strings in parallel [-]
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