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Abstract: Background: Artificial intelligence has become a valuable tool for diagnosing and detecting
postoperative complications early. Through imaging and biochemical markers, clinicians can antici-
pate the clinical progression of patients and the risk of long-term complications that could impact the
quality of life or even be life-threatening. In this context, artificial intelligence is crucial for identifying
early signs of complications and enabling clinicians to take preventive measures before problems
worsen. Materials and methods: This observational study analyzed medical charts from the elec-
tronic archive of the Clinical Emergency Hospital in Galat, i, Romania, covering a four-year period
from 2018 to 2022. A neural network model was developed to analyze various socio-demographic
and paraclinical data. Key features included patient demographics, laboratory investigations, and
clinical outcomes. Statistical analyses were performed to identify significant risk factors associated
with deep venous thrombosis (DVT). Results: The analysis revealed a higher prevalence of female
patients (60.78%) compared to male patients, indicating a potential gender-related risk factor for
DVT. The incidence of DVT was highest among patients aged 71 to 90 years, affecting 56.86% of
individuals in this age group, suggesting that advanced age significantly contributes to the risk
of developing DVT. Additionally, among the DVT patients, 15.69% had a body mass index (BMI)
greater than 30, categorizing them as obese, which is known to increase the risk of thrombotic events.
Furthermore, this study highlighted that the highest frequency of DVT was associated with femur
fractures, occurring in 52% of patients with this type of injury. The neural network analysis indicated
that elevated levels of direct bilirubin (≥1.5 mg/dL) and prothrombin activity (≤60%) were strong
predictors of fracture-related complications, with sensitivity and specificity rates of 78% and 82%,
respectively. These findings underscore the importance of monitoring these laboratory markers in
at-risk populations for early intervention. Conclusions: This study identified critical risk factors for
developing DVT, including advanced age, high BMI, and femur fractures, which necessitate longer
recovery periods. Additionally, the findings indicate that elevated direct bilirubin and prothrombin
activity play a significant role in predicting DVT development. These results suggest that AI can
effectively enhance the anticipation of clinical evolution in patients, aiding in early intervention and
management strategies.

Keywords: thrombosis; venous thrombosis; femur fracture; artificial intelligence

Clin. Pract. 2024, 14, 2507–2521. https://doi.org/10.3390/clinpract14060197 https://www.mdpi.com/journal/clinpract

https://doi.org/10.3390/clinpract14060197
https://doi.org/10.3390/clinpract14060197
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/clinpract
https://www.mdpi.com
https://orcid.org/0009-0005-6669-1398
https://orcid.org/0000-0002-0516-734X
https://orcid.org/0000-0001-5919-3941
https://orcid.org/0000-0001-5837-306X
https://orcid.org/0009-0006-9079-2831
https://doi.org/10.3390/clinpract14060197
https://www.mdpi.com/journal/clinpract
https://www.mdpi.com/article/10.3390/clinpract14060197?type=check_update&version=2


Clin. Pract. 2024, 14 2508

1. Introduction

In trauma patients, especially those with lower extremity fracture complications
following the traumatic event are common. Immediate complications typically involve
critical issues such as airway management, breathing difficulties, or considerable blood
loss. These require urgent intervention to stabilize the patient and prevent life-threatening
outcomes. These complications significantly impact patient outcomes and often require
prompt intervention to prevent life-threatening consequences. Despite advancements in
trauma care, traditional methods of monitoring and managing these complications rely
largely on clinical assessment and retrospective data analysis, which may delay detection
and limit preventive measures [1]. Less immediate complications that arise after a fracture
include acute compartment syndrome and fat embolism syndrome, both of which can
develop after the acute phase [1]. Other complications that may occur during the recovery
process include pressure injuries, autonomic dysreflexia, pain, muscle spasms, heterotopic
ossification, and nonunion of the fracture [2].

An important and potentially life-threatening complication in trauma patients is
venous thromboembolism (VTE), which can develop both early, within the first 48 h, and
later, after one week or even after two weeks post-injury [3–5]. Trauma patients, regardless
of age, have a heightened risk of VTE—estimated to be 13 times higher than non-trauma
patients—largely due to immobilization and factors outlined in Virchow’s triad [6–9].
Both major and minor trauma pose a significant risk for DVTs due to immobilization
and anatomic factors [10]. Venous thromboembolism commonly manifests as deep vein
thrombosis (DVT) or pulmonary thromboembolism (PTE) [11,12].

According to recent studies on the distribution of deep vein thrombosis in lower ex-
tremity fractures, the highest incidence of fractures was identified in hip fractures (17–58%),
while the incidence of corrected intra-operatively distal femur fractures was 25%, and
the incidence in foot and ankle surgery was 2.1% [13]. These studies vary across medical
centers, where differences in prophylactic therapy and study characteristics have resulted
in varied DVT incidence rates.

The risk of DVT is significantly elevated in patients undergoing major orthopedic or
neurovascular surgeries, particularly those with risk factors like advanced age, previous
DVT history, and other medical conditions. Prolonged surgical times and post-surgical
immobilization further exacerbate this risk, with a 4-year recurrence rate for surgically
induced DVTs between 5% and 11% depending on the procedure [14]. Additionally, long-
duration travel and immobilization due to conditions like hemiplegia after a stroke also
increase the risk of DVT [15].

Artificial intelligence (AI) introduces a novel approach to addressing these challenges
by enabling proactive, real-time prediction of complications. By analyzing imaging data
and patient-specific information, such as age, BMI, and medical history, AI algorithms can
anticipate complications like DVT and pulmonary embolism before they become clinically
apparent. This predictive capability is particularly valuable in trauma settings, where early
intervention can dramatically improve patient outcomes.

Artificial intelligence (AI) has shown great potential in supporting the detection
and management of complications associated with lower limb fractures, such as DVT,
pulmonary embolism, and acute compartment syndrome. By analyzing imaging data, AI
algorithms can identify early signs of bone density changes, compartment syndrome, or
abnormal fracture healing, which may lead to complications. Additionally, AI can assist in
predicting high-risk cases of venous thromboembolism (VTE) by integrating patient data
like age, BMI, and medical history, which are known risk factors. Continuous monitoring
of vital signs through AI can also enable the early detection of life-threatening conditions,
such as respiratory compromise in patients at risk for pulmonary embolism. In these ways,
AI serves as a valuable tool for both early intervention and personalized management,
aiming to improve outcomes and reduce the burden of complications in trauma patients.
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The main contribution of this study is the development of a neural network-based
AI model that integrates and analyzes multiple risk factors to identify patients at high
risk for complications associated with lower limb fractures. This model not only enhances
the accuracy of complication prediction but also allows for more personalized and timely
management, representing a substantial innovation in trauma care.

2. Materials and Methods

The data extraction process for this observational and longitudinal retrospective cohort
study involved systematically reviewing medical charts archived electronically at the
Clinical Emergency Hospital in Galat, i, Romania. Medical records of patients hospitalized
between January 2018 and December 2022 were examined to create a comprehensive
database. Each chart was assessed according to the study’s inclusion criteria—specifically,
patients over 18 years old hospitalized for a lower leg fracture.

The absence of exclusion criteria in this study was intentional to ensure the inclusivity
and generalizability of the findings. By not excluding patients based on additional medical
or demographic factors, this study encompasses a broader, more representative sample
of individuals who experience lower leg fractures. This inclusive approach allows for a
comprehensive analysis of the incidence and risk factors associated with complications,
such as deep vein thrombosis (DVT), across diverse patient profiles. Consequently, the
results are more reflective of real-world conditions, enhancing the study’s external validity
and providing insights applicable to a wide range of clinical settings.

Ethical approval for this study was obtained from the Ethics Committee of the Clinical
Emergency Hospital in Galat,i, Romania, ensuring compliance with ethical standards for
research involving human subjects.

To ensure consistency, the team used a standardized data extraction form. Trained
personnel documented key variables such as age, gender, fracture location, BMI, lab results,
smoking status, history of venous thrombosis, stroke, and hormonal therapy use. This data
was entered into a structured database designed for accuracy and uniformity across entries.
Quality checks, including cross-verifying randomly selected entries, helped maintain data
reliability. This rigorous approach enabled an accurate analysis of the incidence and risk
factors associated with complications like DVT among the cohort.

The incidence rate of DVT among patients with lower limb fractures was 171 cases per
1000 patients (51 out of 299 patients).

This incidence rate highlights a significant risk for complications in this patient popula-
tion, necessitating vigilant monitoring and prophylactic measures to mitigate the potential
impact of DVT.

They represent the DVT sub-group and are presented in Figure 1.
All patient data were included in a Microsoft Excel table, and statistical analysis was

performed using IBM SPSS 29.0.2.0. Easy NN-plus (version 14.0 -16.0.0.1) for Windows was
employed to develop neural networks.

In the analysis, specific statistical methods applied using IBM SPSS included descrip-
tive statistics to summarize demographic and clinical characteristics of the cohort, such
as mean, median, standard deviation, and frequency distributions. Comparative analyses
were conducted to assess differences between groups (e.g., patients with and without DVT),
using tests such as the Chi-square test for categorical variables and t-tests or ANOVA for
continuous variables. Additionally, logistic regression analysis was employed to identify
potential risk factors associated with the development of DVT, controlling for variables
like age, BMI, and fracture location. These statistical methods provided a comprehensive
understanding of the factors influencing complication rates in the patient cohort.
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Figure 1. Patients who developed DVT during hospitalization.

The neural networks in our AI algorithm were developed using the Easy NN-Plus soft-
ware, following a structured process to optimize accuracy and predictive capability. Input
data, including patient demographics, fracture details, and lab results, were pre-processed
and standardized before training. Key hyper-parameters were systematically tuned to
optimize the model’s predictive capability. Specifically, the architecture was iteratively
adjusted by varying the number of hidden layers and neurons to balance accuracy with
computational efficiency.

The network architecture was determined through iterative testing to establish the
optimal number of layers and nodes, balancing complexity with computational efficiency.

During model training, a range of learning rates was tested to identify the optimal
value for backpropagation, ensuring that the network effectively minimized prediction
error without overfitting. Hyper-parameter optimization also included evaluating different
batch sizes and epochs to maximize the model’s stability and performance. To validate
the model, we employed cross-validation, partitioning the dataset into training and test
sets. Model performance was assessed using metrics such as sensitivity, specificity, and
accuracy, ensuring robust validation of the network configuration before deployment. The
algorithm’s predictive accuracy was then assessed using performance metrics such as
sensitivity, specificity, and accuracy, ensuring that the model reliably identified key risk
factors for complications like DVT within the patient cohort.

This study aims to highlight variables associated with a high risk of developing DVT
following a lower limb fracture using an artificial intelligence algorithm based on neural
networks. Patients or their relatives gave informed consent for their data to be included in
this study.
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3. Results

This study focuses on identifying variables that can predict, early on, which patients
will develop DVT following hospitalization for lower limb fractures.

In the DVT subgroup, there was a difference of more than 20% between women and
men. Females represented 60.78% (n = 31), while 39.22% (n = 20) were male (Figure 2).
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Age distribution in the DVT patients is represented in Table 1.

Table 1. Age distribution of DVTs.

AGE

N
Valid 51

Missing 0

Mean 71.65

Median 77

Std. Deviation 16.238

Skewness −0.785

Std. Error of Skewness 0.333

Kurtosis −0.258

Std. Error of Kurtosis 0.656

Minimum 32

Maximum 97

The average age of the DVT patients was 71.65 years, with a standard deviation of
16.238. The median age was 77, with the youngest subject 32 and the oldest 97. Table 1
summarizes these data.

Given that the risk of developing DVT increases with age [16], we grouped the patients
into age groups, each one corresponding to a decade. The following percentages associated
with each group were identified (Figure 3).
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Figure 3. Distribution of patients by age.

The highest percentages were identified among patients aged 81 to 90, i.e., 31.4%
(n = 16). Patients aged 71 to 80 years accounted for 25.5% (n = 13), patients aged 51
to 60 years and 61 to 70 each accounted for 11.8% (n = 6) of all DVTs, and those aged
between 41 and 50 years accounted for 9.8% (n = 5) of all DVTs. Patients in the 91–100 age
group accounted for 5.9% (n = 3) of this group. Only 3.9% (n = 2) were in the age group
31–40 years.

DVT developed in a subgroup of patients admitted for lower limb fractures. The
distribution of these fractures is shown in Figure 4.
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Figure 4. Fracture location distribution in DVT patients.

More than 60% of the DVT patients in our cohort had femur fractures (64.71%; n = 33),
25.49% (n = 13) had tibial and/or fibular fractures, and pelvic fractures accounted for 5.88%
(n = 3) of all fractures. Foot fractures were present in 3.92% (n = 2) of patients. Data is
represented in Figure 5.
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Figure 5. BMI over thirty distributions in the DVT cohort.

An important risk factor for developing DVT is obesity, defined as BMI over 30 kg/m2.
In our cohort of patients who had DVT, 15.69% (n = 8) had a BMI over 30, and 84.31%
did not.

Considering the 299 group of patients who were admitted for lower limb fracture,
under a fifth developed DVT (Figure 6).
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Figure 6. DVT percentage in patients with lower limb fracture.

The femur had the highest percentage of fracture locations associated with DVT,
followed by tibial and/or fibular and pelvic fractures. Foot fractures had the smallest
percentage of DVT, as shown in Figure 7.
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Figure 7. DVT percentage in different fracture locations.

The use of artificial intelligence in the early detection of lower limb fracture complica-
tions can bring numerous benefits, including:

- Early detection of complications: Artificial intelligence can help identify early signs of
complications, enabling doctors to intervene before problems worsen.

- Personalizing treatment: Artificial intelligence identifies individual risk factors and
tailors treatment to each patient’s needs.

- Increasing efficiency: Artificial intelligence can reduce the time it takes to detect
complications and improve treatment efficiency.

A neural network (NN)-based model was constructed to identify and analyze the links
between the specified medical analysis data and health status.

The Easy NN program was utilized, and the following steps were taken: determination
of input data, establishing the optimal architecture, network training, and using the neural
model to analyze the influence of input on output, optimize output values, and predict
output values. The input data chosen were extracted from archived medical charts of
patients admitted for lower limb fractures from 2018 to 2022, including personal information
and specific medical test results related to venous thrombosis (Table 2).

Table 2. Input data of the neural network.

Situation INR PT APTT Activity+ TGO TGP Bilirubin+ Bilirubin+

T:0 false 2.03 22.8 33.8 47.9 195 60 3.95 1.82

T:1 false 1.26 15.2 27 72.3 34 44 1.01 0.3

T:2 false 1.04 13.2 23.1 95.1 12 21 0.66 0.3

T:3 false 1.04 12.7 20.7 103 25 19 1.12 0.45

T:4 false 1.43 16.2 27.3 59.64 13 11 1.35 0.7

T:5 false 0.93 11.2 12.6 115.21 28 13 0.89 0.35

T:6 false 1.14 14.2 29.7 62.36 44 24 0.87 0.36

T:7 false 1.24 14.4 21.3 73.13 30 17 0.65 0.33

After analyzing all the data using the neural network, the following results were
obtained in Table 3:
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Table 3. Comparative analysis of optimized and normal values.

Status Parameters Optimized Values Values Outside Normal Limits

FALSE

Direct bilirubin 1.633 1.633 > 0.3
Prothrombin activity 7.25 7.25 < 70

APTT 19.1 19.1 < 20
PT 77.72 77.72 > 14

ALT 5 -
INR 10.27 10.27 > 1.2
AST 12 -

Total bilirubin 0.34 -

TRUE

Direct bilirubin 0.01 -
Prothrombin activity 112.48 -

APTT 93.3 93.3 > 40
PT 10.6 10.6 < 11

ALT 562.65 562.65 > 40
INR 0.93 -
AST 12 -

Total bilirubin 77.48 77.48 > 1.2

For the “FALSE” health status, five out of the eight parameters display values outside
normal limits. The first two parameters of importance are direct bilirubin and prothrombin
activity. For the “TRUE” condition, only four of the eight parameters show abnormal
values, with the first two falling within normal limits.

As a result of this analysis, a query of the neural model is necessary to optimize the
health status while adhering to normal limits. To achieve this, the means of the normal
ranges were applied to the inputs with values outside the normal ranges, and the query
was conducted to determine the TRUE state. The outcomes are presented in Table 4.

Table 4. Optimized data for achieving the “TRUE” status.

Status Parameter Optimized Values with Limits

TRUE

Direct bilirubin 0.01
Prothrombin activity 112.48

APTT 30
PT 12

ALT 20
INR 0.93
AST 12

Total bilirubin 0.5

Table 4 shows that the imposed values do not affect the previously optimized values
of direct bilirubin and prothrombin activity, confirming that these parameters significantly
influence health status.

4. Discussion

Trauma is a leading cause of mortality and disability all over the world [17]. Trauma
affects not only the body but also the psyche to the extent that depends on the genetic
traits of each individual and their coping mechanisms [18]. Whether head, abdominal, or
orthopedic trauma, such events predispose patients to sustain VTE, which is an essential
factor adding to mortality and morbidity [9].

Specialized studies in the United States show that this condition has an annual in-
cidence of 80 reported cases per hundred thousand [19]. Statistics in the United States
indicate that more than 200,000 people risk developing venous thrombosis yearly. Of these
cases, approximately 25% are at risk of complications from pulmonary embolism [20].

In England, the number of deaths from VTE is higher than the total number of deaths
from breast cancer, AIDS, and road traffic accidents, and more than twenty-five times the
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number of deaths from MRSA [21]. The numbers are alarmingly high, but more alarming
is the fact that many of these deaths are preventable. There is a safe, effective, and cost-
effective method of preventing venous thrombosis that is not as widely administered as
it should be. Worldwide, VTE occupies the third place when it comes to common death
causes [22].

In the last decade, the advancement of imaging diagnostic tools led to an increased
number of thromboembolic events being diagnosed in preterm infants. Also, therapeutic
improvements in supportive neonatal intensive care units increased the number of preterm
patients with thromboembolic risk factors who survived [23]. Such small patients spend a
considerable amount of time hospitalized when indwelling catheters and sometimes sepsis,
combined with the disruption of the delicate balance of homeostasis, lead to an increased
risk of thromboembolism [23]. Although thromboembolic events in patients this age can
have serious consequences, they are rare complications [24]. Unfortunately, few studies
focus on pharmacotherapy, doses, and treatment duration in such small patients, and all
mentioned before are extrapolated from adult case management [25].

Tibial shaft fractures account for 15% of pediatric long-bone fractures in the United
States, making them the second most common pediatric trauma injury [26]. These fractures
are typically treated with closed reduction and cast immobilization. However, in cases of
open, unstable fractures with multiple or neurovascular injuries, surgical intervention may
be necessary for stable internal and external fixation. This type of intervention requires limb
immobilization until the fracture heals, so the intervention and postoperative management
should be carefully chosen to prevent DVT.

Assessing the risk of developing DVT is a primary goal in surgical practice, and DVT
prophylaxis plays a crucial role in managing trauma patients or those undergoing complex
surgeries (Table 5).

Table 5. Recommendations on thromboprophylaxis according to ACCP VIII.

Major General Surgery Patients Thromboprophylaxis Until Discharge

Patients at high thrombotic risk, including
those undergoing major cancer surgery or with

a history of VTE

Thromboprophylaxis after discharge, possibly
up to 28 days

Patients undergoing major gynecologic surgery Thromboprophylaxis up to 28 days

Patients with major orthopedic surgery (hip
replacement, knee replacement, surgical

femur fracture)

Thromboprophylaxis at least ten days in
hospital; extension up to 35 days

recommended—grade 1A.

While anticoagulant medication is essential in interventional practice, it is associated
with the risk of major bleeding (MB) that can lead to hypovolemic shock and potentially
lethal consequences.

Using non-vitamin K oral anticoagulants (NOACs) as anti-thrombotic drugs offers a
viable replacement for vitamin K antagonists (VKAs) when preventing VTE recurrence, fatal
PE, and long-term complications [27]. Dabigatran, rivaroxaban, apixaban, and edoxaban
have been approved for treating acute VTE in large phase III trials [28,29] and have shown
similar efficacy and a superior safety profile compared to VKAs [27,30,31].

The risk–benefit assessment can be conducted through a thorough medical history
and additional tests to identify other associated risk factors.

Clinical diagnosis of DVT is often inaccurate [19]. If located close to the iliac vein, the
pain can mimic appendicitis or adnexal pathology; the management team for such cases
should include a general surgeon and a gynecologist [32,33].

Various probability scores have been developed to determine the likelihood of diag-
nosing DVT in the lower limb, with the Wells score (Table 6) being the most well-known.
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Table 6. Wells score for DVT predicting [34].

Wells Score Criteria Description Points

Active cancer (treatment within the last six months or palliative) +1
Calf swelling ≥ 3 cm compared to asymptomatic calf (measured 10 cm below tibial tuberosity) +1
Swollen unilateral superficial veins (non-varicose in the symptomatic leg) +1
Unilateral pitting edema (in the symptomatic leg) +1
Previously documented DVT +1
Swelling of the entire leg +1
Localized tenderness along the deep venous system +1
Paralysis, paresis, or recent cast immobilization of lower extremities +1
Recently bedridden for ≥3 days or major surgery requiring local or general anesthetic in the past 12 weeks +1
Alternative diagnosis at least as likely −2

DVT is unlikely if the Wells score is below 2 points, and the D-dimer testing is the
next step. DVT is possible if the score is two or more, and further imaging exploration is
recommended. For DVT, venous ultrasound is the primary diagnosing tool [35]. Although
computer tomography (CT) is the gold standard for assessing many acute pathologies, i.e.,
head trauma [36], angiography CT is usually performed for PTE. CT venography may help
determine the extent of a caval or iliac thrombosis [35]. Magnetic resonance direct thrombus
imaging (MRDTI) is a possible option for investigating DVT, but it is not easily accessible
and would increase costs [36]. Also, technical and logistical limitations associated with
performing MRI of other areas (such as head MRI [37] apply here, making it less used as an
imaging tool for lower leg DVT [38].

Incidence rates of VTE in men and women vary with age, and differences in the
age range of the populations under study likely explain discrepancies in study results for
overall VTE in men versus women [39–43]. In younger age groups (<50 years), the incidence
of VTE is higher in women than in men [42–44] due to female reproductive risk factors
(e.g., oral contraceptives and pregnancy), while in middle-aged persons (50–70 years), the
incidence is higher in men than in women [40,44].

Although studies show a higher male prevalence of DVT, in our cohort, female patients
accounted for more than 60%.

Venous thrombosis has a low rate in the first three decades of life, at about 1 per
10,000 cases per year. The incidence increases with age, especially after 45 years, reaching
the peak of 5–6 per 1000 annually around 80 [40]. Tsai et al. reported in their study in 2002
that patients aged 85 or older had a 15 times higher risk of developing DVT than those aged
45–54 [45]. In our cohort, the greatest incidence of DVT was found in patients aged 81–90.

A critical modifiable risk factor for thrombosis is obesity, a body mass index (BMI)
above 30 kg/m2 [46]. Obesity leads to a 2 to 3-fold higher risk of venous thrombosis in
both men and women [45,47,48]. In our patients, obesity was present in eight.

The risk of thrombosis following surgery varies depending on the type of surgery and
patient characteristics [40]. Interestingly, one study reported that older patients did not
have a higher risk of postoperative venous thrombosis than younger patients for certain
types of surgery [49,50].

Immobility increases the risk of thrombosis, likely due to the stagnation of blood flow
in the venous system. Causes for immobility include bedrest, plaster casts on the lower
limbs, and leg paralysis due to neurological/neurosurgical conditions. Research-based
definitions of immobility due to bedrest vary, but four days seem reasonable. Minor forms
of immobility, such as after minor surgery or injury, have also been associated with an
increased risk of thrombosis [51]. This explains the prevalence of VTE in patients with
femur fractures, as their recovery time is prolonged, and mobility is limited even after
healing. The personality of individuals is a predictive factor for the occurrence of stress or
burnout syndrome [52].

The goal of pharmacotherapy for patients is to reduce morbidity and prevent compli-
cations [53]. The rapid and comprehensive assessment of injuries is crucial in managing
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each case [21]. The prognosis largely depends on the presentation time to the doctor and
the patient’s comorbidities [54]. There are both similarities and discrepancies between our
cases and the literature. The vulnerabilities of the subjects, identified personality traits, and
gender and age differences are all factors that play a role [55,56].

5. Conclusions

Our study identified risk factors for developing DVT, such as older age, high BMI,
and femur fractures that require a longer recovery time. Additionally, this study found
that elevated levels of direct bilirubin and prothrombin activity may play a predictive
role in developing DVT. This suggests that artificial intelligence can help foresee patients’
clinical evolution.

5.1. Limitations

This study’s primary limitation is its reliance on a single neural network model devel-
oped with Easy NN-Plus software. While the neural network provided useful predictive
insights, its complexity poses challenges for interpretability, and its accuracy is dependent
on the quality and diversity of the training data. Additionally, this study’s relatively limited
sample size and its focus on a single hospital cohort may limit the generalizability of these
findings to broader, more diverse patient populations and healthcare settings.

5.2. Future Research Directions

Future research should consider testing a range of machine learning models, such
as logistic regression, k-nearest neighbors (KNN), naïve Bayes (NB), decision trees (DT),
and support vector machines (SVM), to directly compare their predictive accuracy and
interpretability with that of the neural network. Such comparisons would help determine
the most effective model for predicting complications in trauma patients with lower limb
fractures. Expanding the dataset to include data from multiple healthcare centers would
further enhance the model’s robustness and generalizability. Additionally, incorporating
real-time monitoring data could improve the model’s predictive accuracy, allowing for
even earlier detection of high-risk cases and enabling more timely interventions.
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