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Abstract: In the present study, dynamically downscaled Weather Research and Forecasting (WRF)
model simulations of winter (DJF) seasonal precipitation were evaluated over the Western Himala-
yas (WH) at grey zone configurations (at horizontal resolutions of 15 km (D01) and 5 km (D02)) and
further validated using satellite-based (IMERG; 0.1°), observational (IMD; 0.25°), and reanalysis
(ERA5; 0.25° and IMDAA; 0.108°) gridded datasets during 2001-2016. The findings demonstrate
that both model resolutions (D01 and D02) are effective at representing precipitation characteristics
over the Himalayan foothills. Precipitation features over the region, on the other hand, are much
clearer and more detailed, with a significant improvement in D02, emphasizing the advantages of
higher model grid resolution. Strong correlations and the lowest biases and root mean square errors
indicate a closer agreement between model simulations and reanalyses IMDAA and ERAS5. Vertical
structures of various dynamical and thermodynamical features further confirm the improved and
more realistic in WRF simulations with D02. Moreover, the seasonal patterns of upper tropospheric
circulation, vertically integrated moisture transport, surface temperature and cloud cover show
more realistic simulation in D02 compared to coarser domain DO01. The categorical statistics reveal
the efficiency of both D01 and D02 in simulating moderate and heavy precipitation events. Overall,
our study emphasizes the significance of high-resolution data for simulating precipitation features
specifically over complex terrains like WH.
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1. Introduction

The Western Himalayas (WH), situated in the northwest Indian region, are a geo-
graphically complex region with marked topographic heterogeneity. The region receives
about 60-90 percent of its annual precipitation during the southwest monsoon season
(June-September) [1]. Apart from this, precipitation observed during the winter season
(December through February; hereafter DJF) accounts for about one-third of the precipi-
tation over the region [2,3]. This winter precipitation is crucial for the production of Rabi
crops, as it provides moisture content and optimum temperature for these winter crops,
and is therefore important for the country’s agricultural economy [4]. Moreover, it plays
a key role in maintaining the glacial mass and ensuring fresh water supply over the WH
region. The glacial snow melt also provides water for agriculture, power generation and
various other sectors [5,6]. This wintertime precipitation over WH, termed the Indian
Winter Monsoon, is contributed through western disturbances (WDs) embedded in the
large-scale subtropical westerly jet [2]. WDs are generated as mid-latitudinal cyclonic dis-
turbances over the Mediterranean region, which are further modified over the Persian
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Gulf and Caspian Sea, before traveling across the northern and central parts of India [7—
9]. These synoptic low-pressure systems influence weather-related patterns during winter
through the inflow of moist and warm air from the Arabian Sea ahead of the depressions,
and are associated with convergence at lower levels, in turn contributing to convection
and precipitation [2,10]. A large amount of precipitation is observed during WD days over
WH ranges through their interaction with complex mountainous orography [5,10,11].
Usually, a considerable fraction of the heavy precipitation observed in WH is in the form
of solid precipitation, such as snow [12]. Various studies have reported an increase in the
intensity and frequency of extreme precipitation events over the WH in the past few dec-
ades [13,14], with further increases expected in future due to accelerated warming over
the region [15]. These events include extreme precipitation, cloudbursts, and associated
weather-related disasters such as flash floods and landslides which generally are known
to have a very localized nature. Thus, the availability of climate data with high spatio-
temporal resolution is necessary to better understand the mechanisms that trigger these
localized hazards. Furthermore, the complex land surface orography of the WH is an ob-
stacle for accurately monitoring the regional precipitation amounts which exhibit large
spatio-temporal variability [5]. Most of the in situ observations are recorded in low alti-
tude regions, and very few are present in mountain tops where the chances for heavy
precipitation are high [16]. Thus, precipitation in high-altitude regions is poorly measured
[17,18]. Such a lack of a sufficiently dense observational network over the WH is an obsta-
cle to the detailed understanding of the precipitation patterns and the contributing mete-
orological and dynamical factors. Additionally, the limitations and biases related to other
data alternatives such as gridded satellite and reanalysis precipitation products over these
mountainous terrains have also been a subject of discussion in various studies [19-21].
Furthermore, mountain ridges and valleys often lie within a grid box of these typically
available coarse-resolution gridded datasets from different sources, as well as in the global
climate models, thus producing significant biases in the obtained data and model results
compared to observations. Such challenges underscore the requirement of high-resolution
data to better understand precipitation distribution and climate variability at regional
scales over such complex terrains.

Regional climate models (RCMs) provide advantages in terms of fine, sub-global cli-
mate model grid scales that are well suited to research of regional-scale phenomena. The
high resolution of RCMs permits a detailed assessment of regional- and local-scale climate
change, allowing a better representation of several physical mechanisms (e.g., convection,
clouds, precipitation, surface fluxes, etc.), specifically over complex topographical terrains
(e.g., [22,23]). Moreover, a comprehensive analysis of regional-scale impacts underlines
the necessity of high-resolution climate variables, which are unavailable directly from
coarse-resolution global reanalysis fields. RCMs can make this information more accurate
in space and time by taking into account the effects of sub-grid scale processes and forc-
ings, such as those caused by complex topography, coastlines, inland bodies of water, and
the distribution of land cover [24]. Because RCMs have finer resolution, they generate at-
mospheric circulations and associated physical processes on a smaller scale. Key atmos-
pheric variables, such as temperature and precipitation, reflect large spatial fluctuations,
specifically over complex terrains, driven topographic and land surface variations. Thus,
high-resolution RCMs are expected to provide improved simulations for atmospheric var-
iability in the observationally difficult and geographically complex WH terrains [25]. Ac-
curate regional-scale climate simulations, on the other hand, are necessary for interpreting
regional climate change, which may be achieved by comparing the model outputs with
existing in situ observations or reanalysis estimates [26].

The simulation capacity of RCM is generally dependent on the initial and lateral
boundary conditions, physical parameterizations, and model resolutions (e.g., [27]). Pre-
cise depiction of local-scale energy balance is critical for the accurate simulation of atmos-
pheric flow, especially across dynamic terrains like WH, which necessitates higher grid
resolution. Furthermore, a much higher model grid resolution may assist in reducing the
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uncertainties associated with predicting precipitation characteristics by providing a de-
tailed representation of the interaction between synoptic weather systems and local to-
pography [28,29]. Therefore, adequate model horizontal grid spacing in the RCM numer-
ical model configuration is important for effectively depicting the topographical charac-
teristics [30]. Various studies available in the literature have performed sensitivity tests
on dynamically downscaled model outputs with different model resolutions. Ref. [31]
studied dynamic downscaling simulations using two RCMs: RegCM4 and the Weather
Research and Forecasting (WRF) model. A detailed characterization of vertical structures
of atmospheric circulation, temperature, and precipitation was demonstrated in the high-
resolution WRF model, with improved simulations for heavy precipitation events. Ref.
[32] showed that RCMs produced better precipitation distribution over North America
when the grid size was reduced from 80 to 32 km. After lowering the grid size to a third,
Ref. [33] discovered improvement in simulations for heavy rainfall patterns and amounts
associated with the 1998 East Asian flood due to better simulated downward solar radia-
tion, latent heat flux and convective rainfall. Similarly, Ref. [34] found that RCM with a
grid size of 20 km outperformed the coarser 60 km grid for deciphering the current climate
across Korea. Refs. [35,36] discovered better representation of precipitation over East Asia
and associated extreme events along the Yangtze river basin at higher-resolution RCM
runs. The effect of horizontal model resolution and associated orographic representation
during an active western disturbance was also examined by [37]. They discovered that the
precipitation amounts simulated for coarser domains (90 km) were underestimated due
to the model’s unrealistic representation of orographic effects and mesoscale forcing. Fur-
thermore, the finer-resolution domain (30 km) efficiently reproduced the intricate struc-
ture and distribution of wind speed. Similarly, Ref. [38,39] studied the impact of horizon-
tal resolution on the RCM simulations of extreme rainfall along the length of the Yangtze
River basin and discovered that the simulation with the finest grid size of 4 km provided
the best representation of rainfall intensity and rain belt distribution across the basin.

The harsh environment and complex terrain of WH makes it observationally chal-
lenging and limits our knowledge of high-elevation climate. Moreover, the limitations of
satellite and reanalysis data over such steep terrain, including inadequate grid resolu-
tions, emphasize the necessity of high-resolution RCM simulations to resolve the funda-
mental processes, such as orographically induced precipitation. The present study aims
towards understanding the seasonal characteristics of winter precipitation (DJF) and as-
sociated dynamic and thermodynamic processes over WH using a high-resolution re-
gional climate model (WRF) at grey zone configurations (i.e., 15 km and 5 km horizontal
resolutions), and examining the effect of horizontal resolution in simulating these winter
precipitation characteristics. The objectives of present study are: (a) cross-comparison of
WRF-simulated seasonal winter precipitation (DJF) for two nested domains to understand
the impact of increased horizontal resolution and further validate the obtained results us-
ing multi-source climate datasets, including the satellite-based dataset Integrated Multi-
satellitE Retrievals for Global Precipitation Measurement (GPM-IMERG), the gauge-
based dataset IMD, and the reanalysis datasets European Centre for Medium-Range
Weather Forecasts (ERA5) and Indian Monsoon Data Assimilation and Analysis (IM-
DAA). (b) Evaluation of seasonal precipitation climatology, temporal trends and associ-
ated dynamic and thermodynamic fields over the study region.

The remainder of this study is organized as follows. Section 2 provides a brief over-
view of the study area. Section 3 describes the model configuration, reference datasets and
methodology incorporated in the study. An evaluation of the model-simulated precipita-
tion, along with the associated dynamic and thermodynamic variables, is presented in
Section 4. Finally, Section 5 summarizes the major findings of our study.
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2. Study Area

The current study is focused on the western Himalayan region, which extends over
hilly areas of Ladakh, Jammu and Kashmir, Himachal Pradesh, Uttarakhand, and the
surrounding Himalayan sub-sections of Punjab and Haryana. The area lies in the
northernmost part of the Indian subcontinent, extending from 72-82° E longitude to 29—
37° N latitude, with altitudes varying from approximately 200 to 8000 m (see Figure 1)
above sea level (a.s.l.). The interplay of global atmospheric circulation with one of the
world’s tallest geological features has resulted in a variety of climatological, ecological,
and snow climatic zones within the WH; classified primarily into three principle zones:
Lower, Middle, and Upper Himalayas. The region constitutes a complex heterogeneous
land cover consisting of forests, fallow lands, agricultural fields, urban built-up areas,
urban green spaces, glaciers, and a variety of aquatic systems. In terms of local climatology
and spatio-temporal precipitation distribution, the study area holds key significance. WH
receives precipitation from two sources: winter precipitation through WDs coming from
Mediterranean Sea and, summer precipitation via the southwest monsoon. Snow typically
covers high mountain precipitation during the winter season.The Pir Panjal range, which
makes up the Lower Himalayan Zone, is the first area to interact with WDs moving
eastward [40]. The precipitation inversion in this region typically occurs in 1500-3500 m
during winter. Wet snow is the most common form of precipitation in this area. The
intermediate climatic zone, which includes the Great Himalayan range, is known to record
the lowest minimum temperatures and receivecomparatively less precipitation than
lower zone. The Zanskar, Ladakh, and Karakoram ranges which form the upper climatic
zone experience extremely little precipitation, with wintertime temperature reaching far

below freezing. As a result, the snow takes much longer to settle in this area [41].
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Figure 1. Topographic map from WRF, where the outlined box is the study region.
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3. Materials and Methods
3.1. Model Configuration

The fully compressible nonhydrostatic Advanced Research WRF model (Version
3.8.1; [42]) was used to simulate each winter season from 1 November 2000 to 1 April 2016
with terrain-following coordinates and a constant pressure surface at the top. This model’s
ability to simulate atmospheric dynamics at a variety of horizontal and vertical scales and
resolve the large-scale atmospheric features and internal dynamics of the system makes it
popular [43-46]. The WRF model has been used for different applications such as tropical
cyclone prediction [46—49], regional climate downscaling [50], and air quality modeling
[51] and nowcasting [52]. The WREF-simulated vertical atmospheric profiles are used as a
first guess in satellite retrievals [53-55]. We used the default Moderate-Resolution Imag-
ing Spectroradiometer (MODIS; https://modis.gsfc.nasa.gov accessed on 1 February 2022)
land use data available with WRF model release version 3.8.1. The model was configured
for two two-way nested domains, 15 km (D01) and 5 km (D02), at up to 20 km from the
surface (52 vertical levels). The chosen model domain spans zonally from 30° W-130° E
and 30° 5-45° N meridionally. Initial and lateral boundary conditions, as well as sea sur-
face temperature data, from the ECMWEF’s global reanalysis ERA-Interim were used. The
various parameterizations employed for the model simulations are listed in Table 1.

Table 1. Details for WRF model configurations and physical parameterization schemes used in this
study.

WRF Model Setup

Initial, lateral boundary condition

European Centre for Medium-Range Weather Forecasts
Interim Reanalysis (ERAI) (0.758°)

Domain extends 30°W-130°E, 30°5-45°N
Convective Parameterization Scheme KF scheme [42,51]
Microphysical scheme Thompson scheme [53]
Radiation schemes Rapid Radiative Transfer Model for global circulation models
(Shortwave, Longwave) (RRTMG) [55]

Planetary boundary layer scheme

Mellor-Yamada—Nakanishi-Niino turbulent kinetic energy
scheme [54]

Land surface scheme Noah land surface model scheme [56]

We employed the Kain-Fritsch (KF) convective parameterization scheme, which is a
simple mass-flux cloud model for moist updraft and downdraft [56,57]. The scheme relies
on a trigger function for initiating convection to compensate circulation and closure as-
sumption. For microphysical processes, the Thompson scheme [58] was used, which ex-
plicitly predicts the mixing ratios of cloud water, rain water, graupel, cloud ice, and snow.
The double-moment cloud ice variable was used to predict the number concentration of
cloud ice. A variable gamma shape distribution was used for cloud droplet size distribu-
tion, shifting according to the assumed droplet number concentration. We employed the
Mellor Yamada Nakanishi Niino Level 2.5 scheme [59] for planetary boundary layer pro-
cesses, which is a one-and-a-half-order local closure scheme. The height of the planetary
boundary layer is computed as the height at which the TKE drops below a critical number.
For radiative processes, we used the Rapid Radiative Transfer Model for global circulation
model scheme, which evaluates longwave and shortwave radiation fluxes and heating
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rates [60]. The Noah land surface model [61], which includes four soil temperature and
soil moisture layers, was employed for the depiction of land surface processes. It also in-
cludes the vegetation canopy model, evapotranspiration, soil drainage, soil runoff, and
snow prediction.

3.2. Data

Our study compares the dynamically downscaled WRF precipitation outputs for two
nested domains with various multi-source precipitation datasets, including gauge and
satellite-based observations, as well as reanalysis products (Table 2). Among the reanaly-
sis products, recently released high-resolution (0.108°) Indian regional reanalysis, IMDAA
and ECMWF’s global reanalysis ERA5 [62] was used. IMDAA is generated by the collab-
orative efforts of the UK Met Office and the National Centre for Medium Range Weather
Forecasting and IMD under the National Monsoon Mission project, Ministry of Earth Sci-
ences, Government of India [63,64]. The reanalysis assimilates a wide range of observa-
tions from land, sea, radiosondes, pilot balloons, aircraft, surface and upper air observa-
tions, and various satellite instruments into a UM (U.K. Met office model, version 10.2)
with boundary conditions from ERA-Interim [63]. IMDAA is configured with 63 vertical
levels extending from near the surface to a height of ~40 km above sea level. ERA5 reanal-
ysis has a coarser resolution (0.25°) than IMDAA, but a global coverage. It combines a
modern numerical weather prediction model (IFS) with observations from a wide range
of platforms (in situ, radiosondes, satellite) by means of a 4D-Var data assimilation system
[62]. Among the observations, we used the gauge-based IMD daily gridded precipitation
dataset and a high-resolution satellite product (GPM-IMERG). IMD data are based on
daily precipitation measurements from 6955 rain gauge stations, interpolated to a resolu-
tion of 0.25° x 0.25° using the Shepard interpolation method [65]. However, the density of
gauges is quite sparse in the Western Himalayan region due to its complex topography.
The GPM-IMERG (0.1°) is produced at the NASA Goddard Earth Sciences Data and In-
formation Services Centre and provides precipitation measurements by intercalibrating,
merging, and interpolating all satellite microwave precipitation estimates, including mi-
crowave-calibrated infrared satellite estimates, together with sedimentation analysis and
potential precipitation estimates at fine temporal and spatial scales over the entire globe
[66,67].

Table 2. Various datasets used in this study, along with their spatial and temporal resolutions.

Dataset Cilzzitriaagle EZTS:;I Spatial Resolution 13:::11:1 (:EL Reference
GPM-IMERG Global 2001-2016 0.1°% 0.1° Half hourly Huffmar[‘ 6e1t] al., 2015
IMD India 2001-2016 0.25° x 0.25° Daily Pai et al., 2014 [60]
ERA5 Global 2001-2016 0.25° x 0.25° 1 hourly Heerad[‘S;t] al., 2020
IMDAA South Asia and 2001-2016 0.108° x 0.108° Thourly, 3= ¢ i et al,, 2021 [59]

adjoining regions hourly
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3.3. Methodology

This study evaluates dynamically downscaled WRF winter seasonal precipitation
simulations (DJF) over the Western Himalayan region (29° to 37° N; 72° to 82° E) for the
period 2001-2016 using different daily precipitation products at their respective spatial
resolutions to check the effect of different resolutions in simulating precipitation. Figure
2. shows the flowchart of the methodology used in this study. The seasonal averages were
obtained by averaging the daily precipitation measurements for each winter season. Sea-
sonally averaged precipitation, climatology, circulation parameters and hydrometeors
were examined to evaluate the model’s ability to capture winter precipitation characteris-
tics. We also compared model-simulated temperature, humidity, geopotential height, ver-
tical velocity, apparent heat source, wind, and cloud cover with IMDAA and ERAD5 rea-
nalysis.

Precipitation Seasonal Climatology

(Spatial)
&
>
Model e" eo\o
&
WRF mA
Domain 1- DO1 (15 km) . . Precipitation
Domain 2- DO2 (5km) Regrid to 0.1 Climatology,
Variability RMSE,
BIAS,
Correlation
Standard
Statistics
GPM IMERG (0.1°) Statistical Analysis ot ol Parameter
o - ategorica
IMD (0.25°) A Statistics
ERAS5 (0.25°) 4’% %y,
IMDAA (0.108°) RO | Skill Scores
2 POD, FAR,
CSLHSS
Dynamic and Thermodynamic Variables
v 1} v v v
Temperature, Vertical Velocity, Moisture Transport,
Humidity Heat Source Winds Clouds Hydrometeors

I Regrid to 0.1° | Regrid to 0.1°
I Improvement Parameter

Figure 2. Flowchart of the methodology used in this study.

To quantitatively assess the model simulations, statistical scores such as mean bias,
root-mean-square error (RMSE), BIAS, and the Pearson correlation coefficient (PCC) were
computed by re-gridding all the data to a common spatial resolution of 0.1° using bilinear
interpolation. The RMSE and BIAS were calculated using seasonally average winter pre-
cipitation over each grid point. The computed statistics are briefly mentioned below (see
[68] for detailed explanation).

RMSE = \[Z—?ﬂ(’;‘””z (1)

BIAS = ~ 371 (x; = 0)) )

where x;and o; are the model and observed precipitation for the it point, and n is the
total number of points.
cov(x;, 0;)

PCC = —————= 3)
0X; 00;
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Cov (x;,0;) is the covariance between x; and o; (model and observed precipitation, re-
spectively). Here, ox; and oo; are the standard deviation of precipitation for the model
and the observation, respectively.

Categorical Statistics: We performed a statistical analysis using multiple categorical
statistics employing the WRF model results from D01 and D02 as a forecast dataset and
IMERG, IMD, ERA5, and IMDAA as the observation/reference datasets [69,70];
https://www.cawcr.gov.au/projects/verification/ accessed on 1 February 2022). All datasets
and model results were regrided to 0.1° resolution using bilinear interpolation. The pre-
cipitation events in each dataset were divided into four categories using common percen-
tile thresholds across datasets: light (less than the 25th percentile), moderate (between the
25th and 90th percentile), heavy (between the 90th and 95th percentile), and extreme
(greater than the 95th percentile) [71]. For each category of events, contingency tables were
created, and the associated categorical statistics were generated. The various categorical
statistics employed in the study are briefly outlined below.

Probability of Detection (POD): The POD is calculated by dividing the total number
of event observations by the number of hits. It has a scale of 0 to 1, with 1 representing the
highest score. Thus, it provides a straightforward measurement of the percentage of pre-
cipitation events that were accurately predicted or, in this example, recorded by the
model.

H

POD= — 4)

False Alarm Ratio (FAR): The FAR is derived by dividing the number of false alarms
by the total number of times an event was forecast. It has a scale of 0 to 1, with 0 repre-
senting the highest score. It offers a simple proportionate measurement of the model’s
probability of identifying an event when none was actually seen.

F
F+H ®)

Critical Success Index (CSI): The ratio of hits to all events either observed or cap-
tured by the model is the CSI, commonly referred to as the threat score. It has a scale of 0
to 1, with 1 representing the highest score.

FAR =

H

CSI= M+H+F (6)

Heidke Skill Score: Heidke skill score is a gauge of forecasting ability. The range of
the HSS is - to 1. A flawless forecast results in an HSS of 1, whereas a negative number
indicates that the chance forecast is superior, and a 0 indicates no talent.

(H+CN) -(ExpectedCorrect)

HSS = N—-(ExpectedCorrect) (7)

Expected Correct = %{(H +M)(H + F) + (CN + M)(CN + F)}

where H = hits—events predicted to occur that did occur; M = misses—events predicted
not to occur that did occur; F = false alarms—events predicted to occur that did not occur;
CN = correct negative—events predicted not to occur that did not occur; and N = total
number of events.

Apart from the evaluation of various model-simulated parameters, we also com-
puted and evaluated vertically integrated moisture transport and apparent heat source
for the two model domains using IMDAA and ERA5.

Vertically integrated moisture transport: The vertically integrated moisture
transport, VIMT (kg m™ s 1), was computed as follows:

2 2
VIMT = J G Jpl qudp)” + G J" qudp) (8)
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Here, u is the U-component of wind, v is the V-component of wind, q is the spe-
cific humidity, p, is pressure at surface, py is the pressure at the top of the air column,
dp is the change in pressure between two levels, and g is the gravity.

Apparent Heat Source: The apparent heat source (Q1, diabatic heating) is computed
as the sum of the latent heating associated with phase changes, the vertical transport, the
sub-grid diffusion, and the radiative heating (e.g., [72]):

=C, p"69+VV9+ 96 9
Q.= p(po) (at . wap) )

Here, 0 is potential temperature, V is horizontal velocity, w is vertical velocity, p is
pressure at a particular pressure level, po is pressure at the surface (1000 mb), k = R/C;,
where R is the gas constant for dry air, and C; is specific heat at constant pressure.

Forecast impact (IP) parameter: The forecast impact (IP) parameter, a metric to ex-
amine the impact of horizontal resolution, quantifies the improvement or degradation in
D02 relative to D01 [73]. The method of dividing the D02 error by the D01 error, then
multiplying by 100, normalizes the data and provides a measure of the percentage im-
provement in the predicted parameter with regard to the D01 forecast, which is unrelated
to the parameter’s initial value.

= [1 " RMSEp,,

] %100 (10)
where RMSEbw: is the root-mean-square error in the D02 predicted variable with respect
to a given reference dataset and RMSEbu is the root-mean-square error in D01 with respect
to the same reference dataset.

4. Results
4.1. Winter Precipitation Climatology, Variability and Trends over WH

DJF seasonal mean precipitation (shaded) and standard deviation (contours) from
the model (D01 and D02) and the available datasets of IMERG, IMD, ERA5, IMDAA, keep-
ing the original resolution of each dataset, are shown in Figure 3. A northwest-southeast-
oriented precipitation band extending from the foothills of the Himalayas can be observed
in all datasets, indicating that orography plays an important role in the precipitation re-
ceived in this region. The obtained results are in agreement with previous studies, e.g.,
[74], and verifies that both domain resolutions are able to capture the precipitation band
over WH. However, higher-resolution model simulation (D02) has more detailed precip-
itation patterns among all datasets, followed by D01. D01 shows relatively homogeneous
precipitation patterns compared to D02, thus highlighting the benefits of higher resolution
(D02) in capturing localized precipitation patterns. In the northwest-southeast-oriented
precipitation band, D01 and D02 show maximum precipitation reaching up to 14 mm/day,
IMERG around 13 mm/day, IMD about 4 mm/day, 8 mm/day in ERA5 and, IMDAA
shows close to 10 mm/day. Such differences in the obtained precipitation magnitudes for
different categories of dataset highlight the challenges that still remain for capturing the
spatio-temporal variability of precipitation over WH, thus emphasizing the necessity of
high-resolution model simulations. Model-simulated precipitation (D01; D02) is well
matched with higher-resolution reanalysis IMDAA compared to other datasets depicting
slightly smaller magnitudes. Although the IMERG dataset also has similar resolution, pre-
cipitation is confined to the northern side of the precipitation band, and is slightly under-
estimated compared to WRF-simulated precipitation, similar to what was observed in
[21]. D01 shows a highest mean precipitation of 3.36 mm/day, followed by D02 (3.24
mm/day), IMDAA (2.4 mm/day), ERA5 (1.95 mm/day), IMD (1.78 mm/day) and IMERG
(1.55 mm/day).
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Figure 3. Seasonal (DJF) average precipitation captured by WRF model; D01 (a), D02 (b) and pre-
cipitation products; IMERG (c), IMD (d), ERA5 (e) and IMDAA (f). Shading and contours represent
the magnitude of seasonal average precipitation and standard deviation, respectively.

Along the northwest—southeast precipitation band, the spatial variability in precipi-
tation amounts among various datasets can be observed in the reanalysis datasets. IM-
DAA and ERA5 depict similar precipitation patterns spatially, although differences in
precipitation magnitudes are evident, which are attributable to spatial resolution effects,
parameterization schemes, and the assimilation techniques used. The lower precipitation
magnitudes observed for the high-resolution dataset IMERG corroborates earlier studies,
which reported that satellite-based datasets show poorly measured precipitation over
high orographic regions [75]. Among all of the datasets, the precipitation band is slightly
different in IMD, which could be a result of lacking observed precipitation data, especially
over the inaccessible higher reaches of the WH [6,76]. High spatial precipitation variability
in the different parts of the region can be observed from the magnitudes of standard de-
viation (STD). The lowest area averaged STD can be observed in ERA5 followed by IM-
DAA, IMERG, D01 and D02. Although D01 and D02 show similar area averaged STD, the
spatial patterns are much more resolved in the case of D02. In terms of spatial patterns of
variability, the depiction of regional precipitation variability seems to be a measure of
dataset resolution. D02, with the highest resolution, is able to capture the localized pat-
terns of variability when compared to satellite observations from IMERG and IMDAA
reanalysis. D01 also captures the variability, but the finer localized details are missing
compared to D02, which is attributable to the effect of resolution, which becomes a very
crucial factor in such complex orographic regimes. IMD and ERA5 show very homogene-
ous patterns for variability, mainly due to their coarser resolution, which might not be
sufficient to capture regional precipitation variability for such terrains.

A statistical evaluation of model-simulated precipitation was performed by re-grid-
ding all of the datasets to a common spatial resolution of 0.1 using bilinear interpolation.
Figure 4a—d,e-h show BIAS (shaded) and RMSE (contours) of precipitation in D01 and
D02 with respect to IMERG, IMD, ERA5, IMDAA, respectively. A positive BIAS over the
majority of the locations in WH, particularly the major precipitation belt, can be observed
in both D01 and D02 with respect to all considered reference datasets. However, the pat-
terns are much more detailed, with sharper boundaries and features in D02 owing to its
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finer resolution. The largest magnitudes of BIAS are observed over the Karakoram Him-
alayas, Great Himalayas, and the Himalayan foothills. A slight negative bias over the east-
ern Ladakh region is observed only in the case of the IMD dataset, a region that contrib-
utes a feeble density of gauge network to the gridded dataset IMD, and may not provide
true representation of precipitation amounts [77]. The spatial patterns for RMSE show a
more or less similar pattern to that seen for BIAS, indicating that regions of high BIAS are
also the regions with high RMSE. BIAS and RMSE are mostly observed over locations with
high topographic heterogeneity. Such results strongly highlight the fact that the WH re-
gion offers significant complexity in terms of precise representation of precipitation
amounts, specifically over regions with high topographic variability, and emphasize the
necessity of high-resolution data over the region. The patterns are much clearer and more
detailed for the higher-resolution domain D02 than for D01, which is similar to results
reported by [77], who found a better depiction of patterns in higher-resolution domains.
In terms of area-averaged magnitudes, the highest BIAS and RMSE are observed for the
IMERG dataset, and the lowest for IMDAA. Overall, D01 and D02 show the lowest BIAS
and RMSE with respect to the IMDAA dataset, since it depicts a very similar precipitation
pattern to the WRF outputs.
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Figure 4. Seasonal precipitation difference (BIAS) between model and observations: (a) DO1-IMERG,
(b) D01-IMD, (c) D01-ERAS5, (d) DO1-IMDAA, (e)D02-IMERG, (f) D02-IMD, (g) D02-ERAS5, and (h)
D02-IMDAA, shading and contours represent the BIAS and RMSE, respectively. Seasonal precipi-
tation correlation between model and observations: (i) DO1-IMERG, (j) D01-IMD, (k) D01-ERAS5, (1)
DO01-IMDAA, (m) D02-IMERG, (n) D02-IMD, (0) D02-ERA5, and (p) D02-IMDAA, shading and con-
tours represent the BIAS and RMSE, respectively. Forecast impact parameter for model-simulated
seasonal precipitation against (q) IMERG, (r) IMD, (s) ERA5 and (t) IMDAA for the period 2001-
2016.

Furthermore, we analyzed the correlation on each grid location for WRF-simulated
precipitation in both domains with the individual reference datasets to infer the similarity
in terms of grid wise precipitation distribution (Figure 4i—p). The spatial correlations of
D01 (D02) with all datasets range between 0.6 and 0.9, with the highest correlation being
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observed for ERA5 and IMDAA. Figure 4q-t show IP for seasonal precipitation in D02
with respect to D01 for the IMERG, IMD, ERA5, IMDAA datasets, respectively, computed
at a confidence level of 95%. D02 depicts some improvement in simulating precipitation
compared to D01, thus highlighting the effect of increased spatial resolutions and, in turn,
a better resolution of regional orography. The highest percentage of improvement in D02
is observed for IMDAA as the reference dataset, with a mean of 5.9%, followed by ERA5
(5.4%) and IMERG (2.7%), and the lowest is observed for IMD (1.9%). All datasets show a
positive IP, specifically across the region with maximum precipitation. Since IP is based
on RMSE, lower RMSE values observed earlier with ERA5 and IMDAA datasets cause
more improvement with respect to those datasets. Satellite and gauge-based datasets like
IMERG and IMD have limitations in terms of obtaining a more detailed picture of precip-
itation, leading to large RMSE and smaller IP than reanalysis datasets. The area-averaged
temporal trends of winter seasonal precipitation from the model simulations and refer-
ence datasets over the study region are presented in Figure 5a. Mann-Kendall test [78,79]
was used to compute the significance of the observed trends at a confidence level of 95%.
Both D01 and D02 show quite similar patterns of interannual variability of precipitation,
with well-matched peaks for most years. Increasing trends of winter precipitation are ob-
served for D01, D02, and IMERG, while other datasets show decreasing trends, although
all insignificant. The ERA5 and IMDAA precipitation trends are very similar and well
matched, although ERA5 presents a slightly lower magnitude than that of IMDAA. We
also compared the time series of daily precipitation climatology over the study region
(Figure 4b). All datasets are able to capture the variations in the seasonal evolution of
precipitation. IMERG exhibits the lowest magnitudes, while D01 and D02 exhibits highest
magnitude throughout the time series, and their peaks are well matched. There is an in-
crease in precipitation from the 40th day onwards. More precipitation is received during
the months of January and February, which could be due to the fact that more western
disturbances are observed during January and February [20].

—e— DO1 D02 —e— IMERG —e— IMD —=— ERAS —=— IMDAA

Precipitation (mm/day)

2001 2003 2005 2007 2009 2011 2013 2015

(b) Seasonal cycle of Daily Rainfall Climatology

— DO1 D02 —— IMERG - IMD -~ ERAS ~——— IMDAA /

Precipitation (mm/day)

Figure 5. Temporal trends in area-averaged seasonal (DJF) precipitation (a) and daily climatology
of area averaged precipitation (b).

4.2. Atmospheric Dynamics and Thermodynamics during the Winter Season

Figure 6a—d present the regional distribution of DJF seasonal climatology of 850 hPa
relative humidity (RH; shaded) and 2 m temperature (T2m) in D01, D02, ERA5 and IM-
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DAA, respectively. The results show that the model-simulated temperatures are compa-
rable with the reanalysis datasets. The surface orography pattern is followed by a consid-
erable north—south gradient (>30 K) in T2m between the north Indian plains and the high-
est elevations of the WH [80]. In winter, T2m cools to about -23 °C or lower at western
Himalayan altitudes, while the adjoining north Indian plains remain warm, with mean
temperature exceeding 12 °C. The temperature gradient from north to south is better re-
solved in D02 compared to in D01, ERA5 and IMDAA, which is potentially attributable to
the well-represented topography in D02. In high-altitude locations, ERA5 indicates a 5 K
warmer T2m than other datasets. RH follows a similar north-south gradient to that ob-
served for T2m. During the winter season, all datasets demonstrate a significant amount
of moisture availability over the study region. RH in the lower altitudes ranges between
30% and 40%, whereas it reaches up to 80-90% in the high-altitude regions, thus under-
lining the role of orography and temperature in deciphering the moisture availability over
the region. Among all of the datasets, ERA5 exhibits humidity more than 10 percent
higher than in the other datasets. D02 displays the gradient in the RH better than other
datasets due to better-resolved orography. In the high-altitude zones, D01 and D02 both
slightly underestimate RH compared to ERA5 and IMDAA.
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Figure 6. Seasonal average RH and Temperature at 2 m above the ground, observed in model (a)
D01 and (b) D02 and observations (c) ERA5 and (d) IMDAA. Shading and contours represent the
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RH and temperature, respectively. Seasonal averaged total cloud cover between the models and (e)
D01 and (f) D02 and the observations (g) ERA5 and (h) IMDAA. The seasonal forecast impact (IP)
parameter for RH and total cloud cover with ERA5 (i), IMDAA (j), ERA5 (k), and IMDAA (1), re-
spectively.

Furthermore, we evaluated total cloud cover in D01 and D02 using ERA5 and IM-
DAA, respectively (Figure 6e-h). All datasets show similarities in terms of the spatial pat-
terns of cloud cover distribution over the region; however, difference in magnitude are
quite evident. Overall, more clouds on the western flank of the study region with a de-
creasing fraction towards the east can be seen. Similar to the precipitation patterns ob-
served in Figure 3, cloud cover patterns are dense over higher elevations compared to
lower orographic regimes. IMDAA and ERA5 both show higher cloud cover over the Ka-
rakoram range and the Greater Himalayas, whereas the cloud cover representation in the
WRF simulations is highest over the western parts of the Karakoram range and the
Greater Himalayas and foothills. Among all datasets, the IMDAA dataset shows the great-
est amount of cloud cover (80 to 90 percent) over the northwest part of the study region,
whereas other datasets show 50 to 80 percent. We would like to note here that the model
cloud cover is well matched with the precipitation patterns observed in the study region,
indicating that cloud cover is better represented in the model. Furthermore, we examined
whether the enhanced model resolution (D02) offers any improvements in terms of the
depiction of RH (Figure 6i-j) and cloud cover (Figure 6k-1) compared to the coarser do-
main D01. Higher IP in RH can be observed in the model simulations for IMDAA (24.9%)
than for ERA5 (5.1%). Moreover, higher IP is seen over the lower altitudes relative to
higher orographic regimes, where reduced IP can be observed. This orographic effect is
more noticeable in ERA5 than IMDAA. However, IP for cloud cover fractions is signifi-
cantly larger and more substantial for ERA5 (51%, Figure 6k), and nearly doubles when
averaged throughout the region, and, interestingly, is also widely spread compared to
IMDAA (24.9%, Figure 6l). However, there are discrepancies between the regional pat-
terns of IP for IMDAA and ERA5.

Subtropical westerly jet (200 hPa), the primary carrier of WDs, is the strongest during
the winter season, with the axis typically lying over northern India (e.g., [81]). The evalu-
ation of upper tropospheric zonal wind (200 hPa) in D01 and D02 using ERA5 and IMDAA
(Figure 7a—d) shows the presence of the jet over the north Indian region. A slight under-
estimation of the intensity of the model-simulated wind speed can be observed over the
region of interest and the surrounding areas, compared to the two reanalysis products.
This jet is an important dynamic factor for its contribution to precipitation in the study
region. Furthermore, moisture sources in the model are essential for resolving the mech-
anisms for the development of moist convection and the associated dynamics of precipi-
tation [43]. To investigate the moisture source triggering moist convection and associated
rainfall over the WH, the winter means of vertically integrated moisture transport from
the surface to 300 hPa from the D01, D02, ERA5 and IMDAA are analyzed and presented
in Figure 7e-h, where the vectors represent the direction of moisture transport. The mois-
ture for winter precipitation is generally advected from the westside of the study region
through propagation tracks of western disturbances. All datasets—D01, D02, ERA5 and
IMDAA —exhibit moisture transport from the west (Figure 7e-h). D01 and D02 show
higher values of 120-150 kg m/s for moisture transport over the Himalayan foothills than
ERAS5 and IMDAA (0-60 kg m/s). This enhanced moisture advection in the model could
potentially enhance the precipitation amounts observed in the model simulations com-
pared to those observed in the reanalysis products.
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Figure 7. Seasonal averaged zonal winds at 200 mb in model D01 (a) and D02 (b) and observation
ERAD5 (c) and IMDAA (d). Seasonal averaged vertically integrated moisture transport between 1000
and 300 mb in model D01 (e) and D02 (f) and observations ERA5 (g) and IMDAA (h).

Cloud hydrometeors and their vertical structures have a substantial impact on pre-
cipitation processes [43]. Liquid hydrometeors occur below the freezing level, where
warm precipitation processes predominate, whereas solid hydrometeors are distributed
above the freezing level, where cold precipitation processes predominate. Therefore, a
better depiction of cloud hydrometeors is necessary in order to provide realistic model
simulations of winter precipitation. The vertical profiles of liquid hydrometeors (cloud
and rainwater) and solid hydrometeors (graupel, ice) over the study region are presented
in Figure 8. As illustrated in Figure 8a, the results indicate that the cloud water mixing
ratio (CLWMR) increases from 1000 mb to 750 mb and then decreases with increasing
altitude. CLWMR magnitudes are slightly higher in D02 (peak at 700 mb) than in D01
(peak at 650 mb). The maximum difference in CLWMR is observed between 700 mb and
500 mb (~0.3 mg/kg). The vertical profile of the snow mixing ratio (Figure 8b) indicates
that the middle troposphere (500 hPa) is characterized by the maximum snow mixing ratio
(SNMR) in both D01 and D02, with D02 presenting a slightly higher SNMR than D01 in
the middle to upper troposphere.

(a) Cloud Mixing Ratio (b) Snow Mixing Ratio (c) Rain Mixing Ratio (d) Cloud Ice
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Figure 8. Area-averaged seasonal cloud hydrometeor mixing ratio observed in model simulations.
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As expected, the vertical profile of the rainwater mixing ratio (RWMR; Figure 8c)
suggests higher rainwater amounts at lower atmospheric levels (slightly below cloud wa-
ter) in both D01 and D02, with peaks observed at 825 mb. Raindrops are the only precipi-
tating hydrometeors in the lower troposphere. The resolved RWMR of D02 is compara-
tively higher that that of D01, with a maximum difference of 0.3 mg/kg at about 825 mb.
When compared to the other hydrometeor profiles, the ice mixing ratio (CICE; Figure8d)
reflects availability in the upper troposphere and exhibits its highest peak at 350 hPa for
both D01 and D02. CICE values seem to be higher in D01 than in D02, with a maximum
observed difference of about ~1.4 mg/kg at 350 mb level, in contrast to all other hydrome-
teors. RWMR (Figure 8c) is confined to only lower heights, with no large values over 700
hPa being observed. More importantly, this variable has the lowest magnitude (with a
maximum of up to 0.5-0.8 mg/kg) among the four hydrometeors evaluated in the present
study, while SNMR has the greatest magnitude (with maximum up to 30 mg/kg). CLWMR
and SNMR are widespread in the troposphere, while RWMR and CICE are confined to
the lower and upper parts of the troposphere, respectively. These findings are consistent
with previous research, e.g., [80]. Overall, D02 has higher magnitudes for most hydrome-
teors, yet identical patterns in vertical distribution profiles for both D02 and D01 can be
observed. A clear depiction of hydrometeors aids in the accurate representation of precip-
itation in model simulations, as seen in D02.

Furthermore, we evaluated the latitude height cross-section of various parameters in
D01, D02 with respect to ERA5. In the ERAS reanalysis, the vertical velocity analysis indi-
cates ascending motion in the atmosphere over the study region. Model simulations are
able to reflect these rising motions, although the magnitudes are underestimated. The pat-
terns observed for D02 are substantially sharper and more finely resolved than those for
D01 and ERA5, highlighting the advantages offered by higher-resolution data. The plots
for meridional winds are presented in Figure 9d—f. The results reveal similarities in verti-
cally distributed patterns of meridional wind in model simulations and ERA5 reanalyses,
although slight variations at certain latitudes can be seen. The maximum present at 600
hPa, at latitudes between 34 and 36° N, in ERA5 is well represented in both D01 and D02.
The patterns indicate the dominance of southerly winds over the study region. Moreover,
the latitudinal extent of southerly wind maxima is higher for D01 and D02 compared to
ERAS. The analysis also suggests that topography plays an important role in determining
wind patterns over the region, with a lower level at lower latitudes depicting dominance
by northerly winds, and southerly winds can be seen over lower latitudes (higher alti-
tudes), higher latitudes (also the region with the maximum elevation in WH), with a max-
imum velocity of ~4-6 m/s. This separation of southerly and northerly winds helps in the
development of westerly troughs over this region [31].

We also investigated the latitude-height distribution of the apparent heat source (Q1,
Figure 9g—i) in the atmosphere, which provides vital information about underlying dia-
batic heating patterns. The patterns observed in ERA5 reveal higher, albeit homogeneous,
magnitudes distributed throughout the middle and upper troposphere, with maxima sit-
uated between 400 and 600 hPa, indicating enhanced diabatic heating at higher atmos-
pheric levels during the winter season. Both model-simulated domains are able to capture
these patterns, with highly detailed representation compared to ERA5, indicating the role
played by data resolution. The finest and sharpest features are observed in the case of D02.
In contrast to the sizeable diabetic heating in the upper and middle troposphere, lower
pressure levels (1000-600 mb) indicate the dominance of diabatic cooling, which is not as
strong in ERAS5 as it is in the model simulations. Overall, the results emphasize the role of
regional topography in modulating the heating and cooling effects over the study region.
Additionally, the benefits offered by higher resolution of data for the realistic representa-
tion of such effects at a localized scale can also be clearly concluded.
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Figure 9. Latitudinal cross-section of vertical velocity observed in D01 (a), D02 (b), ERA5 (c); merid-
ional component of wind observed in D01 (d), D02 (e), ERA5 (f); apparent heat source observed in
D01 (g), D02 (h), ERA5 (i); specific humidity observed in D01 (j), D02 (k), ERA5 (1) along longitude
76.88° E.

Furthermore, cross-sections for thermodynamic variable specific humidity reveal the
presence of higher humidity in the lower atmospheric levels, further decreasing with alti-
tude (less than 1 g/kg above 600 hPa). The patterns for specific humidity observed in the
model simulations are remarkably similar to those of ERA5 reanalysis, demonstrating that
the model simulations are efficient.

4.3. Skill Scores for Different Rainfall Amounts

Lastly, we attempted to evaluate precipitation events of different intensity on the ba-
sis of model simulations with multi-source precipitation datasets. Table 3 depicts the eval-
uation of various categorical statistics for different types of precipitation event (low, mod-
erate, heavy, extreme) in D01 (D02) against IMERG, IMD, ERA5 and IMDAA. Both do-
main resolutions have nearly identical POD values for detecting events of all categories
when compared to all four precipitation reference datasets. However, the probabilities are
higher for moderate events, followed by heavy precipitation events, whereas compara-
tively lower probabilities of detection seem to be persistent for low and extreme events.
In support of the POD values, low FAR values can be observed for moderate- and heavy-
precipitation events in both domains relative to the individual reference datasets, whereas
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the FAR values are relatively high for events of the other two category, with the exception
being IMD-based calculations for low-precipitation events. The statistics observed for
missing rate for different categories with respect to all reference datasets reveal identical
patterns as observed for FAR, indicating that the model simulations depict a higher miss-
ing rate for low- and extreme-precipitation events compared to moderate and heavy
events. CSI values confirm the findings acquired thus far and indicate that models are
capable of identifying moderate and heavy precipitation occurrences with greater success.
The model skill was assessed using multi-source datasets (based on different techniques),
and the findings show a remarkably similar pattern for all reference datasets. This demon-
strates the reliability of the obtained results and clearly indicates that model simulations
show higher skill in representing moderate and heavy events, whereas low and extreme
events are not depicted clearly. For moderate-precipitation events, the model has the high-
est level of skill with the IMD dataset, followed by IMDAA, ERA5 and IMERG, while for
extreme precipitation, the model has similar skills with all datasets.

Table 3. Categorical statistics for the examination of the model’s ability to detect (area averaged)
low, moderate, heavy, and extreme precipitation events during DJF months against that of
IMERG, IMD, ERA5 and IMDAA.

IMERG IMD

D01 (D02) <25P 25-90 P 90-95 P >95 P <25 P 25-90 P 90-95 P >95 P
POD 042(0.38)  0.65(0.65 052(0.52) 0.31(028)  0.04(0.02) 0.86(0.86) 052(052)  0.41(0.36)
FAR 0.65(0.70)  026(026) 049 (0.49)  091(0.91)  0.00(0.00) 0.01(0.01)  0.49(049)  0.78 (0.81)
CsI 024(020) 053(053) 035(0.35) 0.08(0.07) 0.04(0.02) 079(079) 035(035)  0.17(0.14)
HSS 0.15(0.07)  0.01(0.01)  0.00(0.00) 0.08(0.06) 0.06(0.03) 0.15(0.16)  0.00 (0.00)  0.24 (0.20)

ERA5 IMDAA

D01 (D02) <25P 25-90 P 90-95 P >95 P <25 P 25-90 P 90-95 P >95 P
POD 036(0.40) 073(072) 052(0.52) 028(027) 036(0.38) 074(0.73) 052(052)  0.34(0.30)
FAR 055(0.56)  0.26(026) 049 (0.49) 0.84(0.85) 054(0.57) 026(026)  0.49(049)  0.79 (0.82)
csI 025(026) 053(053) 035(0.35) 0.11(0.11) 026(026) 059(059) 0.35(0.35)  0.15(0.13)
HSS 023(023)  0.03(0.03)  0.00(0.00) 0.15(0.13) 0.24(0.23) 0.03(0.03) 0.0 (0.00) 0.1 (0.18)

5. Discussion and Summary

In this study, we evaluated winter precipitation (2001-2016) over the western Hima-
layan region using dynamically downscaled model simulations from a regional climate
model, WREF, at grey zone horizontal resolutions—15 km (D01) and 5 km (D02)—with
various multi-source precipitation datasets (GPM-IMERG, IMD, IMDAA and ERAS5).
During the winter season, WH receives a significant amount of precipitation through the
interaction of WDs with regional orography. A northwest-southeast-oriented precipita-
tion maxima band is observed in the Himalayan foothills, while other regions receive com-
paratively less precipitation, which is similar to the results reported by [13,31]. Our results
highlight the efficiency of the model simulations at both resolutions (D01 and D02) in
terms of reproducing the precipitation characteristics over the WH; however, the higher
resolution of D02 offers significant advantages in terms of identifying regional precipita-
tion characteristics in detail. When compared to the IMDAA and ERA5 reanalyses, the
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model outputs are realistic in terms of capturing the spatial patterns of precipitation and
their variability, although overestimation occurred for the precipitation magnitudes,
which is similar to the findings of [40] regarding RCM-simulated precipitation over WH.
The WH region’s orographically induced precipitation is a potential driving factor im-
pacting regional precipitation distribution. Ref. [82] supports the advantages of higher-
resolution RCM simulation over other datasets, suggesting that the improved precipita-
tion patterns in RCM are due to a well-presented topography and the fact that RCM uses
a higher resolution than reanalysis and other datasets. Both [80] and [83] reported on the
benefits of high resolution in the WRF model for achieving more accurate precipitation
simulation. The statistical evaluation of the model-simulated precipitation with various
reference datasets reveals the lowest BIAS and RMSE and the highest correlation with the
IMDAA dataset. Model simulations showed a wet BIASover the higher elevation zones,
with comparatively lowerBIASover the surrounding plains. This might be a result of
poorer representation of observations across the mountainous region in other datasets
[18,31]. We also observe an improvement in various parameters for D02 simulations com-
pared to D01, which could be attributed to the higher resolution of D02.

A recent study [84] used station data for precipitation trends over WH and reported
an increase in winter precipitation from 1971 to 2013. Similarly, Ref. [31] reported an in-
creasing trend in winter precipitation over WH in RCM-simulated precipitation between
the years 2000 and 2008. D01 and D02, like [31,84], describe increasing trends for seasonal
winter precipitation, which is in agreement with IMERG but in disagreement with other
reference datasets. The climatology of winter precipitation demonstrates that the model
simulations are also realistic for representing the seasonal cycle of precipitation, although
magnitude overestimation is observed. Similar to our findings, Ref. [21] revealed that Jan-
uary and February contributed more than December to winter precipitation. Various cat-
egorical and agreement statistics were used to evaluate model simulations in depicting
different categories of precipitation events, which revealed the model’s ability to capture
moderate and heavy precipitation events efficiently.

Between the north Indian plains and the higher elevations of the Himalayas, a con-
siderable north-south gradient in T2m and RH persists. In comparison to the reference
datasets ERA5 and IMDAA, the model simulations are able to capture the north-south
gradient for 2 m temperature and 850 hPa relative humidity following surface orography.
However, the gradient and spatial patterns in D02 demonstrate comparatively well-
marked features and boundaries compared to D01 due to its higher resolution, which
helps to resolve the regional orography much more efficiently when using D02. Ref. [80]
documented the north-south gradient in 2 m temperature and 850 hPa relative humidity
over WH during winter season. The availability of moisture is important for the precipi-
tation to happen. All datasets show a significant amount of moisture availability at 850
mb over the study region. D02 shows a well-presented north-south gradient compared to
all other datasets due to the better-resolved orography. D01 and D02 successfully capture
the total cloud cover observed in the study region. Cloud cover is found to be much denser
over the western parts of the study region compared to the eastern regimes. The effective-
ness of higher-resolution D02 at better simulating relative humidity and cloud cover com-
pared to D01 is further confirmed through the observed positive forecast impact (IP) pa-
rameters.

The subtropical westerly jet stream is an important factor contributing to the dynamic
precipitation during the winter season in the study region. Numerous publications, in-
cluding [31,82,85], have also reported that the subtropical westerly jet reaches its maxi-
mum across northern India during the winter season. The comparison of model-simulated
upper-tropospheric winds to reference datasets ERA5 and IMDAA reveal similar pat-
terns, albeit with a slight underestimation of magnitudes, demonstrating the model’s ef-
ficacy in simulating the subtropical westerly jet. Ref. [29] reported the underestimation of
zonal winds by RCM over WH, which is in agreement with our findings. The wind speeds
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observed for D01 and D02 are comparable to those noted by [85]. Both D01 and D02 accu-
rately depict the magnitude and direction of vertically integrated moisture transport,
which is in line with previous studies [40,85].The distribution of moisture over WH in
both model simulations is much more detailed and higher in terms of magnitude than
either IMDAA or ERA5, where a comparatively homogeneous pattern can be seen
throughout the study region. The higher precipitation amounts observed in D01 and D02
are supported by enhanced moisture transport across the study region in the model sim-
ulations compared to the two reanalysis products.

The vertical profiles for solid (ice, snow) and liquid (cloud water, rain water) hydro-
meteors reveal the capability of the model simulations to reproduce the cloud water and
snow mixing ratios present in a large part of the troposphere, while rain water and cloud
ice mixing ratio are confined to the lower and upper part of the troposphere, respectively.
Ref. [80] discovered comparable hydrometeors mixing ratio in their winter seasonal WRF
simulation over WH. Higher values for D02 compared to D01 can be seen generally, which
supports the more detailed characterization of precipitation features possible with D02,
indicating the advantages offered by its higher resolution.

Lastly, we examined the latitude—pressure cross-sections for vertical velocity, appar-
ent heat source, meridional winds, and specific humidity, revealing the presence of dia-
batic heating and rising motion in the middle and upper troposphere in D01 and D02 by
means of ERA5 reanalysis. The patterns observed in both model simulations are much
more detailed and sharper (specifically D02) than ERAS5, indicating the role of higher-res-
olution datasets over such complex topographic regions. The pattern of vertical velocities
in our study are similar to what was reported by [85], with ascending motion being ob-
served in the region. Furthermore, the model shows proficiency in simulating the merid-
ional wind pattern and atmospheric specific humidity patterns observed in the study re-
gion.
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