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Abstract: Assessing human impacts on climate and biodiversity requires an understanding of the
relationship between the concentration of carbon dioxide (CO2) in the Earth’s atmosphere and global
temperature (T). Here I explore this relationship empirically using comprehensive, recently-compiled
databases of stable-isotope proxies from the Phanerozoic Eon (~540 to 0 years before the present) and
through complementary modeling using the atmospheric absorption/transmittance code MODTRAN.
Atmospheric CO2 concentration is correlated weakly but negatively with linearly-detrended T
proxies over the last 425 million years. Of 68 correlation coefficients (half non-parametric) between
CO2 and T proxies encompassing all known major Phanerozoic climate transitions, 77.9% are
non-discernible (p > 0.05) and 60.0% of discernible correlations are negative. Marginal radiative
forcing (∆RFCO2), the change in forcing at the top of the troposphere associated with a unit increase in
atmospheric CO2 concentration, was computed using MODTRAN. The correlation between ∆RFCO2
and linearly-detrended T across the Phanerozoic Eon is positive and discernible, but only 2.6% of
variance in T is attributable to variance in ∆RFCO2. Of 68 correlation coefficients (half non-parametric)
between ∆RFCO2 and T proxies encompassing all known major Phanerozoic climate transitions,
75.0% are non-discernible and 41.2% of discernible correlations are negative. Spectral analysis, auto-
and cross-correlation show that proxies for T, atmospheric CO2 concentration and ∆RFCO2 oscillate
across the Phanerozoic, and cycles of CO2 and ∆RFCO2 are antiphasic. A prominent 15 million-year
CO2 cycle coincides closely with identified mass extinctions of the past, suggesting a pressing need
for research on the relationship between CO2, biodiversity extinction, and related carbon policies.
This study demonstrates that changes in atmospheric CO2 concentration did not cause temperature
change in the ancient climate.

Keywords: Phanerozoic climate; radiative forcing; marginal forcing; MODTRAN; glacial cycling;
anthropogenic global warming; climate policy; biodiversity; mass extinctions; carbon regulation;
mitigation of CO2

1. Introduction

Understanding the role of atmospheric carbon dioxide (CO2) in forcing global temperature is
essential to the contemporary debate about anthropogenic global warming. Atmospheric CO2 and
other trace gases emitted to the atmosphere by the combustion of fossil fuels and changes in land
use patterns capture infrared energy radiated from the Earth’s surface, warming the atmosphere and
surface by the “greenhouse” effect. Anthropogenic emissions of CO2 accelerated at the start of the
Industrial Age in the mid-18th century and are now increasing the atmospheric concentration of CO2

by 1–2 parts per million by volume (ppmv) annually [1], a rate of increase that may be unprecedented
in recent climate history. Over this same period the Earth has warmed by ~0.8 ◦C [2]. A central
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question for contemporary climate policy is how much of the observed global warming is attributable
to the accumulation of atmospheric CO2 and other trace greenhouse gases emitted by human activities.

The purpose of this study is to explore the relationship between atmospheric CO2 and global
temperature in the ancient climate, with the aim of informing the current debate about climate change.
The effect of atmospheric CO2 on climate has been investigated for nearly two centuries (for historical
reviews see [3–5]), beginning with the insight by Fourier [6,7] that the atmosphere absorbs longwave
radiation from the Earth’s surface. This insight was confirmed empirically by laboratory experiments
demonstrating selective absorption of longwave radiation by both CO2 and especially water vapor [8,9].
The possible influences of atmospheric CO2 on the Earth’s energy balance and temperature were refined
throughout the 19th century [8,9], presaging the first successful model of the Earth’s radiation budget,
the demonstration of the logarithmic dependence of radiative forcing on the atmospheric concentration
of CO2, and the first estimate of the sensitivity of temperature to a doubling of atmospheric CO2

concentration [10]. These empirical studies led to the hypothesis that past glacial cycles were regulated
by changes in atmospheric CO2. The earliest suggestion that CO2 emitted by human activities might
warm the Earth [10,11] prompted numerous calculations and projections of anthropogenic global
warming, and this hypothesis prevailed throughout most of the 20th century [12].

The role of CO2 in climate was complemented by theoretical advances in the early twentieth
century. Building on previous work [13,14], Milankovitch calculated that fluctuations in solar insolation
caused by variations in the Earth’s orbit around the Sun are a central cause of past global glacial
cycles [15]. This theoretical foundation, combined with the empirical demonstration by paleoclimate
scientists during the mid-20th century of past and impending “ice ages”, focused renewed attention on
global cooling, including any that might be induced by anthropogenic aerosols ([16], reviewed in [4]).
The consensus among climate scientists in the mid-20th century remained, however, that greenhouse
warming was likely to dominate climate on time scales most relevant to human societies ([17], reviewed
in [4]).

The role of atmospheric CO2 in regulating global temperature came under renewed scrutiny at the
turn of the 21st century in respect to the climate of the Phanerozoic Eon beginning about 540 million
years before present (Mybp). One group of investigators supported the prevailing consensus that
atmospheric CO2 played the central role in forcing the Phanerozoic climate [18–21] based on what
they interpreted as a “pervasive tight correlation” between temperature and CO2 proxies that implied
“strong control” of global temperature by atmospheric CO2 [21] (p. 5665). The posited association
between atmospheric CO2 and T was inferred from visual examination of CO2 time series (modeled
and proxy) and their relationship with stratigraphically-sourced glacial and cold periods, however,
rather than computed correlation coefficients between CO2 and T.

Other investigators of the Phanerozoic climate hypothesized a decoupling of global temperature
from the atmospheric concentration of CO2, suggesting that atmospheric CO2 played little [22–25] or
no [26,27] role in forcing the ancient climate. One group concluded that an updated and exhaustive
stable-isotope database of a range of Phanerozoic climate proxies completed in 2008 “does not provide
unambiguous support for a long-term relationship between the carbon cycle [CO2] and paleoclimate [T].” [28]
(p. 132). The posited absence of coupling between atmospheric CO2 and T during the Phanerozoic
Eon was again, however, not supported by computed correlation coefficients, and the renewed
debate over the role of atmospheric CO2 in the Phanerozoic climate remained, therefore, unresolved.
Contemporary investigators, particularly in the climate modeling community, have largely embraced
the hypothesis that atmospheric CO2 plays a significant if not the predominant role in forcing past and
present global temperature [5,29–32].

The role of atmospheric CO2 in climate includes short- and long-term aspects. In the short
term, atmospheric trace gases including CO2 are widely considered to affect weather by influencing
surface sea temperature anomalies and sea-ice variation, which are key leading indicators of annual
and decadal atmospheric circulation and consequent rainfall, drought, floods and other weather
extremes [33–37]. Understanding the role of atmospheric CO2 in forcing global temperature therefore
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has the potential to improve weather forecasting. In the long term, the Intergovernmental Panel on
Climate Change (IPCC) promulgates a significant role for CO2 in forcing global climate, estimating a
“most likely” sensitivity of global temperature to a doubling of CO2 concentration as 2–4 ◦C [29–31].
Policies intended to adapt to the projected consequences of global warming and to mitigate the
projected effects by reducing anthropogenic CO2 emissions are on the agenda of local, regional and
national governments and international bodies.

The compilation in the last decade of comprehensive empirical databases containing proxies
of Phanerozoic temperature and atmospheric CO2 concentration enables a fresh analytic approach
to the CO2/T relationship. The temperature-proxy databases include thousands of measurements
by hundreds of investigators for the time period from 522 to 0 Mybp [28,38,39], while proxies for
atmospheric CO2 from the Phanerozoic Eon encompass 831 measurements reported independently by
hundreds of investigators for the time period from 425 to 0 Mybp [40]. Such an unprecedented volume
of data on the Phanerozoic climate enables the most accurate quantitative empirical evaluation to date
of the relationship between atmospheric CO2 concentration and temperature in the ancient climate,
which is the purpose of this study.

I report here that proxies for temperature and atmospheric CO2 concentration are generally
uncorrelated across the Phanerozoic climate, showing that atmospheric CO2 did not drive the ancient
climate. The concentration of CO2 in the atmosphere is a less-direct measure of its effect on global
temperature than marginal radiative forcing, however, which is nonetheless also generally uncorrelated
with temperature across the Phanerozoic. The present findings from the Phanerozoic climate provide
possible insights into the role of atmospheric CO2 in more recent glacial cycling and for contemporary
climate science and carbon policies. Finally, I report that the concentration of atmospheric CO2

oscillated regularly during the Phanerozoic and peaks in CO2 concentration closely match the peaks
of mass extinctions identified by previous investigators. This finding suggests an urgent need for
research aimed at quantifying the relationship between atmospheric CO2 concentration and past
mass extinctions. I conclude that that limiting anthropogenic emissions of CO2 may not be helpful in
preventing harmful global warming, but may be essential to conserving biodiversity.

2. Methods

2.1. Data Sources

Temperature proxies employed here include raw, non-detrended δ18O measurements (sample
size or n = 6680; data from [28]), which were multiplied by negative unity to render isotope ratios
directly proportional to temperature. This operation is expressed throughout this paper as δ18O*(−1)
and does not change the absolute values of correlation coefficients reported here. Oxygen isotope
ratios are widely used as a paleoclimate temperature proxy (e.g., [41–45]), although this proxy also
reflects salinity, ice volume and other environmental variables and encompasses variance associated
with location (e.g., proximity to the ocean) and time [46]. It is estimated that approximately half of
the δ18O signal reflects changes in past temperatures and numerous equations for converting δ18O
to temperature (“paleothermometers”) have been developed and are in wide use (e.g., [44,45,47]).
It is widely accepted that oxygen isotope ratios are proportional to past temperature, the central
prerequisite for valid regression analysis.

2.2. Temperature Proxies

The present analysis is limited to proxy isotopic values (‰) [28] generally without converting
to temperature. Samples used here included measurements from tropical, temperate and Arctic
latitudes [28] in the respective proportions ~20:6:1. Temperature-proxy data were therefore dominated
by paleotropical data. Radiative forcing varies with latitude [48], and the present MODTRAN modeling
exercises (described below) therefore included tropical latitudes to enable the most accurate possible
comparison of modeled with empirical climate data. Forcing of T by CO2 computed using MODTRAN
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was used for all correlation analyses with paleoclimate proxies contained in the empirical databases
evaluated here.

To estimate the integrity of temperature-proxy data, δ18O values were averaged into bins of
2.5 million years (My) and the coefficient of variation (CV; the standard deviation divided by the
mean) was plotted against age for the updated δ18O database [28]. The Pearson correlation coefficient
between age and CV is non-discernible (R = 0.08, p = 0.11, n = 427; Figure 1a). Enhanced variance
characterizes two sampling bandwidths, 0–50 Mybp and 100–200 Mybp (Figure 1), while older
sample ages are associated with low and stable variance. The resolution of temperature-proxy
measures is relatively high—6680 samples across 522 My, or a mean of 12.8 sample datapoints per My
corresponding to a mean sampling interval of 78,125 thousand years (Ky)—and does not decline with
sample age (Figure 2a). Assuming that repeat-measure variance is inversely related to sample quality,
these findings do not support the hypothesis that older δ18O data are compromised in comparison with
more recent δ18O data by age-related degeneration of information quality from, for example, diagenetic
settling [49,50]. Analysis of the more comprehensive databases used here, therefore, supports the same
conclusions about variation of data quality with age as reached earlier on the basis of more limited
datasets [28,38,51].
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Figure 1. Variance in repeat proxy measurements over the Phanerozoic Eon. The coefficient of variation
(the standard deviation divided by the mean) is plotted against sample age using data grouped in
bins of 2.5 My for the temperature (a) and atmospheric CO2 concentration (b) proxies used in this
study. These graphs suggest that older samples are affected minimally by degeneration of data quality
(e.g., diagenesis).

Stratigraphic and age uncertainty for temperature proxies are from Prokoph et al. 2008 [28].
According to these investigators, maximum stratigraphic uncertainty was <5% of the mean sample
age, while a minimum 1σ uncertainty of 0.5% of the mean age was applied to all samples [28] (p. 115).
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Error analysis of a smaller but overlapping dataset yielded isotopic error bars for T that were “smaller
than datapoint symbols” [52] (Figure 1, p. 380). In this case uncertainties in the isotopic proxies of δ18O
are unlikely to have altered the conclusions of the present study.

2.3. CO2 Proxies

Proxies of atmospheric CO2 (n = 831) were obtained from the expanded and updated CO2 database
compiled by Royer [40] and composed of measurements from six sources, predominantly δ13C (61%)
consisting of paleosols (39%), plankton (foraminiferans, 20%) and liverworts (2%). The balance of CO2

proxy data are from measurements of stomatal indices/ratios (29%), marine boron (10%) and sodium
carbonates (<1%). Variance of mean atmospheric CO2 proxy values averaged in 2.5 My bins showed a
small but discernible positive correlation with age (R = 0.33, p = 0.002, n = 77; Figure 1b). The number
of measurements per mean (sample resolution) declines with age (Figure 2b), however, i.e., sample
resolution is lower for older portions of the record. These statistical characteristics of the dataset, rather
than deterioration of information quality with age, may explain the weak increase in sample CV with
age. Error analysis suggests that the maximum uncertainty associated with CO2 concentration proxies
is ~17–50% for foraminifera at an atmospheric CO2 concentration of 1500 ppmv, less at lower CO2

concentrations, and less for other proxies such as boron [40] (Figure 3, p. 255). The uncertainties in
proxies of atmospheric CO2 concentration (2σ, 96% confidence limits) are generally <200 ppmv [52]
(Figure 1, p. 380). In this case uncertainties in the isotopic proxies of atmospheric CO2 concentration in
the ancient atmosphere are unlikely to have compromised the conclusions drawn here.

Climate 2017, 5, 76 5 of 34 

 

“smaller than datapoint symbols” [52] (Figure 1, p. 380). In this case uncertainties in the isotopic proxies 
of δ18O are unlikely to have altered the conclusions of the present study. 

2.3. CO2 Proxies 

Proxies of atmospheric CO2 (n = 831) were obtained from the expanded and updated CO2 
database compiled by Royer [40] and composed of measurements from six sources, predominantly 
δ13C (61%) consisting of paleosols (39%), plankton (foraminiferans, 20%) and liverworts (2%). The 
balance of CO2 proxy data are from measurements of stomatal indices/ratios (29%), marine boron 
(10%) and sodium carbonates (<1%). Variance of mean atmospheric CO2 proxy values averaged in 
2.5 My bins showed a small but discernible positive correlation with age (R = 0.33, p = 0.002, n = 77; 
Figure 1b). The number of measurements per mean (sample resolution) declines with age (Figure 
2b), however, i.e., sample resolution is lower for older portions of the record. These statistical 
characteristics of the dataset, rather than deterioration of information quality with age, may explain 
the weak increase in sample CV with age. Error analysis suggests that the maximum uncertainty 
associated with CO2 concentration proxies is ~17–50% for foraminifera at an atmospheric CO2 
concentration of 1500 ppmv, less at lower CO2 concentrations, and less for other proxies such as 
boron [40] (Figure 3, p. 255). The uncertainties in proxies of atmospheric CO2 concentration (2σ, 96% 
confidence limits) are generally <200 ppmv [52] (Figure 1, p. 380). In this case uncertainties in the 
isotopic proxies of atmospheric CO2 concentration in the ancient atmosphere are unlikely to have 
compromised the conclusions drawn here.  

 
Figure 2. Sample resolution of climate proxies over the Phanerozoic Eon. Shown are sample 
datapoints per My for δ18O (a) and atmospheric CO2 concentration (b). Zero values correspond to 
time periods in which no measurements are available. 

Averaging of T proxies, δ18O*(−1), was accomplished by computing means across different bin 
widths from 0.5 to four My in duration. Densely-sampled portions of the temperature record 
enabled matched-pair analyses at resolutions down to a mean sampling interval of 59 Ky. Averaging 

Figure 2. Sample resolution of climate proxies over the Phanerozoic Eon. Shown are sample datapoints
per My for δ18O (a) and atmospheric CO2 concentration (b). Zero values correspond to time periods in
which no measurements are available.

Averaging of T proxies, δ18O*(−1), was accomplished by computing means across different
bin widths from 0.5 to four My in duration. Densely-sampled portions of the temperature record
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enabled matched-pair analyses at resolutions down to a mean sampling interval of 59 Ky. Averaging of
δ18O data was also performed with the moving average method used by Veizer et al. [38], i.e., mean
δ18O*(−1) proxies were computed over windows of different widths from six to 50 My and advanced
in time increments of 3–10 My. Calculation of the moving average excludes initial values less than half
the width of the averaging window, or 25 My for the 10–50 averages, requiring substitution of one-My
averaged means in this period of the 10–50 mean temperature time series for the recent Phanerozoic.
Temperature-proxy data processing was done on both non-detrended and linearly-detrended data.
Detrended T-proxy data are considered more reliable for correlation analysis because they are not
encumbered by the large (8–9 ◦C) continuous cooling of the globe that took place across the Phanerozoic
Eon, which could in principle dominate or at least influence computed correlation coefficients.

2.4. Analytic Approaches and Limitations

Averaging of proxies for atmospheric CO2 concentration during the Phanerozoic was necessarily
performed differently for different time periods owing to differences in sampling resolution (Figure 2).
Averages were computed across bin widths of one My or less for the time period from 85 to
0 Mybp, over which every one-My bin contains at least one sample datapoint. From 173 to 85 Mybp,
sample resolution of CO2 concentration proxies is lower and a small number of one-My bins lack
a representative proxy datapoint. Across this time period averages were either computed in larger
bin widths, or empty bins were filled with linearly-interpolated CO2 concentration values following
Prokoph et al. [28] (p. 123). In the oldest part of the Phanerozoic climate record, from 173 to 425 Mybp,
approximately 100 one-My bins contain at least one datapoint, while 252 one-My bins are empty.
Across this sparsely-sampled time period, bins were likewise either filled with linearly-interpolated
datapoints or data were averaged in larger bin widths, but the strength of possible inferences is
compromised using interpolated data in sparsely-sampled time periods.

Given these sampling regimens for atmospheric CO2 concentration proxies, inferences drawn
from correlation analysis between CO2 concentration and T are strongest for the most recent
portion of the Phanerozoic (85 to 0 Mybp), moderate for the middle portion of the record (173 to
86 Mybp), and weak or nil for the older Phanerozoic (425 to 174 Mybp). Evaluation of the tables
of correlation coefficients presented in the Results illustrates that these three levels of confidence in
correlation data comprise respectively 41.2%, 11.8% and 47% of the correlation coefficients evaluated.
Conclusions drawn from the strong, moderate and weak segments of the record are nonetheless
similar. Higher-resolution analyses—down to a sampling interval of 59 Ky and including matched-pair
correlations analysis—were enabled by relatively high sample resolution during the recent- to
mid-Phanerozoic, and these all yielded conclusions identical to those drawn from the entire dataset.

Spectral power analysis was done on both linearly-detrended and non-detrended data. All results
shown here are based on linearly-detrended data, following the analytic approach of Prokoph et al. [28]
(p. 126). Spectral analysis was done using SAS JMP software. This software employs Fisher’s Kappa
Test Statistic (κ) as a white-noise test, and returns the probability that the distribution analyzed is
generated by Gaussian (random) white noise against the alternative hypothesis that the spectral
distribution is non-random. Kappa is the ratio of the maximum value of the periodogram, I (f (Σ)), to its
average value. The probability (Pr) of observing a larger κ if the null hypothesis is true is given by:

Pr(k > κ) = 1 −
q

∑
j=0

(−1)j

(
q
j

)[
max(1 − jk

q
, 0)
]q−1

(1)

where q = n/2 if n is even and q = (n − 1)/2 if n is odd. This probability is reported for all spectral
analyses done here in the corresponding figure legends. Auto- and cross-correlation were performed
to evaluate possible non-random periodicity in all records and to estimate phase relations between
cyclic variables, respectively. The sampling frequencies of temperature and CO2 concentration proxies
were sufficient to detect cycles down to 120 Ky in period, depending on the time segment of the record
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analyzed. All cycles identified here in proxies for both atmospheric CO2 concentration and T are
more than three orders of magnitude larger in period than the Nyquist-Shannon sampling frequency
minimum of two samples per cycle [53–56], eliminating frequency alias as a possible source of error.

All hypotheses were tested using conventional two-sided parametric statistics and a minimum
alpha level of 0.05. Regressions were computed and corresponding best-fit trendlines fitted using
the method of least squares. Pearson product-moment correlation coefficients were computed and
evaluated using the distribution of the t-statistic under the conservative assumption of unequal
population variance (two-sided heteroscedastic t-tests). Tests for equal variance and normal
distribution of data were not, however, conducted, and datapoints from both CO2 and T proxies
clearly violate the parametric assumption of independence of measurements. To compensate for these
limitations of parametric statistics, the distribution-free non-parametric Spearman Rho correlation
coefficient was also computed across all major climate transitions (Tables), with conclusions identical
to those drawn using the Pearson correlation coefficient.

2.5. MODTRAN Computations

Several atmospheric absorption/emission codes have been developed to compute radiative
forcing (RF) from atmospheric trace gases [29–31,48,57,58]. In this study, RF from CO2 was
computed using MODTRAN, selected from available atmospheric forcing codes in part because
MODTRAN is “the most widely used and accepted model for atmospheric transmission.” [58] (p. 179).
Additionally, MODTRAN is implemented online at the University of Chicago website in simple,
user-friendly format [59], facilitating replication of the present modeling results. MODTRAN
calculations were done using several parameters, including default settings, as reported with the
results. In all cases forcing parameters were computed for altitudes known to correspond to the
tropopause at the indicated latitudes.

Radiative forcing can take several forms, depending on the surface considered (e.g., the top of
atmosphere, the tropopause, or the surface of the Earth), the time scale of the forcing (instantaneous,
pulsed, delayed, integrated) and the molecular species of the greenhouse gas considered (CO2, water
vapor, all greenhouse gases). This study is explicitly limited to instantaneous forcing measured at the
tropopause, as is conventional [29–31]. This study is constrained further to forcing in the absence of all
climate feedbacks, since T is held constant in computational iterations of the MODTRAN code and
therefore feedbacks from changing temperature are eliminated. This approach has the advantage of
constraining forcing to changes induced at the tropopause by the single molecular species of interest,
in this case CO2. Details of model settings used are presented with the results.

2.6. Pilot Studies

To assess the robustness of the findings and conclusions reported here, more than a dozen
exploratory data analyses of the correlation between the concentration of atmospheric CO2 and T over
the Phanerozoic were conducted. These pilot studies employed the original T [38] and atmospheric
CO2 concentration [19] proxy databases. Pilot studies also included temperatures adjusted for the pH
of seawater versus atmospheric CO2 concentration across the Phanerozoic [19], temperatures projected
using the carbon-cycle model GEOCARB-III versus CO2 concentration [19], and both detrended
and non-detrended temperature records computed from δ18O data drawn from the older proxy
database [24,38] versus both the old [19] and updated [40] atmospheric CO2 concentration databases.

Pilot studies also utilized three forms of the updated δ18O database in different combinations
with the old and new atmospheric CO2 concentration databases, including updated low-resolution
(10–50 moving averages) and high-resolution averaged δ18O data (3–6 moving averages, four-bin
averages). In pilot studies, atmospheric CO2 concentration ranges were incremented in steps of 5,
10, 15, 20, 30 and 40 datapoints for purposes of correlation analysis. Warming and cooling episodes
were defined in pilot studies from three different averaged temperature proxy records, 10–50, 3–6,
and four-bin means.
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The results and conclusions of these preliminary studies were in all cases similar to those
reported here from the updated and expanded proxy databases [28,40]. Conclusions were similar
also using temperature averages computed at high-resolution (four-bin) and smoothed using the
lowest-resolution (10–50), and the high-intermediate resolution for increments in CO2 concentration
for correlation analysis. The similarity of results and conclusions across all exploratory data analyses
conducted demonstrates that the findings and interpretations reported here are robust across analytic
datasets, protocols and platforms.

Following completion of most of this research, a new and more comprehensive database of
58,532 Phanerozoic temperature proxies from low-Mg calcite marine shells from the last 512 My
was published [39]. This database incorporates the preceding compilation [28] but is 2–3 times
larger. The expanded sample did not alter visibly the time series of T over the Phanerozoic, however
(cf. [28] Figure 1, with Figure 3 of this paper). Moreover, this expanded database does not include
additional proxy data for atmospheric CO2 concentration. The correlation coefficients reported here
were, therefore, not re-computed.

3. Results

3.1. Overview of the Phanerozoic Climate

Temperature proxies show a steady decline across the Phanerozoic Eon modulated by slow
temperature cycles, both in raw data (Figure 3a) and in curves fitted to these data using diverse
filtering algorithms (Figure 3a,b). Non-detrended temperature-proxy data provide the clearest and
most accurate view of the temperature profile of the ancient climate, declining by an estimated
8–9 ◦C over 522 My [38] (Figure 3). However, linearly-detrended temperature-proxy data provide a
clearer indication of the periodicity of the climate during the Phanerozoic (lower curves in Figure 3b).
The original analysis of Veizer et al. [38] shows a temperature-proxy periodicity of 135–150 My and
a cycle amplitude (trough-to-peak) convertible to ~4 ◦C (Figure 3b, purple curve). The expanded
database of Prokoph et al. [28] shows approximately the same periodicity and a slightly reduced
cycle temperature-proxy amplitude (Figure 3b, red curve). These findings collectively demonstrate
that temperature oscillated during the Phanerozoic on a long time scale, with an average periodicity
estimated visually as 135–150 My. Spectral analysis [28] placed the energy density peak at 120 My,
but as noted by the authors, that estimate was based on a single cycle [28] (p. 127).
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Figure 3. Temperature proxies over the Phanerozoic Eon. (a) Raw temperature data (red datapoints)
and fitted black curve (3–6 My moving average). Original data are from Prokoph et al. [28].
(b) averaged non-detrended (upper curves) and linearly-detrended (lower curves) temperature proxy
data. The curves of moving averages are color coded following the key in My. In (b), detrended older
data from Veizer et al. [38] and inclusive newer and more comprehensive data from Prokoph et al. [28]
are compared (lower curves).

Proxies for the atmospheric concentration of CO2 across the Phanerozoic Eon show a weak
declining trend over the Phanerozoic Eon (Figure 4). The baseline remains relatively constant near
1000 parts per million by volume (ppmv) with numerous smaller troughs and larger peaks as high
as nearly 6000 ppmv at 200 Mybp (Figure 4). Therefore, the steady and steep decline in mean global
temperature during the Phanerozoic is not attributable to a corresponding much weaker decline in
atmospheric CO2 concentration. As discussed in the Methods, the smaller number of proxy datapoints
for atmospheric CO2 concentration yields a less complete record than for T, with the consequence
that the averaged curve (red curve in Figure 4) exhibits intermittent gaps over the represented span
of the Phanerozoic. The most complete continuous proxy record of atmospheric CO2 concentration
is from ~174 to 0 Mybp. The most densely- and continuously-sampled record is the last 80 My,
which encompasses the Paleocene-Eocene Thermal Maximum starting at approximately 56 Mybp and
includes the steady global cooling that has taken place since that time.
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Figure 4. Atmospheric carbon dioxide (CO2) concentration proxies over the Phanerozoic Eon.
Original raw data (green datapoints, n = 831) are from the database compiled by Royer [40]. The fitted
red curve was computed as a 3–6 My moving average.

3.2. Temperature versus Atmospheric Carbon Dioxide

Temperature and atmospheric CO2 concentration proxies plotted in the same time series panel
(Figure 5) show an apparent dissociation and even an antiphasic relationship. For example, a CO2

concentration peak near 415 My occurs near a temperature trough at 445 My. Similarly, CO2

concentration peaks around 285 Mybp coincide with a temperature trough at about 280 My and
also with the Permo-Carboniferous glacial period (labeled 2 in Figure 5). In more recent time periods,
where data sampling resolution is greater, the same trend is visually evident. The atmospheric
CO2 concentration peak near 200 My occurs during a cooling climate, as does another, smaller
CO2 concentration peak at approximately 37 My. The shorter cooling periods of the Phanerozoic,
labeled 1–10 in Figure 5, do not appear qualitatively, at least, to bear any definitive relationship with
fluctuations in the atmospheric concentration of CO2.

Regression of linearly-detrended temperature proxies (Figure 3b, lower red curve) against
atmospheric CO2 concentration proxy data reveals a weak but discernible negative correlation between
CO2 concentration and T (Figure 6). Contrary to the conventional expectation, therefore, as the
concentration of atmospheric CO2 increased during the Phanerozoic climate, T decreased. This finding
is consistent with the apparent weak antiphasic relation between atmospheric CO2 concentration
proxies and T suggested by visual examination of empirical data (Figure 5). The percent of variance
in T that can be explained by variance in atmospheric CO2 concentration, or conversely, R2 × 100, is
3.6% (Figure 6). Therefore, more than 95% of the variance in T is explained by unidentified variables
other than the atmospheric concentration of CO2. Regression of non-detrended temperature (Figure 3b,
upper red curve) against atmospheric CO2 concentration shows a weak but discernible positive
correlation between CO2 concentration and T. This weak positive association may result from the
general decline in temperature accompanied by a weak overall decline in CO2 concentration (trendline
in Figure 4).
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Figure 5. Temperature (T) and atmospheric carbon dioxide (CO2) concentration proxies during the
Phanerozoic Eon. Time series of the global temperature proxy (δ18O*(−1), red curve, n = 6680) are from
Prokoph et al. [28] while concurrent atmospheric CO2 concentration proxies (green curve, n = 831)
are from Royer [40]. The red curve plots moving averages of the non-detrended T proxy averaged in
50 My windows incremented in ten-My steps (the 10–50 My moving average in Figure 3b). The green
curve shows mean CO2 concentration values in one-My bins averaged over high-resolution portions of
the CO2 record (the most recent Phanerozoic) and linearly interpolated over low-resolution portions
(the older Phanerozoic). Glaciations based on independent sedimentary evidence are designated
by vertical blue cross-hatched areas, while putative cool periods are designated by vertical solid
blue bars. Major cooling and warming cycles are shown by the colored bars across the top while
geological periods and evolutionary milestones are shown across the bottom. Abbreviations: CO2,
atmospheric concentration of carbon dioxide based on various proxies (Methods); ppmv, parts per
million by volume; Silu, Silurian; Neo, Neogene; Quatern, Quaternary. The three major glacial periods
and ten cooling periods identified by blue cross-hatches and solid lines, respectively, are (after [21]):
Glacial periods. 1. late Devonian/early Carboniferous; 2. Permo-Carboniferous; 3. late Cenozoic.
Cooling periods. 1. late Pliensbachian; 2. Bathonian; 3. late Callovian to mid-Oxfordian; 4. Tithonian
to early Berriasian; 5. Aptian; 6. mid-Cenomanian; 7. mid-Turonian; 8. Campanian-Maastrichtian
boundary; 9. mid-Maastrichtian; 10. late-Maastrichtian.
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Figure 6. Scatter plot of linearly-detrended temperature-proxy data averaged in one-My bins from
425 to 0 Mybp versus atmospheric carbon dioxide concentration. The negative correlation coefficient
(R = −0.19, n = 206) is discernibly different from zero (p = 0.006) but weak (R2 = 0.036). The trendline
was fitted by the method of least squares.

The correlation coefficients between the concentration of CO2 in the atmosphere and T were
computed also across 15 shorter time segments of the Phanerozoic. These time periods were selected
to include or bracket the three major glacial periods of the Phanerozoic, ten global cooling events
identified by stratigraphic indicators, and major transitions between warming and cooling of the Earth
designated by the bar across the top of Figure 5. The analysis was done separately for the most recent
time periods of the Phanerozoic, where the sampling resolution was highest (Table 1), and for the older
time periods of the Phanerozoic, where the sampling resolution was lower (Table 2). In both cases
all correlation coefficients between the atmospheric concentration of CO2 and T were computed both
for non-detrended and linearly-detrended temperature data (Tables 1 and 2, column D1). The typical
averaging resolution in Table 1 is one My, although resolutions down to 59 Ky were obtained over
some time periods of the recent Phanerozoic (see below). Table 2 is also based on one-My interval
averaging, although CO2 values were interpolated in about half the cases and therefore inferences are
correspondingly weaker as noted in the Methods.

For the most highly-resolved Phanerozoic data (Table 1), 12/15 (80.0%) Pearson correlation
coefficients computed between atmospheric CO2 concentration proxies and T proxies are
non-discernible (p > 0.05). Of the three discernible correlation coefficients, all are negative, i.e., T
and atmospheric CO2 concentration are inversely related across the corresponding time periods. Use of
the distribution-free Spearman Rho correlation coefficient yields similar conclusions: 10/13 Spearman
correlation coefficients computed (76.9%) are non-discernible and all discernible correlation coefficients
are negative (Table 1). The similarity of results obtained using parametric and non-parametric statistics
suggests that conclusions from the former were not affected by the underlying assumptions (normality,
independence, equal variance).

The most recent Phanerozoic was sampled most frequently in both the temperature and
atmospheric CO2 concentration proxy databases used here (Figure 2). Correlation coefficients over
these “high-resolution” regions are designated by the superscript “c” in Table 1, and include Entries #
1 and # 3. The average sample resolutions over these time periods are 105 Ky (Entry # 1) and 59 Ky
(Entry # 3), a three order-of-magnitude improvement over the one-My resolution that characterizes
most paleoclimate data evaluated here. The respective correlation coefficients between temperature
and atmospheric CO2 concentration proxies are nonetheless non-discernible, consistent with the
majority of correlation analyses. Correlation analysis for the highest-resolution data, therefore, yield
the same conclusions as from the broader dataset.
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Table 1. Correlation coefficients, temperature vs. atmospheric CO2 concentration (column D1) and
temperature vs. marginal forcing (column D2) for the most recent (highest resolution) time periods of
the Phanerozoic Eon.

A. Entry
#

B. Time
(Mybp)

C. Geological Periods
and/or Description

D: R (n, p)
D(1): CO2 v. T D(2): ∆RFCO2 v. T

1 71.6–69.6
Campanian-Maastrichtian

boundary

a N/A a N/A
b N/A b N/A
c 0.31 (19, 0.19) c −0.31 (19, 0.20)
d −0.20 (11, 0.56) d 0.02 (11, 0.96)
e −0.39 (11, 0.23) e 0.39 (11, 0.23)

2 80–50
bracketed

Campanian-Maastrichtian
boundary

a 0.16 (31, 0.40) a −0.06 (31, 0.75)
b 0.16 (31, 0.38) b −0.05 (31, 0.80)
a 0.17 (31, 0.35) a −0.12 (31, 0.52)
b 0.19 (31, 0.31) b −0.12 (31, 0.52)
d 0.03 (110, 0.78) d −0.13 (110, 0.19)
e −0.006 (110, 0.95) e 0.03 (110, 0.72)

3 67.5–66.5 mid-Maastrichtian

a N/A a N/A
b N/A b N/A
c 0.09 (17, 0.92) c −0.02 (17, 0.93)
d N/A d N/A
e N/A e N/A

4 80–40 bracketed mid-Maastrichtian

a −0.11 (41, 0.48) a 0.14 (41, 0.37)
b 0.01 (41, 0.95) b 0.06 (41, 0.70)
a −0.16 (41, 0.32) a 0.10 (41, 0.55)
b 0.002 (41, 0.99) b −0.03 (41, 0.84)
d −0.004 (116, 0.96) d −0.12 (116, 0.20)
e −0.04 (116, 0.68) e 0.05 (116. 0.59)

5 0–34
most recent global glaciation

(late Cenozoic)

a −0.63 (34, 0.00005) a 0.63 (34, 0.001)
b −0.73 (34, 0.00001) b 0.53 (34, 0.00006)
a −0.48 (34, 0.0041) a 0.52 (34, 0.002)
b −0.58 (34, 0.0003) b 0.62 (34, 0.0001)
d −0.25 (179, 0.0006) d 0.20 (179, 0.0075)
e −0.26 (179, 0.0005) e 0.26 (179, 0.0005)

6 0–26
late Cenozoic, CO2 range

similar to present

a 0.043 (26, 0.83) a −0.02 ( 26, 0.94)
b −0.16 (26, 0.44) b 0.16 (26, 0.42)
a −0. 052 (26, 0.80) a 0.12 (26, 0.55)
b −0.16 (26, 0.44) b 0.23 (26, 0.25)
d −0.03 (154, 0.70) d 0.03 (154, 0.71)
e −0.05 (154, 0.53) e 0.05 (154, 0.53)

Red and black font designate discernible and non-discernible (p < 0.05, two-sided tests) Pearson product moment
correlation coefficients (R), respectively. Green and blue fonts designate discernible and non-discernible Spearman
Rho non-parametric (distribution free) correlation coefficients, respectively. The sample size and p value for
discernibility are in parentheses immediately following each R value. The superscripts denote R calculated as
follows: a. non-detrended temperature data averaged into one-My bins; b. linearly detrended temperature data
averaged into one-My bins; c. non-detrended temperature data at the highest temporal resolution supported
by the sampling frequency for the temperature-proxy database (see text); d. detrended temperature data with
CO2 datapoints organized as matched pairs (see text); and e. Spearman Rho correlation coefficient for detrended
temperature data with atmospheric CO2 concentration and T datapoints organized into matched pairs. The first
column (Entry #) is included to facilitate cross referencing with the text. N/A designates non-applicable values
owing to a sample size smaller than ten.
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Table 2. As in Table 1, but for the most ancient (lowest resolution) time periods of the Phanerozoic Eon.

A. Entry
#

B. Time
(Mybp)

C. Geological Periods
Covered and/or Description

D: R (n, p)

D(1): CO2 v. T D(2): ∆RFCO2 v. T

1 0–424 most of Phanerozoic Eon

a 0.15 (191, 0.035) a 0.10 (185, 0.16)
b −0.19 (206, 0.006) b 0.16 (199, 0.02)
a −0.048 (191, 0.248) a −0.037 (185, 0.61)
b −0.202 (191, 0.005) b 0.193 (185, 0.0082)

2 424–285
first Phanerozoic
temperature cycle
(trough to trough)

a 0.22 (33, 0.23) a −0.14 (35, 0.42)
b −0.16 (33, 0.37) b 0.17 (35, 0.32)
a −0.04 (33, 0.86) a 0.28 (33, 0.21)
b −0.095 (33, 0.61) b 0.17 (33, 0.36)

3 285–135
second Phanerozoic
temperature cycle
(trough to trough)

a −0.17 (43, 0.26) a 0.33 (39, 0.04)
b −0.16 (43, 0.30) b 0.25 (39, 0.12)
a −0.14 (43, 0.36) a 0.18 (39, 0.28)
b −0.22 (38, 0.10) b 0.19 (38, 0.23)

4 326–267
Permo-Carboniferous

glaciation

a 0.28 (22, 0.28) a 0.03 (21, 0.90)
b 0.28 (22, 0.20) b 0.05 (21, 0.82)
a 0.09 (22, 0.69) a 0.26 (21, 0.25)
b −0.03 (20, 0.90) b 0.26 (20, 0.27)

5 400–200
bracketed

Permo-Carboniferous
glaciation

a −0.30 (44, 0.05) a 0.20 (42, 0.20)
b −0.17 (44, 0.26) b 0.16 (42, 0.31)
a −0.22 (44, 0.16) a 0.31 (42, 0.04)
b −0.12 (44, 0.44) b 0.24 (42, 0.12)

6 225–73
Period of flat baseline with

~My ∆RF oscillations

a 0.15 (80, 0.17) a −0.10 (70, 0.28)
b −0.11 ( 80, 0.25) b −0.10 (77, 0.38)
a 0.23 (76, 0.042) a −0.27 (72, 0.02)
b −0.03 (76, 0.79) b −0.01 (70, 0.93)

7 184–66.5
early Jurassic to Cretaceous
(brackets all cool periods)

a 0.15 (71, 0.11) a −0.24 (68, 0.03)
b −0.01 (71, 0.09) b −0.05 (68, 0.68)
a 0.20 (71, 0.09) a −0.25 (68, 0.04)
b 0.02 (71, 0.88) b −0.07 (68, 0.56)

8 200–50
bracketed early

Jurassic to Cretaceous

a 0.21 (93, 0.02) a −0.21 (89, 0.02)
b −0.11 (93, 0.30) b −0.05 (89, 0.61)
a 0.25 (93, 0.02) a −0.27, (89, 0.01)
b −0.10 (93, 0.33) b 0.05 (89, 0.64)

9 125–112 Aptian

a 0.63 (12, 0.03) a −0.71 (11, 0.01)
b 0.62 (12, 0.03) b −0.70 (11, 0.02)
a 0.36 (12, 0.25) a −0.26 (11, 0.43)
b 0.36 (12, 0.25) b −0.27 (11, 0.41)

10 140–80 bracketed Aptian

a 0.12 (43, 0.43) a −0.27 (41, 0.08)
b 0.11 (43, 0.43) b −0.29 (41, 0.07)
a 0.17 (43, 0.25) a −0.23 (41, 0.14)
b 0.15 (43, 0.35) b −0.22 (41, 0.17)

Conventions are the same as for Table 1 except that high-resolution data (subscripts c and d) and matched pair
analyses (subscript e) are absent.

Sample datapoints are sufficiently frequent in the recent Phanerozoic that individual datapoints
of temperature proxies can be closely matched (±<1%) with individual datapoints of atmospheric CO2

concentration proxies, eliminating the need for interpolation or averaging in bins. These matched-pair
data are the strongest available for correlation analysis and are designated by the superscript “d”
(parametric) and “e” (non-parametric) in Table 1, comprising Entries # 1, # 2, and # 4–6. The sampling
resolution over these regions is computed by dividing the duration of the corresponding period by the
sample size. To illustrate the period from 26 to 0 Mybp (Entry # 6 in Table 1), the Pearson correlation
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coefficient is −0.03, the mean relative age difference is −0.22%, the number of sample datapoints is
154, and, therefore, the mean sampling interval is 169 Ky. The mean sampling interval for all of these
high-resolution calculations is 199 Ky. Of the ten matched-pair correlation coefficients computed over
the early Phanerozoic (five non-parametric), eight are non-discernible, two are discernible, and both
discernible correlation coefficients are negative. Therefore, the most powerful and highly-resolved
matched-pair regression analysis possible using these proxy databases yields the same conclusions as
drawn from the entire dataset.

For the less highly-resolved older Phanerozoic data (Table 2), 14/20 (70.0%) Pearson correlation
coefficients computed between atmospheric CO2 concentration and T are non-discernible. Of the
six discernible correlation coefficients, two are negative. For the less-sampled older Phanerozoic
(Table 2), 17/20 (85.0%) Spearman correlation coefficients are non-discernible. Of the three discernible
Spearman correlation coefficients, one is negative. Combining atmospheric CO2 concentration vs. T
correlation coefficients from both tables, 53/68 (77.9%) are non-discernible, and of the 15 discernible
correlation coefficients, nine (60.0%) are negative. These data collectively support the conclusion
that the atmospheric concentration of CO2 was largely decoupled from T over the majority of the
Phanerozoic climate.

Spectral analyses of time series of atmospheric CO2 concentration and T over the Phanerozoic Eon
(Figure 7) reveal non-random distribution of spectral density peaks at My time scales. Close association
of atmospheric CO2 concentration and T cycles would be indicated by spectral density peaks at
the same period in the respective periodograms. Instead, the periodogram for atmospheric CO2

concentration shows spectral peaks at 2.6, 3.7, 5.3, 6.5 and 9.4 My, while the periodogram for T shows
similar but smaller peaks at lower frequencies, including 2.6, 3.9 and 5.2 My, but lower frequency
(higher period) peaks that are not matched in the atmospheric CO2 concentration periodogram occur
at 6.0, 6.8, 7.8, 8.9, 11.3 and 14.6 My. The finding that periodograms of atmospheric CO2 concentration
proxies and T proxies exhibit different frequency profiles implies that atmospheric CO2 concentration
and T oscillated at different frequencies during the Phanerozoic, consistent with disassociation between
the respective cycles. This conclusion is corroborated by the auto- and cross-correlation analysis
presented below.
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Figure 7. Spectral power periodograms of atmospheric CO2 and temperature over the Phanerozoic
Eon. The green and red curves show CO2 and temperature spectral density profiles, respectively.
The temperature periodogram was constructed using detrended temperature proxy data. Time periods
covered and (in parentheses) Fisher’s Kappa and the corresponding probability that the atmospheric
CO2 concentration and T periodograms result from white (Gaussian) noise are 85 to 0 My
(12.57, 1.96 × 10−5) and 522 to 0 My (28.98, 2.0 × 10−13), respectively.
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3.3. Marginal RF of Temperature by Atmospheric CO2

The absence of a discernible correlation between atmospheric CO2 concentration and T over
most of the Phanerozoic, as demonstrated above, appears to contravene the widely-accepted
view about the relationship between atmospheric CO2 and temperature, by which increases in
atmospheric CO2 concentration cause corresponding increases in T owing to increased radiative forcing.
Moreover, this finding from the ancient climate appears to be inconsistent with the well-established
positive correlation between atmospheric CO2 concentration and T across glacial cycles of the last
400–800 Ky [60,61]. I sought to resolve these apparent paradoxes by evaluating a more direct functional
measure of the warming effect of atmospheric CO2 concentration on T, radiative forcing (RF), quantified
using the well-known logarithmic relationship between RF by atmospheric CO2 (RFCO2) and its
atmospheric concentration. The logarithmic RFCO2 curve, established more than a century ago [10],
implies a saturation effect, or diminishing returns, in which the marginal forcing power of atmospheric
CO2 declines as CO2 concentration in the atmosphere increases. I hypothesized that the consequent
decline in absolute and marginal forcing at high atmospheric CO2 concentrations over the Phanerozoic
climate might explain the absence of discernible correlation between the atmospheric concentration of
atmospheric CO2 concentration and T simply because large swings in atmospheric CO2 concentration
are then expected to have little effect on marginal forcing.

To evaluate this possibility, the RFCO2 forcing curve was first constructed using the MODTRAN
atmospheric absorption/transmittance code (Figure 8a). Six conditions were modeled, represented
by successively lower curves in each part of Figure 8a,b: tropical latitudes, mid-latitudes, and
the sub-Arctic, each modeled assuming one of two cloud conditions, clear-sky or cumulus clouds.
The respective altitudes of the tropopause are 17.0, 10.9 and 9.0 km. The global mean tropopause
of the International Standard Atmosphere is 10.95 km in altitude, corresponding to the mid-latitude
(green) curves in Figure 8, which is therefore considered most representative of mean global forcing.
Each latitude was modeled with no clouds or rain (upper curve of each color pair in Figure 8) and with
a cloud cover consisting of a cumulus cloud base 0.66 km above the surface and a top at 2.7 km above
the surface (lower curve of each color pair). Additional MODTRAN settings used to construct Figure 8
are the model default values, namely: CH4 (ppm) = 1.7, Tropical Ozone (ppb) = 28, Stratospheric Ozone
scale = 1, Water Vapor Scale = 1, Freon Scale = 1, and Temperature Offset, ◦C = 0. The RF curves in
Figure 8a demonstrate that the absolute value of forcing at the tropopause increases with atmospheric
opacity (thickness) and is therefore greatest in tropical latitudes and least in the sub-Arctic, as already
well-established [48]. The shape of the logarithmic curve is similar at different latitudes, although the
absolute value of forcing decreases at progressively higher latitudes, also as expected.

The ∆RFCO2 curves (Figure 8b) were constructed by difference analysis of each radiative forcing
curve (Figure 8a). Each datapoint in every RF curve was subtracted from the next higher datapoint in
the same curve to compute the marginal change in forcing over the corresponding range of atmospheric
CO2 concentrations for the identified latitudes and cloud conditions. The resulting ∆RFCO2 curves
(Figure 8b) are shown here only for the natural range of atmospheric CO2 concentration, i.e.,
~200–6000 ppmv CO2, because only these values are normally relevant to forcing of T. Tropical latitudes
were used to compute ∆RFCO2 for correlation analysis because the majority of empirical datapoints
in the databases used are from paleotropical environments (Methods). Forcing is higher than the
global mean in the tropics, however, owing to greater atmospheric opacity. Mid-latitudes are more
representative of the global mean, and were therefore used to compute the decay rates of incremental
forcing versus the atmospheric concentration of CO2.

The mid-latitude forcing curve in Figure 8a corresponding to a clear sky (arrow in Figure 8b) is
best fit (R2 = 0.9918) by the logarithmic function:

y = 3.4221ln(x) + 1.4926 (2)
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This function explains 99.18% of the variance in forcing associated with CO2 concentration and
conversely. The marginal forcing curves (Figure 8b) can be fit by both exponential and power functions.
The corresponding mid-latitude curve in Figure 8b corresponding to a clear sky, for example, is best fit
(R2 = 0.9917) by the power function:

y = 562.43x−0.982 (3)

This power function explains 99.17% of the variance in ∆RFCO2 associated with CO2.
An exponential function, however, also provides a reasonable fit (R2 = 0.8265) to the same ∆RFCO2 data:

y = 0.9745e−4E−04x (4)

Given that both power and exponential functions provide acceptable fits to the marginal forcing
curves, I used two corresponding measures to quantify the rate of decay of marginal forcing by CO2:
the half-life and the exponential decay constant, respectively. Half-life is the time required to decline to
half the original value and is most appropriate for a power function. The exponential decay constant is
the time required for marginal forcing to decline to 1/e or 36.79% of its original (maximum) value and
is applicable only to an exponential function. Both the half-lives and the exponential decay constants
were calculated here using the best-fit mid-latitude clear-sky marginal forcing curves and are expressed
as the corresponding concentrations of atmospheric CO2 in units of ppmv.

For mid latitudes, MODTRAN calculations show that ∆RFCO2 peaks at 3.7 W/m2 at an
atmospheric concentration of CO2 of 200 ppmv, near the minimal CO2 concentration encountered in
nature during glacial cycling (~180 ppmv) [60,61]. From that peak ∆RFCO2 declines continuously with
increasing atmospheric CO2 concentration (Figure 8b) as RF increases continuously and logarithmically
(Figure 8a). Using the above Equations (3) and (4) respectively, ∆RFCO2 declines to half its initial
value at an atmospheric concentration CO2 of 337.15 ppmv, and to 1/e or 36.79% of its initial value
at 366.66 ppmv (Figure 8b). Both the half life and the exponential decay constant are similar across
forcing curves computed here as expected (Figure 8b). The half-life and exponential decay constant,
therefore, are comparable across latitudes while absolute forcing varies by more than 300%. At the
current atmospheric concentration of CO2 (~407 ppmv) (Figure 8b), CO2 forcing computed using
Equation (3) above has declined by nearly two-thirds, to 41.56% of its maximum natural forcing power.

If ∆RFCO2 is a more direct indicator of the impact of CO2 on temperature than atmospheric
concentration as hypothesized, then the correlation between ∆RFCO2 and T over the Phanerozoic
Eon might be expected to be positive and statistically discernible. This hypothesis is confirmed
(Figure 9). This analysis entailed averaging atmospheric CO2 concentration in one-My bins over
the recent Phanerozoic and either averaging or interpolating CO2 values over the older Phanerozoic
(Methods). Owing to the relatively large sample size, the Pearson correlation coefficient is statistically
discernible despite its small value (R = 0.16, n = 199), with the consequence that only a small fraction
(2.56%) of the variance in T can be explained by variance in ∆RFCO2 (Figure 9). Even though the
correlation coefficient between ∆RFCO2 and T is positive and discernible as hypothesized, therefore,
the correlation coefficient can be considered negligible and the maximum effect of ∆RFCO2 on T is for
practical purposes insignificant (<95%).
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Figure 8. Relationship among atmospheric CO2 concentration, radiative forcing (RF) and marginal
radiative forcing (∆RFCO2) computed using MODTRAN. Each graph shows a family of curves for
three latitudes (key in (b)) and two cloud conditions (labeled only for the top pair of red curves in
(a)). For each latitude the upper curve pertains to a cloudless sky and the lower curve to a cloudy sky
containing cumulus clouds starting a base at 0.66 km and a top of 2.7 km. Remaining model parameters
used to generate curves are described in the text. (a) Atmospheric CO2 concentration versus RF at the
tropopause. (b) Difference analysis of the curves in (a) to show marginal radiative forcing (∆RFCO2),
i.e., the change in forcing associated with a unit increment in atmospheric CO2. Colored curves are
in all cases computed from MODTRAN while the dashed black curves are best-fit logarithmic (a) or
power function trendlines (b). Abbreviations: ppmv, parts per million by volume; W/m2, Watts per
square meter. The arrow identifies the reference curve used for computing ∆RFCO2 decay constants
because it most closely approximates values for the International Standard Atmosphere (see text).
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Figure 9. Scatter plot of detrended temperature-proxy data averaged in one-My bins from 425 to 0 My
ago versus marginal RF by atmospheric CO2. The positive correlation coefficient (R = 0.16, n = 199) is
discernibly different from zero (p = 0.02) at this large sample size, but weak, i.e., as ∆RFCO2 increased,
the temperature proxy δ18O*(−1) increased only slightly. The trendline was fitted by the method of
least squares.
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The correlation coefficients between ∆RFCO2 and T were computed also across the same 15 smaller
time periods of the Phanerozoic Eon bracketing all major Phanerozoic climate transitions as done above
for atmospheric CO2 concentration for both non-detrended and linearly-detrended temperature data.
For the most highly-resolved Phanerozoic data (Table 1), 12/15 (80.0%) Pearson correlation coefficients
between δ18O*(−1) and ∆RFCO2 are non-discernible (p > 0.05). Of the three discernible correlation
coefficients, all are positive. Use of the distribution-free Spearman Rho correlation coefficient yields
similar conclusions: 10/13 Spearman correlation coefficients computed (76.9%) are non-discernible
and all discernible correlation coefficients are positive (Table 1). High-resolution and matched-pair
correlation analyses gave similar or identical results. The most recent period of the Phanerozoic
(Table 1, Entry # 5), where the sampling resolution is highest, shows moderate-to-strong positive
∆RFCO2/T correlations for both detrended and non-detrended temperature data. Therefore, for this
most recent cooling period, where sample resolution is greatest, about 24–28% of the variance in T is
explained by variance in ∆RFCO2 and conversely.

For the less-resolved data from older time periods of the Phanerozoic Eon (Table 2), 14/20 (70.0%)
Pearson correlation coefficients between δ18O*(−1) and ∆RFCO2 are non-discernible. Of the six
discernible correlation coefficients, four are negative. For the less-resolved older Phanerozoic time
periods (Table 2), 15/20 (75.0%) Spearman correlation coefficients are non-discernible. Of the five
discernible Spearman correlation coefficients, three are negative. Therefore, although the data from
this period of the Phanerozoic (Table 2) are less resolved, conclusions drawn from their analysis are
generally similar to those drawn using more highly-resolved data from the more recent Phanerozoic
(Table 1). The main exception is that discernible correlations computed using more highly-resolved
data (Table 1) are more positive, while those computed from less-resolved data (Table 2) include
more negative values. Combining RFCO2 vs. T correlation coefficients from both tables, 51/68 (75.0%)
are non-discernible, and of the 17 discernible correlation coefficients, seven (41.2%) are negative.
These results collectively suggest a somewhat stronger effect of ∆RFCO2 on T than observed above for
the effects of atmospheric concentration of CO2 on T, but the cumulative results nonetheless require
the conclusion that ∆RFCO2 was largely decoupled from T, or at most weakly coupled with T, over the
majority of the Phanerozoic climate.

The spectral periodograms of ∆RFCO2 and T show substantial similarities both in peak periods
and relative energy (Figure 10). Both profiles show clusters of peaks at 1–4, 5–9 and 14 My periods.
These similarities signify comparable oscillations of ∆RFCO2 and T across the Phanerozoic, unlike the
relationship between atmospheric CO2 concentration and T (cf. Figure 10 with Figure 7). Oscillation at
similar periods in turn implies the possibility of an association between the corresponding cycles,
although a mutual, reciprocal or common influence of a third variable cannot be excluded without
further analysis. These conclusions are generally corroborated using auto- and cross-correlation
analysis as described next.
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The typical approach to the detection of oscillations in time series is spectral analysis as 
illustrated above. Alternatively, qualitative inspection of time series followed by auto- and 
cross-correlation to confirm qualitative impressions quantitatively can be used to test non-random 
periodicity and phase relationships between oscillating variables that are not evident from spectral 
analysis. Qualitative inspection of time series of δ18O*(−1), atmospheric CO2 concentration and 
ΔRFCO2, particularly during the high-resolution and relatively flat period from 175 to 80 Mybp 
(Figure 11) shows apparent non-random oscillation of all three climate variables over time. The 
temperature-proxy oscillation (δ18O*(−1), red curve in Figure 11) is coupled tightly with peaks in the 
oscillation of the strontium ratio (87Sr/86Sr, purple arrows in Figure 11) as reported by Prokoph et al. 
[28] and estimated here visually. Strontium ratios are typically interpreted as a proxy for riverine 
influx to the ocean attributable to climate change [62] and are therefore expected to be coupled with 
temperature as confirmed in Figure 11. The CO2 oscillation does not appear tightly coupled with 
temperature-proxy oscillations, however, which is consistent with the correlation analysis presented 
above, but is clearly antiphasic with the oscillation of ΔRFCO2 (yellow arrows in Figure 11). This 
antiphasic relationship is expected given the derivation of ΔRFCO2 from atmospheric CO2 

Figure 10. Spectral power periodograms of ∆RFCO2 and T in the Phanerozoic climate. The orange and
red curves show ∆RFCO2 and T spectral density profiles, respectively. The temperature periodogram
was constructed using linearly-detrended proxy data. Time periods covered and (in parentheses)
Fisher’s Kappa and the corresponding probability that the atmospheric CO2 concentration and
T periodograms result from white (Gaussian) noise are 85 to 0 My (8.26, 0.005) and 522 to 0 My
(28.98, 2 × 10−13), respectively.

3.4. Auto- and Cross-Correlation

The typical approach to the detection of oscillations in time series is spectral analysis as illustrated
above. Alternatively, qualitative inspection of time series followed by auto- and cross-correlation
to confirm qualitative impressions quantitatively can be used to test non-random periodicity
and phase relationships between oscillating variables that are not evident from spectral analysis.
Qualitative inspection of time series of δ18O*(−1), atmospheric CO2 concentration and ∆RFCO2,
particularly during the high-resolution and relatively flat period from 175 to 80 Mybp (Figure 11)
shows apparent non-random oscillation of all three climate variables over time. The temperature-proxy
oscillation (δ18O*(−1), red curve in Figure 11) is coupled tightly with peaks in the oscillation of the
strontium ratio (87Sr/86Sr, purple arrows in Figure 11) as reported by Prokoph et al. [28] and estimated
here visually. Strontium ratios are typically interpreted as a proxy for riverine influx to the ocean
attributable to climate change [62] and are therefore expected to be coupled with temperature as
confirmed in Figure 11. The CO2 oscillation does not appear tightly coupled with temperature-proxy
oscillations, however, which is consistent with the correlation analysis presented above, but is clearly
antiphasic with the oscillation of ∆RFCO2 (yellow arrows in Figure 11). This antiphasic relationship
is expected given the derivation of ∆RFCO2 from atmospheric CO2 concentration, although detailed
waveforms and phase relationships are difficult to predict a priori owing to the power and/or
exponential relationship between atmospheric CO2 concentration and forcing.
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concentration datapoint using the best-fit power function equation corresponding to the empirical 
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non-random periodicity is indicated. Cross-correlation between different time series is done 
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Figure 11. Time series of temperature proxies, atmospheric CO2 concentration and ∆RFCO2 over
the Phanerozoic Eon. Purple arrows correspond to peaks in the strontium ratio determined
independently from visual inspection of time series in [28]. Temperature proxies (red curve) are
from Prokoph et al. [28]. CO2 proxies (green curve) are from Royer [40], represented here using a
3–6 My moving average. Yellow double-headed arrows highlight the expected antiphasic relationship
between atmospheric CO2 concentration and marginal forcing computed for tropical latitudes under
clear-sky conditions. The scale for the temperature proxy is modified here by a constant offset for
graphical presentation on the same scales as the other proxies. The correct temperature-proxy scale is
shown in Figure 5. In this and following graphs, climate variables are color-coded: red represents the
temperature proxy, δ18O*(−1); green represents atmospheric CO2 concentration proxies converted to
ppmv; and orange represents the marginal forcing calculated for each atmospheric CO2 concentration
datapoint using the best-fit power function equation corresponding to the empirical curve for tropical
latitudes under clear-sky conditions (Figure 8b).

To evaluate these qualitative impressions quantitatively, auto- and cross-correlation coefficients
between different time series were used. Autocorrelation can be used to detect non-random periodicity
in time series by comparing a progressively lagged time series to itself. In this comparison the
time series are shifted relative to each other by one datapoint at a time (successive lag orders)
and the correlation coefficients between the variables are computed for each shifted dataset. If the
autocorrelation coefficient oscillates as a function of order, and if individual autocorrelation coefficients
are discernibly different from zero at peaks and/or troughs, then non-random periodicity is indicated.
Cross-correlation between different time series is done similarly, except the time series of two different
variables are compared to each other. Discernible correlation coefficients that oscillate with increasing
shift order confirm non-random periodicity (autocorrelation) and at the same time establish phase
relationships between oscillating variables (cross-correlation), which are beyond the capacities of
spectral analysis.

Autocorrelation across the time period from 174 to 0 Mybp demonstrates non-random periodicity
in all three major variables evaluated here (Figure 12) as anticipated from the corresponding time series
(Figure 11). The correlation profile across increasing lag order for δ18O*(−1) (Figure 12a) is qualitatively
dissimilar from the profile of atmospheric CO2 concentration (Figure 12b) and ∆RFCO2 (Figure 12c).
The profiles for atmospheric CO2 concentration and ∆RFCO2 are similar, as expected from derivation
of the latter from the former. In both the atmospheric CO2 concentration and ∆RFCO2 profiles, both
short and long cycles can be detected qualitatively by modulation of the corresponding correlation
coefficients, demarcated by double-headed open arrows in Figures 12–16. For autocorrelation
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across the longer time period, the short and long cycles of atmospheric CO2 concentration average
16.9 and 66.8 My, respectively, similar to the comparable values for ∆RFCO2 (17.2 and 66.2 My).
Cyclic variation of the autocorrelation coefficients from discernibly negative to positive as lag order
increases demonstrates non-random periodicity in all three variables. Dominant cycles of forcing and
temperature appear in both spectral periodograms in (Figure 10) and autocorrelelograms (Figure 12)
at ~15 My.
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Similar autocorrelation analysis restricted to the period of high sampling resolution and 
relatively flat baseline during the Phanerozoic (174 to 87 Mybp) gives similar conclusions (Figure 
13). All three climate variables show non-random periodicity, and the autocorrelation profile for 
δ18O*(−1) is qualitatively dissimilar from corresponding profiles of both atmospheric CO2 
concentration and ΔRFCO2, while the autocorrelation profiles of atmospheric CO2 concentration and 
ΔRFCO2 are qualitatively similar. Estimates of cycle duration from autocorrelelograms of all three 
variables over this shorter analytic time period are similar, namely, 16.8, 18.0 and 19.0 My for 
δ18O*(−1), atmospheric CO2 concentration and ΔRFCO2, respectively. 

Figure 12. Lagged (serial) autocorrelation coefficient, R, of time series of Phanerozoic climate variables
over the time period from 174 to 0 Mybp. The periodicity in the autocorrelation profiles demonstrates
non-random periodicity in the corresponding climate variables. (a) δ18O*(−1). Average cycle duration,
22.4 My. (b) Atmospheric CO2 concentration. Average short cycle, 16.9 My. Average long cycle,
66.8 My. (c) ∆RFCO2. Average short cycle, 17.2 My. Average long cycle, 66.2 My. Double-headed arrows
demarcate the approximate times of cycles and sub-cycles identified visually.

Similar autocorrelation analysis restricted to the period of high sampling resolution and relatively
flat baseline during the Phanerozoic (174 to 87 Mybp) gives similar conclusions (Figure 13). All three
climate variables show non-random periodicity, and the autocorrelation profile for δ18O*(−1) is
qualitatively dissimilar from corresponding profiles of both atmospheric CO2 concentration and
∆RFCO2, while the autocorrelation profiles of atmospheric CO2 concentration and ∆RFCO2 are
qualitatively similar. Estimates of cycle duration from autocorrelelograms of all three variables over
this shorter analytic time period are similar, namely, 16.8, 18.0 and 19.0 My for δ18O*(−1), atmospheric
CO2 concentration and ∆RFCO2, respectively.
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Figure 13. As in Figure 12, but over the shorter time period from 174 to 87 Mybp. Average cycle
durations: (a) 16.8 My (b) 18.0 My (c) 19.0 My. Otherwise as in the legend of Figure 12.

The cross-correlation analyses of the same three time series for the same time periods of
the Phanerozoic (Figures 14–16) enable assessment of the relationship between the three climate
variables studied here. Cross-correlation between δ18O*(−1) and atmospheric CO2 concentration
(Figure 14) shows periodicity on long (Figure 14a) and short (Figure 14b) time scales at respective cycle
periods of 70.0 and 16.0 My. The cross-correlation between δ18O*(−1) and ∆RFCO2 (Figure 15) show
similar periodicity with long and short cycles at about 55.0 and 17.0 My (Figure 15a,b respectively).
The cross-correlation between atmospheric CO2 concentration and ∆RFCO2, in contrast, shows strongly
negative correlation coefficients at low-order lags that maximize at zero order lag, signifying the
precise antiphasic relationship between these variables that is qualitatively evident in Figure 11.
Both cross-correlation profiles show short-period cycles of about 16.0 My, and the broader time scale
(Figure 16a) again shows the long cycle of about 70.0 My. The short cycle is evident also in the spectral
periodograms described above (Figures 7 and 10).
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Figure 15. As in Figure 14, but for δ18O*(−1) and ∆RFCO2. (a) Time period from 174 to 0 Mybp.
Average short and long cycle durations, 19.7 and 54.8 My respectively. (b) Time period from 174 to
87 Mybp. Average short cycle duration, 16.2 My. Otherwise as in the legend of Figure 12.
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Phanerozoic. 
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The conclusion that atmospheric CO2 concentration did not regulate temperature in the ancient 
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Figure 16. As in Figure 14, but for atmospheric CO2 concentration and ∆RFCO2. (a) Time period from
174 to 0 Mybp. Average short and long cycle durations, 14.5 and 70.2 My respectively. (b) Time period
from 174 to 87 Mybp. Average short cycle duration, 17.8 My. The strong negative correlation
coefficients at low shift orders demonstrate the antiphasic (inverse) relation between atmospheric
CO2 concentration and ∆RFCO2. Otherwise as in the legend of Figure 12.

4. Discussion and Conclusions

The principal findings of this study are that neither the atmospheric concentration of CO2 nor
∆RFCO2 is correlated with T over most of the ancient (Phanerozoic) climate. Over all major climate
transitions of the Phanerozoic Eon, about three-quarters of 136 correlation coefficients computed here
between T and atmospheric CO2 concentration, and between T and ∆RFCO2, are non-discernible, and
about half of the discernible correlations are negative. Correlation does not imply causality, but the
absence of correlation proves conclusively the absence of causality [63]. The finding that atmospheric
CO2 concentration and ∆RFCO2 are generally uncorrelated with T, therefore, implies either that neither
variable exerted significant causal influence on T during the Phanerozoic Eon or that the underlying
proxy databases do not accurately reflect the variables evaluated.

The present findings corroborate the earlier conclusion based on study of the Paleozoic climate
that “global climate may be independent of variations in atmospheric carbon dioxide concentration.” [64]
(p. 198). The present study shows further, however, that past atmospheric CO2 concentration oscillates
on a cycle of 15–20 My and an amplitude of a few hundred to several hundreds of ppmv. A second
longer cycle oscillates at 60–70 My. As discussed below, the peaks of the ~15 My cycles align closely
with the times of identified mass extinctions during the Phanerozoic Eon, inviting further research on
the relationship between atmospheric CO2 concentration and mass extinctions during the Phanerozoic.

4.1. Qualifications and Limitations

The conclusion that atmospheric CO2 concentration did not regulate temperature in the ancient
climate is qualified by the finding here that over the most recent Phanerozoic, from 34 to 0 Mybp,
where sampling resolution is among the highest in the proxy databases used, all six correlation
coefficients computed between T and ∆RFCO2 proxies are positive and range from moderate to strong
(Table 1, Entry # 5). For the same time period, all six correlation coefficients between temperature and
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the atmospheric concentration of CO2 are negative and also moderate to strong (Table 1, Entry # 5).
Both temperature and atmospheric CO2 concentration were lower in the recent Phanerozoic, implying
greater marginal forcing by CO2 and, therefore, a potentially greater influence on temperature and
climate. This cluster of discernible correlation coefficients could therefore be interpreted as support for
the hypothesis that atmospheric CO2 concentration plays a greater role in temperature control when the
concentration is lower. Correlations over the period from 26 to 0 Mybp (Table 1, Entry # 6), however, are
uniformly non-discernible despite a comparable sample resolution (Figure 2). The moderate-to-strong
positive correlations between marginal forcing and temperature realized by expanding the upper
limit of the computation range to 34 Mybp may, therefore, simply reflect the different trajectories of
atmospheric CO2 concentration and T from 34 to 26 Mybp as governed by other, unidentified forces.

A limitation of the present study is the low sampling resolution across parts of the Phanerozoic
climate record. Sample atmospheric CO2 concentration datapoints in the older Phanerozoic are too
sparse to enable strong inferences or, for some time periods, any inferences at all. The mean sampling
interval for either atmospheric CO2 concentration or T is ~83 Ky over the whole Phanerozoic, and
~50 Ky in the more recent Phanerozoic. At these sampling frequencies, the shorter cycles known to
characterize weather and climate on annual through millennial [60,61] time scales cannot be detected.
These undetectable cycles presumably exhibit the same covariance between T and atmospheric CO2

concentration, and between T and ∆RFCO2, that is known to characterize recent glacial cycles, including
the 41 Ky Marine Isotope Stages that extend back in time several Mybp [65,66]. These shorter,
undetectable millennial-scale climate cycles are presumably superimposed on the longer climate
cycles of the Phanerozoic demonstrated here, but this hypothesis cannot be tested presently given the
limits of available sample resolution in Phanerozoic climate data.

The limitation of low sampling resolution is somewhat offset over some time periods of the recent
Phanerozoic where sampling was frequent enough to yield mean sampling intervals of 59–199 Ky.
Ten of these correlation coefficients (five non-parametric) were based on matched-pair analysis with
minimum (0.22%) difference in age between T and atmospheric CO2 concentration. Analysis of these
high-resolution matched-pair subsets yielded the same conclusions as analysis of the entire dataset,
suggesting that differences in data resolution did not alter the conclusions of this study. Prokoph et al.
noted that “much of the carbon isotope variability occurs over intervals shorter than 1 Ma, not resolvable
in this study” [28] (p. 132) and that higher resolutions would be preferable. In the present analysis
sampling resolutions exceeded one My by three orders of magnitude over limited time periods of
the Phanerozoic. Higher-resolution sampling is always preferable, but in the meantime the sampling
resolution in the databases used here is the best that is currently available and is unlikely to be
surpassed in the near future.

4.2. The Perspective of Previous Studies

Three recent studies examined the relationship between temperature proxies and atmospheric
CO2 concentration during the Phanerozoic Eon. The first [52] concluded that atmospheric CO2

concentration was the primary driver of early Cenozoic climate, from 50 to 34 Mybp, echoing the
earlier view of several investigators [18–21] (Introduction). This conclusion [52] was based, however,
on analysis of a short portion of the Phanerozoic (<3% of the cumulative time period), and the use of
a single proxy isotope (boron) from a single isotopic source (planktonic foraminifera) from a single
sample site (southern coastal Tanzania). It is possible that such a limited local/regional sample over
so short a time period missed trends and relationships that emerge only from analysis of the larger
and more inclusive and diverse databases evaluated here. Using these broader databases, the Pearson
correlation coefficient between atmospheric CO2 concentration and T over the same time period as
studied in [52], namely the early Cenozoic from 50 to 34 Mybp, is negative (R = −0.32) and not
discernibly different from zero (n = 17, p = 0.20). Therefore, the present study does not support the
conclusion [52] that atmospheric CO2 concentration drove the climate of the early Cenozoic.



Climate 2017, 5, 76 27 of 35

A second study [67] concluded that the current high rate of CO2 emissions risks atmospheric
concentrations not seen for 50 My by the middle of the present century. In contrast to that conclusion,
the current rate of CO2 emissions is raising atmospheric concentration of CO2 by 1–2 ppmv per
annum [1], implying an atmospheric concentration of CO2 of 440 to 463 ppmv by the middle of
the present century—concentrations that appear repeatedly over the last ten My and as recently
as three Mybp in the CO2 databases used here (Figure 5). The same study [67] concluded that if
additional emissions of CO2 at current rates continued until the 23rd century, they would cause large
and potentially hazardous increases in RFCO2. This conclusion can be evaluated using the MODTRAN
forcing estimates calculated here, particularly the representative global forcing at mid-latitudes under
clear-sky conditions (Equation (2) above). Using this equation the projected changes in forcing from
407 to 689 and 407 to 971 ppmv CO2 are 1.80 and 2.98 W/m2 respectively, from 48.7% to 80.4% of the
IPCC estimated doubling sensitivity to CO2 forcing of 3.7 W/m2. Inclusion of a cloud cover reduces
this estimate further. It is not clear that these projected increases in forcing qualify as “hazardous”.

A clue to the discrepancy between MODTRAN computations and IPCC estimates may be available
from application of the IPPC equation for a change in forcing [29], namely:

∆F = 5.35ln(C/CO) (5)

where ∆F is the change in forcing in W/m2 at the tropopause, C is the atmospheric concentration
of CO2 in ppmv, and CO is the original atmospheric concentration of CO2. This equation projects
increases in forcing from the same increases in atmospheric CO2 concentration as 2.81–4.65 W/m2,
75.9–125.7% of the IPCC estimated doubling sensitivity of 3.7 W/m2. The difference between the
MODTRAN computations and those derived using the IPCC-endorsed Equation (5) above may be
attributable to different methods of computing forcing. The present estimates are based on clear-sky
mid-latitude forcings, where troposphere opacity is probably most representative of the global mean.
The estimate using Equation (5) exceeds the MODTRAN estimate of forcing at the equator, where
atmospheric opacity is the highest on Earth and not representative of the global mean. In either case,
however, the change in forcing represents less than 1% of total forcing from all sources.

The third study relevant to the present investigation [68] addresses uncertainties in
paleo-measurements of atmospheric CO2 concentration using “mathematical equations”, and concludes
that large variations in atmospheric CO2 concentration (1000–2000 ppmv) did not occur during
the Phanerozoic Eon since the Devonian Period from 416 to 358 Mybp. In contrast to that
conclusion [68], the empirical database used in the present study shows that variations in atmospheric
CO2 concentration of 1000–2000 ppmv were common throughout the Phanerozoic Eon (Figure 5).
Atmospheric CO2 concentration oscillated on a regular cycle of several hundreds of ppmv in amplitude
and periods of 10–20 My and 60–70 My. Much larger individual excursions are evident in the empirical
data. The same study [68] reported “new empirical support” for the hypothesis that atmospheric CO2

concentration exerts greater influence on Phanerozoic climate than previously thought. The conclusions
of that study are based minimally on empirical findings, however, and maximally on mathematical
equations. The suggestion that CO2 exerts greater influence on the Phanerozoic climate than previously
thought [68] is not supported by the results of the present study.

4.3. Tectonic Activity and Climate in the Phanerozoic

The generally weak or absent correlations between the atmospheric concentration of CO2 and
T, and between ∆RFCO2 and T, imply that other, unidentified variables caused most (>95%) of the
variance in T across the Phanerozoic climate record. The dissimilar structures of periodograms for T
and atmospheric CO2 concentration found here also imply that different but unidentified forces drove
independent cyclic fluctuations in T and CO2. Since cycles in atmospheric CO2 concentration occur
independently of temperature cycles, the respective rhythms must have a different etiology. It has
been suggested that volcanic activity and seafloor spreading produce periodic CO2 emissions from
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the Earth’s mantle ([69] and references therein) which could in principle increase radiative forcing of
temperature globally. On this basis it was proposed that “the parallel between the tectonic activity and
CO2 together with the extension of glaciations confirms the generally accepted idea of a primary control of CO2
on climate...” [69] (p. 167). A similar conclusion was reached for the late Cenozoic climate [70].

The hypothesis that CO2 emitted into the atmosphere from tectonic emissions served as a “primary
control” of the ancient climate [69] requires that the concentration of CO2 in the atmosphere is low
enough to enable significant marginal forcing of T by CO2 at the time of increased emissions from the
Earth’s mantle, and that atmospheric CO2 concentration and temperature are discernibly correlated
over parts or all of the Phanerozoic Eon. The present study shows that neither of these prerequisites
is realized. Therefore, changes in the rate of seafloor spreading and the consequent release of CO2

into the ancient oceans and atmosphere did not control the Phanerozoic climate. This conclusion
encourages a search for alternative mechanisms of Phanerozoic temperature cycling of ~4 ◦C on a
period of 135–150 My (e.g., [25]). It remains possible that the cycles in atmospheric CO2 emissions
and marginal forcing by CO2 demonstrated here are caused by cycles of volcanic activity or seafloor
spreading, although as shown here these cycles bear no causal relationship with global temperature.

4.4. The Physical Basis of CO2/T Decoupling

The gradual reduction in the level of atmospheric CO2 concentration across the Phanerozoic as
global temperature declined could in principle have resulted in part from the enhanced solubility
of CO2 in colder sea water [71,72]. Estimates of this enhanced solubility effect on atmospheric CO2

concentration during recent ice ages are, however, small (30 ppmv) in comparison to changes in
atmospheric CO2 concentration over the Phanerozoic (hundreds of ppmv) despite comparable changes
in temperature [73]. Additional potential causes of reduced atmospheric CO2 concentration during the
late Phanerozoic include increased chemical weathering owing to enhanced tectonic uplift [69,70] and
reduced tectonic activity and, therefore, less transfer of subterranean carbon to the atmosphere [69].
Whatever the cause, the result is much lower atmospheric concentration of CO2 now than in the
distant past.

Why did higher past levels of atmospheric CO2 not drive increases in global temperature
in the ancient climate? The differences between ∆RFCO2 and atmospheric CO2 concentration as
an index of respective impact on temperature are muted in a CO2-rich environment such as the
older Phanerozoic, where atmospheric CO2 concentration reached many times the contemporary
atmospheric concentration of CO2. At such high atmospheric CO2 concentrations the marginal forcing
of CO2 becomes negligible (Figure 8b). At the estimated baseline concentration of atmospheric CO2

across the recent Phanerozoic, 1000 ppmv, CO2 has already lost 85.7% of its maximum radiative forcing
power as computed using MODTRAN (Figure 8b). At this concentration, even a relatively large
increase in atmospheric CO2 concentration, therefore, yields a small and even negligible increase in
the marginal forcing of temperature.

As shown here, and as expected from the derivation of marginal forcing from concentration,
atmospheric CO2 concentration and marginal radiative forcing by CO2 are inversely related.
Diminishing returns in the forcing power of atmospheric CO2 as its concentration increases ensure
that in a CO2-rich environment like the Phanerozoic climate, large variations in CO2 exert little or
negligible effects on temperature. Therefore, decoupling between atmospheric CO2 concentration
and temperature is not only demonstrated empirically in Phanerozoic data, but is also expected from
first principles. This straightforward consequence of atmospheric physics provides a simple physical
explanation for the lack of correlation between atmospheric CO2 concentration and temperature across
most of the Phanerozoic.

Nonlinearities in the climate system imposed by the saturation of the strongest absorption bands
in the CO2 molecule have been recognized previously in connection with assessment of Global
Warming Potential (GWP) of greenhouse gases, including CO2 [74]. It has been suggested that as CO2

concentration in the atmosphere increases, the reduced marginal forcing attributable to the saturation



Climate 2017, 5, 76 29 of 35

of CO2 absorption bands would be compensated exactly by increased global forcing attributable
to lower solubility of CO2 in a warmer ocean and therefore higher concentration of CO2 in the
atmosphere [74] (p. 251). This conclusion is based, however, on the premise that increased atmospheric
CO2 concentration causes increased global warming. As shown empirically in the present study, this
premise does not apply to the Phanerozoic climate, where atmospheric CO2 concentration and global
temperature were decoupled. Whether the conclusion applies to the contemporary climate depends on
the relative magnitudes of the opposing effects. As noted above, large changes in global temperature
associated with glacial cycles are associated with small changes in the solubility effect on atmospheric
concentration of CO2, estimated as 30 ppmv [73]. Moreover, in view of the diminishing returns in
marginal forcing by atmospheric CO2 identified in the present study, changes in the concentration of
contemporary atmospheric CO2 are expected to cause small or negligible changes in global temperature.
It may be fruitful to revisit the concept of GWP, which is central to contemporary climate policy, in light
of the present results.

4.5. Implications for Glacial Cycling

Application of the present findings to the more recent climate is conditioned by the relatively
low contemporary concentration of atmospheric CO2 in comparison with most of the Phanerozoic
Eon and the consequent higher marginal radiative forcing power of CO2. Particularly in the depths
of glacial maxima, where the concentration of atmospheric CO2 approached the natural minimum of
180 ppmv [60,61], the marginal forcing of temperature by CO2 was at its highest, 94% of its maximum
(computed using MODTRAN). As warming proceeded during the glacial termination, however,
the concentration of CO2 in the atmosphere increased sharply [60,61] and marginal radiative forcing
by CO2 declined accordingly, reaching 54.5% of its maximum (computed using MODTRAN) by the
time that atmospheric CO2 concentration reached the interstadial value of ~300 ppmv.

The physics of atmospheric CO2, therefore, creates variable positive-feedback induction and
amplification of temperature during natural glacial cycling (variable-gain feedback). This positive
feedback is strongest at the beginning of the glacial termination, which would trigger and/or reinforce
warming maximally, and weaker by half at the end of the glacial termination, which would release
temperature from positive-feedback reinforcement by atmospheric CO2 and, therefore, enable or
facilitate the onset of the next glaciation.

Variable-gain feedback during the glacial cycling provides a plausible physical basis for relaxation
oscillation [75,76] of global temperature as a causal contributory mechanism underlying glacial cycling.
Variable-gain positive feedback supports the hypothesis advanced by several investigators that the
glacial cycling may constitute, in whole or in part, a natural relaxation oscillator [77–81]. In this
case, atmospheric CO2 could play a significant role in glacial cycling. The temperature during past
interstadials was, however, higher than present despite higher contemporary CO2 concentration,
from which it has been concluded that “Carbon dioxide appears to play a very limited role in setting
interglacial temperature.” [5] (p. 6).

4.6. Risk Assessment and Contemporary Carbon Policies

At the current atmospheric concentration of CO2 (~407 ppmv [1]), the marginal forcing power is
smaller than during natural glacial cycles but still greater than during most of the Phanerozoic Eon.
The half-decay of CO2 marginal forcing (~337 ppmv) was surpassed in 1980, while the exponential
marginal forcing decay constant (~367 ppmv) was exceeded in 1999. At the current atmospheric CO2

concentration, which is approaching 410 ppmv, atmospheric CO2 has lost nearly two-thirds of its
cumulative marginal forcing power.

Such diminishing returns in marginal forcing of temperature by atmospheric CO2 have two
implications for contemporary climate policies. First, if anthropogenic CO2 emissions continue at
today’s levels or increase in the coming decades, the consequent increasing concentration of CO2 in
the atmosphere from anthropogenic sources will have exponentially smaller forcing impact on global



Climate 2017, 5, 76 30 of 35

temperature. As implied by the decline in marginal forcing, when atmospheric CO2 concentration
reaches 1000 ppmv, near the baseline value for most of the Phanerozoic Eon (Figure 5), marginal forcing
will decline to 14.3% of its maximum (computed using MODTRAN; Figure 8b). Such diminishing
returns ensure that additional increments in anthropogenic emissions from today’s level will have
exponentially smaller marginal impact on global temperature. This consequence of diminishing returns
in marginal forcing by CO2 has been incorporated into policy assessments in reference to national
responsibilities for CO2 emissions under the UN Framework Convention on Climate Change and
Kyoto Protocol [82–85].

Second, and conversely, as atmospheric CO2 concentration increases, any unit reductions in
atmospheric CO2 concentration that may be achieved by deliberate mitigation of CO2 emissions will
yield exponentially smaller reductions of temperature forcing. Diminishing returns in marginal forcing
by atmospheric CO2 ensure, therefore, that efforts to mitigate global warming by reducing emissions
of CO2, exemplified by carbon sequestration, will become relatively more expensive per unit of climate
benefit returned. This consequence of atmospheric physics will increase the cost-benefit ratio of CO2

mitigation policies exponentially, at least insofar as the cost-benefit ratio is limited to climate.
Risk assessment for atmospheric CO2 is not, however, limited to its effects on climate.

Increasing emissions of CO2 can damage sea life by acidifying ocean water [86,87]. Such effects
could be amplified within the sea surface microlayer, where most sea plants and animals spend
at least part of their lifecycle in their most vulnerable stages: eggs, embryos and larvae [87].
Evidence developed here from the Phanerozoic climate record shows that from 225 to 0 Mybp,
the atmospheric concentration of CO2 oscillated on multi-million year cycles with a prominent spectral
peak at ~15 My. Phanerozoic mass extinctions have been shown independently to oscillate [88] at
dominant periods of ten and 60 My [89,90], similar within likely error limits to the major period modes
observed here for oscillations in atmospheric CO2 concentration. The peaks of the 15-My CO2 cycle
identified here coincide closely with peaks of identified mass extinctions [88]: of 14 such CO2 peaks
from 225 to 0 Mybp (Figure 11), 12 match closely with peaks in identified mass extinctions and six of
these 12 peaks coincide precisely with the peaks of identified mass extinctions (cf. Figure 11 with [88]
(Figure 1, p. 135).

A defining feature of the cycles in atmospheric CO2 concentration identified here during the
period from 225 to 0 Mybp is that their amplitude is ~500 ppmv from a base as low as 400 ppmv, and yet
this relatively small excursion of CO2 concentration above levels similar to today’s CO2 concentrations
repeatedly left strong extinction imprints on biodiversity. These extinction events were not caused by
temperature changes, since as shown here CO2 did not drive temperature in the Phanerozoic climate.
As shown above, a comparable increase in CO2 from the current baseline of 407 ppmv CO2 to 971 ppmv
could occur by end of the 23rd century at current CO2 emission rates. Moreover, the residence
time of CO2 in the atmosphere may be much longer than previously believed—not centuries as
often reported [29–31], but millennia [91] or tens of millennia [92]. Once emitted to the atmosphere,
therefore, plausible increases in the concentration of CO2 resulting from human activities could impact
biodiversity adversely for tens of thousands of generations of sea life, potentially enough CO2 over a
long enough exposure time to induce mass extinctions similar to those of the past.

While “no consensus has been reached on the kill mechanism for any marine mass extinction” [88]
(p. 127), acidification of the sea surface microlayer by atmospheric CO2 is a plausible candidate.
Ocean acidification may affect the ecology of the sea surface microlayer adversely by proliferating
acidophilic bacteria that in turn degrade the nutritional environment for other organisms that inhabit
the microlayer [93]. Substances associated with tectonic emissions of CO2 during the Phanerozoic
(sulfur, methane, chlorine, mercury) are also toxic and, therefore, are plausible candidates for the elusive
“kill mechanism” of past mass extinctions. The toxicity of CO2 in aqueous environments, however, is
well-established [86,87]. Possible links between past mass extinctions and the carbon cycle, therefore,
comprise an urgent future research direction. The results of the present study suggest that regulation
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of anthropogenic CO2 emissions may be less important than previously thought for controlling global
temperature, but more important than previously recognized for conserving biodiversity.
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