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Abstract: Urbanization is closely associated with land use land cover (LULC) changes that correspond
to land surface temperature (LST) variation and urban heat island (UHI) intensity. Major districts
of Bangladesh have a large population base and commonly lack the resources to manage fast
urbanization effects, so any rise in urban temperature influences the population both directly and
indirectly. However, little is known about the impact of rapid urbanization on UHI intensity variations
during the winter dry period in the major districts of Bangladesh. To this end, we aim to quantify
spatiotemporal associations of UHI intensity during the winter period between 2000 and 2019
using remote-sensing and geo-spatial tools. Landsat-8 and Landsat-5 imageries of these major
districts during the dry winter period from 2000 to 2020 were used for this purpose, with overall
precision varying from 81% to 93%. The results of LULC classification and LST estimation showed
the existence of multiple UHIs in all major districts, which showed upward trends, except for
the Rajshahi and Rangpur districts. A substantial increase in urban expansion was observed in
Barisal > 32%, Mymensingh > 18%, Dhaka > 17%, Chattogram > 14%, and Rangpur > 13%, while a
significant decrease in built-up areas was noticed in Sylhet < −1.45% and Rajshahi < −3.72%. We
found that large districts have greater UHIs than small districts. High UHI intensities were observed
in Mymensingh > 10 ◦C, Chattogram > 9 ◦C, and Barisal > 8 ◦C compared to other districts due to
dense population and unplanned urbanization. We identified higher LST (hotspots) zones in all
districts to be increased with the urban expansion and bare land. The suburbanized strategy should
prioritize the restraint of the high intensity of UHIs. A heterogeneous increase in UHI intensity over
all seven districts was found, which might have potential implications for regional climate change.
Our study findings will enable policymakers to reduce UHI and the climate change effect in the
concerned districts.

Keywords: LULC; LST; UHI; Bangladesh; climate; urbanization

1. Introduction

Urbanization, for instance, in the form of roads, industries, buildings, etc., contributes
significantly to changing climatic measures by warming the atmosphere and generating
carbon emissions associated with increased surface temperature, referred to as an urban
heat island (UHI) [1]. It involves population migration, socioeconomic changes, physical
diversion, and multiple differentiations in land surface observation [2]. The urban heat
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island (UHI) intensity has an upward trend, creating exceptions to challenges as the world’s
urban population raised 55.715% in 2019, expected to increase to 68% by 2050 [3]. Dynamic
temperature increase is observed in structurally compact developed areas, which causes
the enhancement of UHI in urban areas compared with rural areas [4]. Several previous
investigations indicated the voluminous propagation of heat due to building form, land
use pattern and industrialization, which results in an increase in land surface temperature
(LST) in urban and suburban areas [5–9]. Structural urban expansion, population increase,
and other anthropogenic constructions cause UHI extension, impacting the local climate by
reducing precipitation, evapotranspiration, and air and water quality, which negatively
affects human health and living conditions [9,10]. Thus, UHIs have recently become a topic
of interest among many research scholars.

The delineation of the urban climatic phenomenon and LST mutation have been
illustrated through diverse approaches that may be demonstrated through earth and
satellite observations. Earth observation, which relies on ground assessment, depends
on station-wise analyses for the exposition of atmospheric temperature contraposition as
the value of UHI predominance [11,12]. However, several previous studies demonstrated
substantial repercussions on satellite-based observation systems for LST retrieval in the
spatiotemporal measures of UHI intensity [13,14]. Furthermore, earlier investigations,
using geometrical resolution-based data, have reported multi-nonlinear regression for the
prediction of UHIs. Night satellite images for local-scale UHI extraction, conventional
measurements for the spatiotemporal UHI model, and moderate-scale synoptic data were
assessed for UHI observations [15–17]. Another exploration was based on 75 different
studies of UHI exhibiting MODIS (28%), Landsat TM (54%), and ETM (34%) utilization [18].
It has become more common to investigate spatiotemporal UHI differentiations and LST
changes using the thermal approach of remote sensing [18].

The UHI concept was first introduced in 1818, while its importance gained acknowl-
edgement after the 1970s [19,20]. Earlier findings elucidated that TIR imageries, or Landsat
imageries, are vital for UHI intensity calculation [21]. LULC and normalized difference
vegetation index (NDVI) differentiation are adopted to identify UHI intensities [22]. A
large number of studies have been performed to assess the spatiotemporal association
between LST and vegetation change in estimating UHI intensity in various urban areas
worldwide [23–26]. In addition, the pattern of LULC types is easily identified due to
rapid urbanization and high residential growth, while seasonal variations in vegetation
and analyzing urban regions employing variations in LULC types from undeveloped to
developed types have been complicated. Various remotely sensed indexes, namely the
soil-adjusted vegetation index, normalized difference building index, and normalized
difference drought index, are insufficient in built-up and barren land observations [27–29].
This problem results from the difficulty in pixel couplings for the spectral response to
heterogeneous LULC types, such as water bodies, vegetation, barren land, and built-up
lands [30]. A coupling index of LULC, LST, and UHI was employed in this research to
overcome this difficulty.

Bangladesh, a low-lying deltaic nation, with an overall population of 162 million and
a density of 1120 km2 [31], is one of the most susceptible nations to climate change [32].
It consists of 8 administration divisions, 64 districts/cites, and 12 city corporations. Four
diverse seasons, i.e., winter (December–February), pre-monsoon (March–May), monsoon
(June–September), and post-monsoon (October–November), prevail in the country. The
country experiences a distinct cold and dry climatic condition during the winter period,
with a warm, humid pre-monsoon and a rainy monsoon period and notable seasonality in
precipitation and surface temperature. Because of the high population growth and urban
expansion, the country experiences a noteworthy reduction in land surface (agricultural
and vegetation land) and a related expansion of urban land surface [33]. For instance, the
nation’s urban population increased from 22.5 million in 1990 to 60 million in 2019 [31]. In
addition, the trend of high surface temperature is predicted to rise, and a dry spell winter
period may become evident [34,35]. Besides, the country is highly affected by extreme



Climate 2022, 10, 3 3 of 32

events such as drought and floods. Thus, policy intervention and resilience to lessen the
effect of these extreme phenomena are well documented. Rapid urbanization and urban
warming are a matter of concern in recent times due to their negative effects on major urban
districts [36]. Therefore, a comprehensive study on the impacts of urbanization on UHI
intensity is urgently required for a highly populous, resource-limited and poor vulnerable
country such as Bangladesh.

Although the effect of LULC changes on LST has been thoroughly investigated by
several research scholars in Bangladeshi cities [32,35], only two have explored UHI intensity
at the seasonal scale over large Bangladeshi cities [37,38]. For example, [39] used MODIS
datasets from 2002 to 2014 during the monsoon period (June–September) to assess UHI
intensity across megacities of Asian countries such as Dhaka [36]. Dewan focused on
daily and seasonal surface UHI spatiotemporal trends and probable drivers in five cities of
Bangladesh. Another recent study performed by Dewan [36] utilized a diurnal (day/night)
MODIS time-series dataset from 2000–2019 to determine surface UHI, driver and variability
in the similar five cities of Bangladesh. These previously cited studies improved our
understanding of spatial and temporal changes of LST and associated UHI; however, these
studies have adopted limited datasets (e.g., selected years) and are restricted in scope (e.g.,
single city or multiple cities). These earlier works also investigated the nexus between
LST and vegetation, but the impact of urbanization on major districts’ regional climate
by appraising the presence of UHI intensity has not yet been performed with regard to
the major districts of Bangladesh. The critical literature survey indicates that reference
datasets about the UHI intensity of the country’s districts are lacking, except for the recent
studies [36]. However, a thorough and recent analysis of UHI in association with LST
during the dry winter period has not been carried out using high-resolution imageries in
major districts of Bangladesh. Our hypothesis is that the impact of urbanization on UHI
intensity over major districts in the seven climatic regions varies between these districts,
even if they are in the same nation [40]. Therefore, the preliminary intention of this research
is to generate reference datasets on spatial and temporal changes of UHI intensity in the
seven major districts of the country using high-resolution satellite images data. Seven
major districts, namely Dhaka, Chattrogram, Sylhet, Mymensingh, Rangpur, Barishal, and
Rajshahi, were chosen based on urban expansion, population size, important divisional
cities, and the accessibility of supplementary information [31,41]. The main goals are to
(i) examine spatiotemporal associations of UHI intensity during the winter period between
2000 and 2019; (ii) determine the significance of urban LULC expansion in the variation of
UHI intensity and LST patterns in seven major districts of Bangladesh. The outcomes of this
work can be of value in building region-specific adaptation policies to lessen environmental
effects associated with urbanization-derived LST warming and to enhance the quality of
life of urban residents.

2. Data and Methods

Landsat-5 and Landsat-8 satellite images were downloaded from (https://earthexplorer.
usgs.gov/; accessed on 20 February 2021) for the years 2000, 2010, and 2020 according to
specific paths and rows for the study area purposes during the winter time. There are some
reasons for selecting the research data, i.e., during the winter period between 2000 and 2019.
The first reason is that satellite observation in wintertime greatly influences UHI intensity
owing to the fact that the overpass time varies between districts. The second reason is that
energy and health effects vary between summer and winter, so characterizing the winter
seasonal scale of the local climate is determined as crucial. The third reason is that measures
undertaken to curb urban warming may intensify UHI intensity in wintertime [38]. As
for calculating LST, NDVI, and LULC classification, the images were preprocessed and
analyzed in ArcGIS 10.8. The following flowchart represents the process of this study
(Figure 1).

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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Figure 1. Methodological flowchart of the study area.

2.1. Study Area

The study area contained seven major urban districts in six existing climatic zones,
namely Barisal (south-eastern zone), Chattogram (south-eastern zone), Dhaka (south-
central zone), Mymensingh (south-central zone), Rajshahi (western climatic zone), Rangpur
(northern part of the northern region), and Sylhet (north-eastern zone) [42]. The annual
average temperature ranges from 35.1 ◦C to 12.1 ◦C, 32.5 ◦C to 13.5 ◦C, 34.5 ◦C to 11.5 ◦C,
33.3 ◦C and 12 ◦C, 37.8 ◦C to 11.2 ◦C, 32.3 ◦C to 11.2 ◦C, and 33.2 ◦C to 13.6 ◦C for
Barisal, Chattogram, Dhaka, Mymensingh, Rajshahi, Rangpur, and Sylhet, respectively [31].
Furthermore, precipitation variation prevails as 1955 mm, 3378 mm, 1931 mm, 2174 mm,
1862 mm, 2931 mm, 3334 mm for Barisal, Chattogram, Dhaka, Mymensingh, Rajshahi,
Rangpur, and Sylhet, accordingly [31]. The elevation pattern was found to be high in
Chattogram and Sylhet, ranging from 328 to 293 m (Figures 2 and 3). Population [43],
approximate district area [31], and climatic condition [35,44] are demonstrated for the years
2000, 2010, and 2020 (Table 1).
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Table 1. Different characteristics of study area.

District Year Population Area (sq. km) Climate District Year Population Area (sq. km) Climate

Barisal

2000 248,000

2785.52 Tropical
savanna

Chattogram

2000 3,308,000

5282.92 Tropical
monsoon2010 344,000 2010 4,106,000

2020 484,000 2020 5,020,000

Dhaka

2000 10,285,000

1497.17 Tropical
savanna

Mymensingh

2000 350,000

4394.57 Tropical
monsoon2010 14,731,000 2010 401,000

2020 21,006,000 2020 460,000

Rajshahi

2000 678,000

2401 Tropical
savanna

Rangpur

2000 279,000

2400.56
Humid

sub-tropical2010 786,000 2010 337,000

2020 908,000 2020 407,000

Sylhet

2000 852,000

3452.07 Tropical
monsoon2010 529,000

2020 331,000
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Figure 3. Study area showing remaining three districts including Rajshahi, Rangpur, and Sylhet in
Bangladesh, among seven major districts (digital elevation model).

2.2. Data Acquisition and Pre-Processing

For LULC classification, NDVI derivation, LST retrieval, and to detect changes in UHI,
Landsat-5 (2000, 2010) and Landsat-8 (2020) imagery data were collected from the United
States Geological Survey (USGS) website (https://earthexplorer.usgs.gov/; accessed on
20 February 2021) [32,45,46]. This site was also used to collect the digital elevation of the
study area. Details regarding the path, row, and the acquisition dates are given in Table 2.
All images have a 30 m spatial resolution except band 6 of Landsat-5, which is 120 m, and
band 10 and 11 of Landsat-8. To keep a cloud-free environment for this study, every image
was collected between 0% to 5% percent cloud level [32,45,46]. ArcMap 10.8 was used for
LULC classification, LST and NDVI derivation, and UHI calculation [32,45,46].

2.3. LULC Classification

Landsat-5 and Landsat-8 images were used for LULC classification. The maximum
likelihood supervised classification (MLSC) algorithm was used for LULC classification
using training sample areas [45]. Bare land, built-up area, vegetation, and water body were
the four categories used to classify the images. To generate LULC maps, around 40 to
50 sample areas were collected for each class [46].

https://earthexplorer.usgs.gov/
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Table 2. Landsat image details for this study.

District Year Landsat Date of Acquisition Sensor Path and Row

Barisal

2000
Landsat-5

19 January 2000
TM

137/442010 30 January 2010

2020 Landsat-8 26 January 2010 OLI_TIRS

Chattogram

2000
Landsat-5

13 February 2000
TM

136/44, 136/452010 8 February 2010

2020 Landsat-8 4 February 2020 OLI_TIRS

Dhaka

2000
Landsat-5

19 January 2000
TM

137/43, 137/442010 30 January 2010

2020 Landsat-8 11 February 2010 OLI_TIRS

Mymensingh

2000
Landsat-5

19 January 2000
TM

137/432010 30 January 2010

2020 Landsat-8 11 February 2010 OLI_TIRS

Rajshahi

2000
Landsat-5

11 February 2000
TM

138/432010 6 February 2010

2020 Landsat-8 18 February 2020 OLI_TIRS

Rangpur

2000
Landsat-5

11 February 2000
TM

138/422010 6 February 2010

2020 Landsat-8 2 February 2020 OLI_TIRS

Sylhet

2000
Landsat-5

29 February 2000
TM

136/432010 8 February 2010

2020 Landsat-8 4 February 2020 OLI_TIRS

2.4. Accuracy Assessment

Accuracy assessment is the procedure used to test the accuracy of computer-classified
maps and to view descriptive statistics used to compare classification results with ground in-
formation [32]. Around 200–220 points were used as ground observation points to show the
validation of the LULC map in the year 2000, 2010, and 2020 in all seven disctricts [45,47,48].
Those points were validated with Google Earth Pro [45,47,48]. Four classes (bare land,
built-up area, vegetation, water body) were identified through computer-classified maps
and ground observations. Overall accuracy, user accuracy, producer accuracy, and kappa
coefficient were calculated from the error matrix [45,47,48]. The standard kappa coefficient
test was carried out to quantify the level of agreement. Accuracy is categorized as good
when the kappa coefficient is higher than 0.75 [45]. In this study, the results show that all
the accuracy was over 0.75.

2.5. NDVI Derivation

The NDVI method has been extensively used to identify different vegetation types
and non-vegetated areas [49]. R (red) and NIR (near-infrared) values are used to calculate
it, and it is a ratio of the two [50]. We employed the NDVI to observe the relationship
between built-up area and vegetated area changes corresponding with LST.

The NDVI is a measurement of a plant’s health based on how it reflects light at
specific frequencies (some waves are absorbed, and others are reflected) [13]. Because it
compensates for variations in lighting conditions, surface slope, exposure, and other envi-
ronmental factors, the NDVI is preferred for global vegetation monitoring [13,19,21,22,48].
In this study, we used the NDVI to obtain the vegetation index which is utilized in various
studies, whereas the EVI has also proved its advancement [13,19,21,22,48–50]. Therefore,
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besides the NDVI, the EVI is preferred for future comparative study in our study area for
vegetation indexing.

NDVI = (NIR − R)/(NIR + R) (1)

where Landsat 4–7, NDVI = (Band 4 − Band 3)/(Band 4 + Band 3). Additionally, Landsat-8,
NDVI = (Band 5 − Band 4)/(Band 5 + Band 4).

2.6. LST Derivation for Landsat-5

Thermal band 6 was used for LST calculation for Landsat-5 satellite images in some
steps [51]. This can be carried out in three steps.

Step 1 is the conversion of digital number (DN) to Radiance (Lγ):

Lγ =

(
LMAXγ − LMINγ

QCALMAX − QCALMIN

)
× (QCAL − QCALMIN) + LMINγ (2)

where Lγ is spectral radiance, QCAL is the quantized calibrated value in DN, LMAXγ

is spectral radiance scaled to QCALMAX in (W/(m2 × sr ×µm)), LMINγ is spectral
radiance scaled to QCALMIN in (W/(m2 × sr ×µm)), QCALMAX is the maximum
quantized calibrated pixel value (corresponding to LMAXγ) in DN, and QCALMIN is the
minimum quantized calibrated pixel value (corresponding to LMAXγ) in DN.

Step 2 is the calculation of temperature brightness in kelvin:

Tk =
K2

ln
(

K1
Lγ

+ 1
) (3)

where T is the effective at-satellite temperature in kelvin, K2 is calibration constant 2, which
is 1260.56 for Landsat-5, K1 is calibration constant 1, which is 607.76 for Landsat-5, and Lγ
is spectral radiance.

Step 3 is the conversion of the temperature to degrees Celsius.

Tc = Tk − 273.15 (4)

2.7. LST Derivation for Landsat-8

Thermal band 10 was used to collect the land surface temperature for Landsat-8 [52],
which can be performed in six steps.

Step 1 is the calculation of the radiance from band 10 [52].

Lγ = ML × QCAL + AL (5)

where Lγ is spectral radiance, ML is the band-specific multiplicative rescaling factor from
the metadata, and AL is the band-specific additive rescaling factor from the metadata.

Step 2 comes after converting the spectral radiance, which then needs to be converted
to atmospheric temperature brightness [53].

TB =
K2

ln
(

K1
Lγ

+ 1
) − 273.15 (6)

where TB is the top of the atmospheric brightness temperature in kelvin and K2, and K1 is
the band-specific thermal conversion constant of 1321.0789 and 774.8853.

Step 3 is to calculate NDVI, which is essential for calculating LST for Landsat-8. [54]

NDVI =
NIR − RED
NIR + RED

(7)

where NIR is band 5 and RED is band 4.
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Step 4 is the calculation of the proportion of vegetation using maximum and
minimum NDVI,

Pv =

(
NDVI − NDVImin

NDVImax − NDVImin

)2
(8)

Step 5 is the calculation of land surface emissivity using Pv [55]

LSE = 0.004 × Pv + 0.986 (9)

Step 6 is the calculation of land surface temperature in degrees Celsius,

T = TB/
[

1 +
(

γ × TB
c2

)
ln(LSE)

]
(10)

where γ is the wavelength of emitted radiance, c2 is h × c/s = 1.4388 × 10 – 2 mK =14,388 µmK,
where h is Plank’s constant, which is 6.626 × 10 − 34 Js, s is Boltzmann constant, which is
1.38 × 10 − 23 J/K and c is the velocity of light which is 2.994 × 103 m/s.

2.8. Estimation of UHI

UHI is often described as the difference between rural and urban areas [56]. This can
also be defined by quantification to consider urban surfaces’ local and regional climate
change [56]. As for calculating the UHI, land surface temperature value was used [45].

UHI =
T − Tm

Tsd
(11)

where T is LST and Tm is LST mean, and Tsd is the standard deviation of LST.

3. Results and Discussion
3.1. LULC and NDVI Variations and Accuracy ASSESSMENT

Spatiotemporal LULC variations in seven districts were categorized in four defini-
tions for 20 years, including the three assessed years of 2000, 2010, and 2020 (Figure 4).
The changing pattern depicts rapid urban expansion in heterogeneous formations for
Dhaka, Barisal, Mymensingh, Rangpur, and Chattogram, whereas a systematic change
was observed in Rajshahi and Sylhet districts. In addition, Rajshahi city development
was observed from east to west, and Sylhet was mostly from the center to the southern
part. Table 3 is the measurement of change area variates for different classes of LULC.
Dynamic expansion of the built-up area was observed for Barisal, ranging from 10.06%
to 32.51%, whereas substantial prolongation of the urban area was experienced by Chat-
togram, Mymensingh, and Rangpur districts, which changed from 2.76% to 14.98%, 3.24%
to 18.36%, and 8.02% to 13.22%, respectively, during 2000–2010 and 2010–2020. A sudden
notable increase in urban area was found for the megacity of Dhaka 17.36%, which was
observed as negative (−0.98%) for 2000–2010. In contrast, large momentous diminution
was fostered by Sylhet, presenting 1.45% of urban land in the 2010–2020 period; meanwhile,
it was 12.21% during 2000–2010. Furthermore, Rajshahi and Sylhet were influenced by a
decreased urban corridor for both upward and downward patterns compared with other
districts, which indicate 5.83% to 3.72% and 1.72% to 0.91% throughout in the same period,
as mentioned earlier. However, the significant seesaw is also explored for other classes
(Table 3). These results corroborate developed urban areas, scattered extensive population,
and the zonation of industrial areas as responsible factors for the swell in built-up areas
with particularly diminishing vegetation and water sources. Several existing pieces of
works of literature extrapolate similar findings [57–59]. However, another investigation
in Bangladesh proves Rangpur, Rajshahi, and Sylhet had excessive city growth of 16%,
12%, and 11%, respectively, which slightly contradicts the present study [60]. Additionally,
vegetated areas were observed to decrease significantly over all of the seven districts.
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Table 3. LULC changed area.

District Category 2000
(sq.km)

2010
(sq.km)

2020
(sq.km)

Changes
(2000–2010)

Percent
Changes

Changes
(2010–2020)

Percent
Changes

Rangpur

Bare Land 58.05 30.69 32.50 −27.36 −1.18 1.81 0.08

Urban area 573.16 759.75 1067.40 186.59 8.02 307.65 13.22

Water body 20.11 33.69 29.80 13.58 0.58 −3.89 −0.17

Vegetation 1675.21 1502.41 1196.78 −172.80 −7.43 −305.63 −13.14

Mymensingh

Bare Land 12.81 44.40 13.37 31.59 0.74 −31.03 −0.72

Urban area 1094.82 1233.73 2020.48 138.91 3.24 786.75 18.36

Water body 47.69 47.09 70.23 −0.60 −0.01 23.14 0.54

Vegetation 3130.21 2960.58 2181.74 −169.63 −3.96 −778.84 −18.17

Sylhet

Bare Land 27.48 2.89 21.33 −24.59 −0.71 18.44 0.53

Urban area 159.55 580.75 630.70 421.20 12.21 49.95 1.45

Water body 146.30 65.40 235.87 −80.90 −2.34 170.47 4.94

Vegetation 3117.64 2801.88 2563.87 −315.76 −9.15 −238.01 −6.90

Rajshahi

Bare Land 54.68 51.76 45.09 −2.92 −0.12 −6.67 −0.28

Urban area 848.48 987.26 1075.77 138.78 5.83 88.51 3.72

Water body 75.23 68.04 70.15 −7.19 −0.30 2.11 0.09

Vegetation 1403.68 1274.90 1191.03 −128.78 −5.41 −83.87 −3.52

Dhaka

Bare Land 14.40 15.89 14.51 1.49 0.10 −1.38 −0.09

Urban area 709.20 694.21 958.62 −14.99 −0.98 264.41 17.36

Water body 53.68 48.30 61.63 −5.38 −0.35 13.33 0.88

Vegetation 745.47 764.40 488.01 18.93 1.24 −276.39 −18.15

Barisal

Bare Land 179.20 63.51 76.70 −115.69 −5.17 13.19 0.59

Urban area 58.56 295.57 1022.56 237.01 10.60 726.99 32.51

Water body 107.13 223.79 231.26 116.66 5.22 7.47 0.33

Vegetation 1891.42 1653.73 905.56 −237.69 −10.63 −748.17 −33.46

Chattogram

Bare Land 40.02 36.63 21.62 −3.39 −0.08 −15.01 −0.33

Urban area 577.25 701.03 1373.04 123.78 2.76 672.01 14.98

Water body 184.03 163.30 136.15 −20.73 −0.46 −27.15 −0.61

Vegetation 3684.43 3584.30 2954.84 −100.13 −2.23 −629.46 −14.03

Figure 5 shows the NDVI variations for the districts considered for the evaluation
of the correlations between urban expansion and NDVI reduction during 2000–2020. We
found a significant relationship between built-up area and NDVI, which demonstrates
areas of the NDVI decreased excessively for Barisal, Dhaka, Mymensingh, Chattogram,
and Rangpur, whereas the built-up area increased substantially in the respective areas
(Figure 5 and Table 3). In contrast, Rajshahi and Sylhet experienced less NDVI degradation,
supported in Table 3, because the urban area was not heavily expanded, resulting in less
vegetation loss. Overall, there is a strong and positive correlation between NDVI-estimated
areas and the LULC classification assessment.
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Accuracy evaluation is vital for urban development and the surface’s temperature [61].
Congalton used it to determine classification validation. Moreover, accuracy assessment
was utilized for the present exploration to validate LULC classification (Table 4). Overall,
200–220 reference points were taken for each district and visualized with the Google Earth
Pro engine. The kappa coefficient and overall accuracy values mostly exhibit more than 80
for LULC classes. This estimated value suggests a strong validation demonstration for the
study area categorization. Additionally, the kappa coefficient > 0.75 strengthens the very
good position of classified accuracy, whereas 40< is defined as poor accuracy [32,61].

Table 4. Accuracy assessment details.

District Year Class User Accuracy Producer Accuracy Overall Accuracy Kappa Coefficient

Barisal

2000

Bare Land 73.68 82.35

85.20 0.77
Built-up Area 66.67 90.91

Vegetation 94.05 79.83

Water Body 94.29 100.00

2010

Bare Land 88.57 100.00

88.00 0.81
Built-up Area 73.68 70.00

Vegetation 76.60 90.00

Water Body 95.96 87.16

2020

Bare Land 87.50 100.00

93.13 0.90
Built-up Area 97.50 90.70

Vegetation 87.50 87.50

Water Body 100.00 95.24

Chattogram

2000

Bare Land 77.50 91.18

81.88 0.75
Built-up Area 85.00 75.56

Vegetation 85.00 69.39

Water Body 80.00 100.00

2010

Bare Land 80.00 80.00

83.13 0.77
Built-up Area 80.00 80.00

Vegetation 87.50 87.50

Water Body 85.00 85.00

2020

Bare Land 92.50 94.87

86.88 0.82
Built-up Area 75.00 75.00

Vegetation 87.50 81.40

Water Body 92.50 97.37

Dhaka

2000

Bare Land 82.50 100.00

83.75 0.78
Built-up Area 85.00 77.27

Vegetation 80.00 71.11

Water Body 87.50 92.11

2010

Bare Land 90.00 100.00

91.25 0.88
Built-up Area 92.50 78.72

Vegetation 85.00 89.47

Water Body 97.50 100.00

2020

Bare Land 90.00 100.00

86.88 0.82
Built-up Area 80.00 76.19

Vegetation 80.00 78.05

Water Body 97.50 95.12
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Table 4. Cont.

District Year Class User Accuracy Producer Accuracy Overall Accuracy Kappa Coefficient

Mymensingh

2000

Bare Land 85.00 100.00

88.13 0.84
Built-up Area 92.50 92.50

Vegetation 85.00 72.34

Water Body 90.00 92.31

2010

Bare Land 82.50 97.06

83.13 0.77
Built-up Area 67.50 100.00

Vegetation 87.50 92.11

Water Body 95.00 62.30

2020

Bare Land 87.50 100.00

88.75 0.85
Built-up Area 97.50 88.64

Vegetation 87.50 79.55

Water Body 82.50 89.19

Rajshahi

2000

Bare Land 100.00 95.24

87.50 0.83
Built-up Area 80.00 94.12

Vegetation 80.00 74.42

Water Body 90.00 87.80

2010

Bare Land 100.00 95.24

89.38 0.85
Built-up Area 67.50 96.43

Vegetation 97.50 73.58

Water Body 92.50 100.00

2020

Bare Land 100.00 100.00

93.13 0.90
Built-up Area 82.50 94.29

Vegetation 92.50 82.22

Water Body 97.50 97.50

Rangpur

2000

Bare Land 80.00 100.00

87.50 0.83
Built-up Area 82.50 80.49

Vegetation 90.00 76.60

Water Body 97.50 97.50

2010

Bare Land 95.00 100.00

90.00 0.86
Built-up Area 85.00 91.89

Vegetation 90.00 76.60

Water Body 90.00 94.74

2020

Bare Land 90.00 94.74

86.88 0.82
Built-up Area 77.50 83.78

Vegetation 82.50 71.74

Water Body 97.50 100.00
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Table 4. Cont.

District Year Class User Accuracy Producer Accuracy Overall Accuracy Kappa Coefficient

Sylhet

2000

Bare Land 72.50 100.00

87.50 0.83
Built-up Area 87.50 85.37

Vegetation 95.00 80.85

Water Body 95.00 88.37

2010

Bare Land 100.00 97.56

91.25 0.88
Built-up Area 97.50 75.00

Vegetation 72.50 100.00

Water Body 95.00 100.00

2020

Bare Land 82.50 97.06

84.38 0.79
Built-up Area 82.50 82.50

Vegetation 95.00 71.70

Water Body 77.50 93.94

3.2. Assessment of LST

Figure 6 and Table 5 demonstrate the spatiotemporal change measurement of land
surface temperature in the study period of 2000, 2010, and 2020. Extreme land surface
temperature due to compact developed areas depicts the hotspots zones of the respective
location. LULC mutation and LST transformation are equivalent in temporal and spatial
depiction between the stated period. Barisal district had a large area of temperature
change ranging from 17 to 18 ◦C (>45% area) in 2000, wherein in two decades, it increased
to 18–20 ◦C (>68% area). This corresponds to Figures 4–6 and Table 5, which signifies
expanded urbanized and dryland areas causing an increase in temperature; hence, hotspot
areas (Figure 7) were primarily found in those two LULC categorized areas. Similarly, in the
Chattogram district, dominating scatter LST formation found which depicted >32% area of
20–21 ◦C in 2000 as it increased in 2020, with a >55% area enlargement of 21–23 ◦C, which
compares identical built-up and bare land area extension (Figure 4 and Table 3). In 2000,
Dhaka’s more significant portion (43% area) was 16–17 ◦C; a rapid increase was observed
in 2010 that sustained until 2020, comprising 20–23 ◦C for the prolonged area of 66%.
Additionally, Mymensingh represented a high concentrated temperature zone along the
riverside in bare land and the developed area (Figures 4 and 6), validated by Figure 7 of the
hotspot zones of the respective area. A gradual upward trend of temperature augmentation
was also observed for Mymensingh from 2000 to 2020 in the range of 17–18 ◦C (>60%
area) to 20–22 ◦C (>70% area). Furthermore, for the Sylhet district, the LST threshold
remained 16–24 ◦C, which was significant in the proximate sense for the entire echelon of
exploration (Figure 5 and Table 5). Due to acknowledged heterogenous urban and bare
land (Figure 4), hotspots of the Sylhet district remained interspersed in 4.42% of the area
in 2020 (Table 5). Ordinary change of LST precipitated for Rangpur district that sustained
18–20 ◦C for the utmost territory during the same study period with a deficient hotspot
area of 4.47% (Figures 6 and 7 and Table 5).
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Table 5. LST area distribution.

Area Year Temperature
(◦C) Area Per Cent

Change Area Year Temperature
(◦C) Area Per Cent

Change

Barisal

2000

14.71–17.47 312.96 13.99

Chattogram

2000

17.47–20.17 799.2422 17.82

17.47–18.38 1007.304 45.04 20.17–21.06 1477.061 32.93

18.38–18.83 544.7676 24.36 21.06–21.94 1332.5 29.71

18.83–19.72 325.35 14.55 21.94–23.25 780.1382 17.39

19.72–24.54 46.23 2.07 23.25–28.76 96.631 2.15

2010

16.56–17.93 149.85 6.70

2010

17.02–21.06 799.2604 17.82

17.93–19.72 700.18 31.31 21.06–22.37 1607.954 35.85

19.72–21.06 960.27 42.93 22..37–23.68 1232.395 27.47

21.06–22.37 362.99 16.23 23.68–25.82 706.7859 15.76

22.37–27.09 63.28 2.83 25.82–31.64 139.27 3.10

2020

17.21–18.61 207.8975 9.30

2020

12.03–20.05 569.3204 12.69

18.61–19.39 763.3504 34.13 20.05–21.01 1477.769 32.94

19.39–20.08 766.6907 34.28 21.01–21.97 1383.896 30.85

20.08–21.13 445.1029 19.90 21.97–23.33 840.1881 18.73

21.13–25.95 53.52764 2.39 23.33–32.55 213.0636 4.75

Dhaka

2000

11.88–16.10 169.3025 11.12

Mymensingh

2000

14.24–17.02 935.6212 21.83

16.10–17.02 660.2207 43.35 17.02–17.93 1672.55 39.03

17.02–17.93 444.6282 29.20 17.93–18.83 1204.605 28.11

17.93–18.83 181.3708 11.91 18.83–19.72 360.5033 8.41

18.83–23.68 67.30422 4.42 19.72–24.54 112.4708 2.62

2010

16.53–19.72 398.6277 26.18

2010

13.77–19.28 1117.137 26.07

19.72–21.06 623.056 40.91 19.28–20.17 1739.536 40.59

21.06–22.37 334.1014 21.94 20.17–21.06 782.3379 18.25

22.37–24.11 130.523 8.57 21.06–22.37 508.4115 11.86

24.11–29.59 36.50096 2.40 22.37–27.93 138.2994 3.23

2020

17.89–20.82 167.0037 10.97

2020

15.37–20.70 657.0212 15.33

20.82–22.09 592.2974 38.89 20.70–21.28 1911.871 44.61

22.09–23.31 437.5772 28.73 21.28–22.13 1284.027 29.96

23.31–25.11 258.5014 16.98 22.13–23.68 369.288 8.62

25.11–30.33 67.40691 4.43 23.68–29.00 63.56586 1.48

Rajshahi

2000

7.99–13.77 0.108031 0.00

Rangpur

2000

11.40–18.38 532.9292 22.91

13.77–16.56 177.5506 7.45 18.38–18.83 761.79 32.74

16.56–17.02 507.7203 21.31 18.83–19.72 839.1335 36.07

17.02–17.47 1139.577 47.84 19.72–21.06 147.5184 6.34

17.47–21.94 557.0388 23.38 21.06–25.82 45.1306 1.94

2010

16.10–18.38 47.39137 1.99

2010

15.64–17.93 489.0469 21.02

18.38–20.61 932.7005 39.16 17.93–19.28 862.8425 37.09

20.61–21.94 776.454 32.60 19.28–20.61 597.2121 25.67

21.94–24.11 497.7213 20.89 20.61–22.37 304.2014 13.08

24.11–29.18 127.7852 5.36 22.37–27.93 73.21678 3.15

2020

18.99–21.28 52.85249 2.22

2020

13.20–18.50 502.6909 21.61

21.28–22.79 865.2631 36.32 18.50–19.37 821.9776 35.33

22.79–23.83 1077.733 45.24 19.37–20.29 594.9595 25.57

23.83–25.86 327.451 13.75 20.29–21.51 302.883 13.02

25.86–30.05 58.75703 2.47 21.51–26.25 103.9618 4.47
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Table 5. Cont.

Area Year Temperature
(◦C) Area Per Cent

Change Area Year Temperature
(◦C) Area Per Cent

Change

Sylhet

2000

15.17–18.83 648.0724 18.78

18.83–20.17 988.2278 28.64

20.17–21.50 987.1232 28.60

21.50–23.25 691.1813 20.03

23.25–29.18 136.3068 3.95

2010

17.02–20.17 901.1923 26.11

20.17–21.50 920.6859 26.68

21.50–22.81 824.0293 23.88

22.81–24.54 602.0792 17.45

24.54–30.00 202.9232 5.88

2020

16.10–19.17 607.4081 17.60

19.17–19.99 1113.531 32.27

19.99–20.80 918.7201 26.62

20.80–21.80 658.5974 19.08

21.80–27.68 152.66 4.42

In contrast to the other six districts of Bangladesh, Rajshahi, which experienced less
urban expansion (Table 3), showed LST hotspots of 2.47% area, while gradual temperature
improvement was noticed from 2000 to 2020, whereas 2010 was found to be stretched for
LST, as well as the highly concentrated urban area (Figures 6 and 7 and Table 5). These
results conclude that Dhaka and Chattogram are highly concentrated urban areas with
intense land surface temperature; hence, they retain greater hotspot zones. Similarly, diver-
sified surface temperatures are acknowledged for different cities in Bangladesh including
Chattogram [62,63], Dhaka [58], Rajshahi [45,64,65], Barisal [66], and Mymensingh [67]. The
obtained identification determines that dry land considers high LST values as well as ur-
banized areas, which is shown in the exploration of several studies [45,63]. As each district
advances, urban expansion in Bangladesh is the key reason for rainwater infiltration and po-
tential water flow, leading to groundwater deficiency. Moreover, these multiplicators cause
abnormal water cycles due to evaporation–transpiration disharmonious phenomenon.

Consequently, the water cycle degrades, resulting in environmental change [68]. Thus,
it affects the study area’s maximum and minimum temperature fluctuations [22]. Aerosol
pollution and landscape albedo variations are accompanied by excessive land usage. As a
result, land-use reform is one of the worst fundamental cognitive biases that could com-
promise the planet’s radioactive equilibrium [69]. For instance, warm air levels decrease
significantly during the transformation of swamp surfaces to cropland, corresponding to
extreme albedo rates [70].

Urban expansion influences the minimum temperature to a greater extent than the
maximum temperature in the winter season, and this decrease in temperature variations in
the winter period has been earlier reported by several researchers [71,72]. In [73], Huang
stated that the intensity of LST is elevated because of rapid urbanization in China, causing
a higher daily temperature variation in Beijing compared to Shanghai. So, LULC change
is the main disquiet; the major districts of Bangladesh have likely faced a higher degree
of variation than other areas worldwide, a rate mainly driven by elevated rural–urban
migration strategies [74].
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3.3. UHI Intensity Assessment

The UHI intensity graph for the seven significant districts of Bangladesh depicts
diversified intensity for each location (Figures 8 and 9). The topmost increase in intensity is
observed for Mymensingh, 2.81 ◦C to 10.8 ◦C, from 2000 to 2020. Moreover, substantial
amplification was noticed for Chattogram and Sylhet, observed as 9.65 ◦C and 7.74 ◦C.
Consequently, in 2020, Barisal retained approximately the same 8.220 C intensity as in 2000,
whereas Dhaka indicated a reduction of 1.46 ◦C as it was 6.95 ◦C in 2000.
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In contrast, Rajshahi and Rangpur alleviated their temperature intensities notably
from 9.11 ◦C to 6.31 ◦C and 9.02 ◦C to 6.37 ◦C, accordingly, from 2000 to 2020. Figure 8
provides an accurate spatiotemporal demonstration of heat intensity regarding the par-
ticular study area’s industrious, populated, and dry land. The aggregated UHI intensity
also corresponds with the illustration of hotspots shown in Figure 7 for each aerial and
temporal distribution. [36] Dewan also found the same results as those reported in the
present investigation, which determines high intensity in the core of urban areas due to
heavy anthropogenic force, population, and fewer vegetated areas of five major cities of
Bangladesh: Dhaka, Chattogram, Khulna, Rajshahi, and Sylhet. Thus, the effect of UHI
on winter temperature is evident. The temporal changes of UHI could be linked with fast
LULC variation and crop phenological change [75], a decline of reference evapotranspira-
tion because of a lot of impervious layers [76], and disparity cooling rates during the winter
period [77]. The main difference in delineating the selected urban coverage is a probable
area of UHI changes. In [45], an increase of >37% surface temperature caused by the
built-up area of Rajshahi was revealed, which validates the UHI observation. Furthermore,
a canopy describes dwellings and cycle lanes within a built environment [78]. In general,
region-specific UHI works of the country are still lacking except for one study [36]; however,
earlier cited works [78] using a chosen Landsat dataset have reported an enhanced UHI,
following the present outcomes. Earlier works have focused on the greenness activity
in regulating surface temperature, especially during the daytime in the summer [79–82]
The cooling ability of an urban region is commonly regulated by differences in evapora-
tion cooling potential, changes in LULC, the lack of moisture content, and the absence of
vegetation cover [83,84].

4. Possible Implication and Limitation of the Study

Fast population growth and the related urban districts are considered pivotal drivers
of local and regional temperature variations [85], particularly in developing countries such
as Bangladesh. Urbanization coupled with global climate warming will likely enhance heat-
associated mortality events [86]. A normal urban district in Bangladesh is characterized by
few tree plantations and highly scattered vegetated areas [87]. Tree coverage might be of
aid in enhancing cooling activities. The cooling impacts of vegetation rely on vegetation
types. For example, green vegetation is noticeably more efficient in giving year-round
advantages than other vegetation types [88]. This study gave reference datasets on the
seasonal intensity of UHI during the winter dry season, and larger districts seem to have
higher variation than smaller districts. The outcomes of our research are anticipated to
give vital information for future study, provided that global climate warming is possible
to exacerbate UHI impacts in the forthcoming period. This research aids advancement
towards the United Nation’s SDGs and the regional climate information found in this work
can support the generation of district-specific adaptation strategies.

Several drawbacks to this work should not be overlooked. First, the only remote-
sensing-derived index was adopted to identify UHI over major districts of Bangladesh.
The climatic variables [89], landscape metrics [80], and clear albedo [90] can make further
study more effective, as the parameters could have a substantial influence on LST. Second,
since UHI has considerable daily and seasonal variations, which would also be of great
value, we only considered the winter period and thus limited its wide application. Third,
the problem of lessening pixel values due to a lack of clear sky is noticed most remarkably
in the winter period in Bangladesh, and thus the effect on LST and derived UHI intensity
is most evident in that season. In general, the application of in situ arrangement can also
be applied to estimate the validation of LST extents. Ultimately, it is worth mentioning that
the outcomes obtained from our research are based on high-resolution satellite imageries
assessment using remote sensing tools, and the measured LST is not verified with the actual
ground condition. Despite these drawbacks, this research gives a better understanding of
the local temperature changes and global warming within the large districts of Bangladesh
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and gives further information for developing potential mitigation actions. However, this
deserves further investigation.

5. Conclusions

This research aimed to investigate LULC, NDVI, and LST variations concerning
UHI intensity diversification over Bangladesh’s seven most populated urbanized districts,
combining 20 years of quality-controlled LULC and LST datasets. The MLSC algorithm
was employed to measure the LULC category with good precision (81–93%). The results
indicated that a significant reduction in vegetated land was observed at the expense of
built-up areas in all districts except for Rajshahi and Sylhet. In the winter season, LST
had increased from 3 ◦C to 8 ◦C during the study period. The LST patterns indicate that
built-up areas under urban expansion exhibited high LST, while the vegetated area and
water bodies depicted relatively low LST. Our study revealed that the UHI intensities
appeared to be increasing, which might mean the narrowing of the diurnal temperature
range. The UHI intensities for all districts were found to vary from 8 ◦C to 10 ◦C. Analysis
showed that the magnitude of UHI intensity was high for Mymensingh (10 ◦C) and low for
Dhaka (1.46 ◦C). These changes will substantially affect the regional climate change of these
districts, which highlights significant thermal variations present in all district areas. This
study identified significant hotspots zones and UHI intensity in densely populated urban
dwellings and low moisture content area/dry, bare land. The outcome of our research is
anticipated to give crucial information for future work, provided that global warming is
expected to exacerbate UHI impacts in the forthcoming period. A practical initiative to a
city decentralization policy is suggested. Governments, the NGO sector, climate scientists,
urban planners, and engineers could consider the potential findings of this study for
sustainable climate and urban design purposes. Our study confirms development towards
the UN’s SDGs (sustainable development goals), and the local climate information in our
study could aid in developing district-specific mitigation strategies.
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