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Abstract: Metabolic dysfunction-associated steatotic liver disease (MASLD) is closely associated with
obesity and other cardiometabolic risk factors. MASLD has rapidly become the most common cause
of liver disease worldwide, currently affecting 38% of the global population. Excess weight causes
chronic inflammation and the activation of different pathways involved in liver damage. MASLD
can progress from simple steatosis to steatohepatitis, giving way to its inflammatory component,
metabolic dysfunction-associated steatohepatitis (MASH), previously recognized as non-alcoholic
steatosis hepatitis (NASH). Chronic hepatitis C virus (HCV) infection remains a significant challenge
to liver health as it triggers hepatic inflammation, metabolic disruption, and hepatic steatosis. The
convergence of MASLD and chronic HCV infection can significantly alter the course of liver disease
and accelerate the progression to severe liver damage. Currently, HCV treatment has a high cure rate.
However, in patients who achieve a sustained virological response after treatment with direct-acting
antivirals, weight gain, and excessive calorie intake may contribute to increased liver steatosis and a
higher risk of liver disease progression. Therefore, the effective clinical and nutritional management
of HCV patients, both before and after viral eradication, is crucial to reducing the risk of death
from hepatocellular carcinoma. Understanding the complex interactions between MASLD and HCV
infection is crucial for managing these patients appropriately. Herein, host and viral mechanisms
inducing liver damage during the coexistence of MASLD and HCV infection are described, and their
therapeutic and dietary management are discussed.
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1. Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the
most common chronic liver disease worldwide because of the obesity epidemic. Accord-
ing to recent estimations, MASLD affects nearly one-third of the global population [1].
MASLD commonly progresses from simple steatosis to metabolic dysfunction-associated
steatohepatitis (MASH) due to inflammatory components [2]. Several factors, including en-
vironmental, metabolic, immune, genetic, and epigenetic factors, can affect the progression
of MASLD to severe forms of the disease, such as liver fibrosis, cirrhosis, and hepatocellular
carcinoma (HCC) [3]. Hepatitis C (HCV) is a hepatotropic virus that disrupts hepatic
metabolism, causing progressive liver damage [4]. Currently, chronic hepatitis C ranks
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among the leading causes of liver transplantation, and it is estimated that 242,000 people
worldwide die each year from complications related to hepatitis C [5]. HCV itself can
generate hepatic steatosis through mechanisms dependent on viral genotype. Both MASLD
and chronic hepatitis C can independently contribute to liver-related complications, and
their coexistence may have additive effects on liver health, especially by accelerating liver
damage. In this sense, patients with untreated HCV had a prevalence of MASLD of 55%,
spanning from 40 to 86% based on the regionality of the metabolic syndrome and HCV
genotype [6]. Furthermore, the occurrence of liver steatosis before and after treatment with
direct-acting antiviral agents (DAAs) is related to a lack of an improvement in liver fibrosis
and an increased risk of liver cancer [7]. Therefore, the adequate clinical and nutritional
management of these patients is essential for preventing deaths due to HCC.

A synergistic interaction between the metabolic components associated with HCV
infection and MASLD that may accelerate the development of liver damage and HCC
has been documented [8]. Thus, the early diagnosis of MASLD in HCV-infected patients
would allow for prompt clinical, therapeutic, and lifestyle interventions to prevent further
disease severity. This review examines the mechanisms contributing to liver injury during
the convergence of metabolic and viral-induced steatosis, and the role of therapeutic and
dietary management is discussed.

2. Effect of Chronic Inflammation in MASLD and HCV Infection

Obesity plays the most crucial role in the onset and progression of simple steatosis
and MASH. When the capacity of adipose tissue to store fat is surpassed, hepatocytes
begin storing excess lipids, primarily triglycerides. This ectopic fat storage can result in
simple steatosis and inflammation. For its part, HCV can induce hepatic inflammation;
thus, an intricate hepatic proinflammatory environment prevails during the coexistence of
MASLD and chronic HCV infection (Figure 1). Hepatic inflammation is a complex process
that protects hepatocytes from injury, favors liver repair, and establishes homeostasis [9].
However, prolonged inflammation leads to hepatocyte death, liver damage, and a decline
in liver function [10,11]. Also, chronic inflammation contributes to metabolic disorders and
progression from hepatic steatosis to MASH, fibrosis, cirrhosis, and HCC [10].

2.1. Adipose-Derived Adipokines Involved in the Onset of Steatosis-Related Liver Damage

Adipose tissue primarily stores fat but can also exert endocrine functions, producing
numerous adipokines to regulate metabolic and inflammatory processes [12]. During the
progression of excess weight, the adipocyte composition changes by favoring a forward
influx of immune cells and overproduction of adipokines [13]. As discussed below, the
altered expression pattern of these cytokines is associated with increased liver damage.

2.1.1. Leptin

Leptin is a peptide hormone produced and secreted by adipose tissue. It acts in
the hypothalamus to influence food intake, energy expenditure, and fat storage, help-
ing to maintain overall energy homeostasis [14]. Although produced and secreted from
adipocytes, leptin acts upon its receptor, LEPR. Dysregulation of leptin production or
receptor sensitivity can contribute to metabolic and weight-related disorders [15]. Obese
individuals become hyperleptinemic and leptin-resistant due to increased adipogenesis [16].
Circulating leptin in obesity enhances adipocyte and systemic inflammation, up-regulating
monocyte chemoattractant protein-1 (MCP-1), also known as CCL2.



Clin. Pract. 2024, 14 2544Clin. Pract. 2024, 14, FOR PEER REVIEW  3 
 

 

 
Figure 1. Mechanisms linking MASLD to liver damage during HCV infection. Hypertrophic adipo-
cytes during obesity produce adipokines and other factors that promote intra- and extrahepatic low-
grade inflammation. In conjunction with viral proteins, low-grade inflammation accelerates liver 
damage progression during the coexistence of MASLD+ HCV. The genes involved in MASLD de-
velopment during HCV infection are highlighted in blue. The arrows with a regular tip represent 
induction, while the arrows with a blunt tip represent inhibition. The dotted arrow indicates an 
impaired mechanism effect.  

Figure 1. Mechanisms linking MASLD to liver damage during HCV infection. Hypertrophic
adipocytes during obesity produce adipokines and other factors that promote intra- and extrahepatic
low-grade inflammation. In conjunction with viral proteins, low-grade inflammation accelerates
liver damage progression during the coexistence of MASLD+ HCV. The genes involved in MASLD
development during HCV infection are highlighted in blue. The arrows with a regular tip represent
induction, while the arrows with a blunt tip represent inhibition. The dotted arrow indicates an
impaired mechanism effect.
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Consequently, the infiltration of proinflammatory blood monocyte-derived macrophages
and the production of TNF-α, IL-6, IL-12, and IL-1β increases [17]. High leptin levels are
found in MASLD patients’ liver biopsies [18]. Leptin has shown a potential dual action
in MASLD in vitro models. First, leptin was reported as a protective factor for MASLD,
safeguarding hepatocyte cells from steatosis and lipotoxicity by preventing the up-regulation
of lipogenesis and increasing fatty acid oxidation [19]. In contrast, leptin plays a unique
role in developing hepatic fibrosis by activating hepatic stellar cells (HSC) via PPARgamma
inhibition and proinflammatory responses (Figure 1) [20,21]. Elevated leptin levels have been
observed in patients infected with HCV genotype 1, correlating with an exacerbation of liver
steatosis [22,23]. Thus, leptin may play a distinct role in hepatic health depending on the
etiology and stage of liver damage.

2.1.2. Adiponectin

Adiponectin is an adipocyte-specific factor contributing to insulin sensitivity, anti-
inflammatory responses, and various metabolic processes, including glucose regulation
and fatty acid oxidation [24]. Adiponectin mainly binds to its receptor AdipoR2. AdipoR2
activates 5-AMPK and PPAR-α pathways involved in fatty acid oxidation and inhibition of
inflammation [25]. Adiponectin also downregulates the hepatic expression of CD36, thereby
decreasing the influx of free fatty acids (FFAs) into the liver. Besides metabolic regulation,
adiponectin has antifibrotic action in the liver via downregulating AOX-1, TGF-β, and
connective tissue growth factor expression [26]. Adiponectin also has anti-inflammatory
action in the liver by suppressing TNF-α and other proinflammatory cytokines and induc-
ing anti-inflammatory cytokines, such as IL-10 [27]. Low adiponectin levels have been
reported in obese subjects and patients with hepatic steatosis or MASH [28]. Recently, a sig-
nificant association between elevated serum adiponectin levels and advanced Child-class
liver cirrhosis in patients with HCV infection has been reported. ADIPOR1 mRNA were
reduced in chronic HCV-infected patients, but not ADIPOR2 levels, suggesting a pattern of
adiponectin resistance [29,30]. The beneficial effect of adiponectin is diminished in both
MASLD and HCV patients. In the case of chronic hepatitis C, it is necessary to investigate
the mechanisms that induce the downregulation of ADIPOR1 expression.

2.1.3. Tumor Necrosis Factor-Alpha (TNFα)

TNFα is a pleiotropic cytokine involved in diverse processes such as cell proliferation,
metabolic activation, and inflammatory response [31]. The ligand of TNFα, the ligand-
bound TNR receptor 1 (TNFR1), induces the production of reactive oxygen species (ROS)
via the NOX1, thus coordinating the proinflammatory response (Figure 1) [32]. It has
been reported that TNFR1 favors the recruitment of caspase-8, which initiates an apoptotic
cascade in the liver [33]. TNFα expression increases insulin resistance (IR), IL-6, IL-1, and
early MASH in diet-induced non-obese MASLD mice [34]. High levels of TNFα have been
found in cirrhotic HCV patients as well as in MASH patients [35,36]. Thus, both etiologies
may potentiate liver damage via TNFα activity.

2.1.4. Interleukin-6 (IL-6)

IL-6 is a pleiotropic cytokine expressed in different tissues. However, white adipose
tissue is responsible for up to 35% of human IL-6 production [37]. IL-6 expression is highly
correlated with obesity, contributing to a low grade of inflammation in this condition.
IL-6 has differential functions according to tissue type. In the liver, it induces the acute
phase response and infection defense, but aberrant activation of the IL-6 pathway can
trigger hepatocyte apoptosis and mediate immune liver damage [38]. Also, IL-6 impairs
insulin action through the STAT3-SOCS-3 pathway (Figure 1) [39,40]. High levels of IL-6
are reported in MASLD, MASH, and chronic HCV patients. However, the highest levels
are found in MASLD patients, rather than in HCV patients. IL-6 activation results in the
excessive stimulation of the IL-6/STAT3 signaling pathway in HCC cells. This process can
increase the expression of the tissue inhibitor of metalloproteinases-1 (TIMP-1), driving
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the conversion of normal liver fibroblasts into carcinoma-associated fibroblasts (CAFs),
thereby contributing to liver carcinogenesis [41]. Hence, IL-6 could be the key to rapidly
conducting a dual MASLD + HCV state toward HCC development.

3. Immunometabolic Dysregulation Enhances Liver Damage in MASLD and
Chronic HCV

Low-grade inflammation in obesity is characterized by metabolic dysfunction that
increases the risk for cardiovascular disease, cancer, and other life-threatening conditions,
including liver disease [42,43]. The lipotoxic microenvironment in MASLD increases hepatic
oxidative stress, leading to T-cell recruitment, persistent proinflammatory response, and
subsequent fibrosis and MASH development [43]. On the other hand, HCV is a metabolic
regulator virus that, by itself, can modulate liver metabolism with hepatic insulin resistance
and subsequent oxidative damage. Thus, the overlap of these two etiologies can exacerbate
liver damage (Figure 1).

Insulin Resistance and Oxidative Stress

During weight gain, decreased glucose uptake by insulin-resistant skeletal muscle
leads to compensatory hyperinsulinemia. Proinflammatory cytokines such as TNFα and
IL-6 produced in hypertrophic adipocytes cause IR as they can stimulate the signaling
pathways of the c-Jun amino-terminal kinase (JNK) and the IκB kinase-β (IKK-β)/nuclear
factor-κB (NFκB). Once activated, JNK and NFκB phosphorylate the serine kinase insulin
receptor substrate-1 (IRS1) and insulin receptor substrate-2 (IRS-2) that block insulin sig-
naling, resulting in the incidence of IR [44]. In parallel, HCV can trigger hepatic and
extrahepatic IR via core-protein-promoting IRS-1 degradation in viral genotype 3, while
genotype 1 activates the mTOR signaling, reducing IRS1/2 signaling (Figure 1) [45,46].
The presence of IR has been associated with liver fibrosis in chronic HCV and MASLD
patients [47]. Hyperinsulinemia and increased levels of insulin growth factors have been
shown to promote cell proliferation in chronic inflammatory conditions, such as MASH
and chronic HCV infection [48].

On the other hand, ROS are regular products of the mitochondrial respiratory chain.
They constitute a highly reactive species produced in membranes and cytosolic and reticular
components and are involved in TNFR1 activation [49]. ROS participates in intracellular
liver damage, mitochondrial dysfunction, and cell death. Direct measurements in liver
tissue from chronic HCV patients revealed an increase in ROS concentrations by two
to five orders of magnitude [50]. One study demonstrated that HCV can potentially
cause ROS production via the core, E1, E2, NS4B, and NS5A, the core protein’s most
potent regulator [51]. They increased oxidative stress in vivo in a large cohort of subjects
with MASLD. High oxidative stress is a well-established cause of liver injury due to
indiscriminate oxidative biomolecular damage and dysregulated redox signaling [52].
Thus, HCV patients who have excess weight are expected to accelerate the progression of
liver damage.

4. Genetic Variants Linked to the Development of MASLD in Hepatitis C Virus Infection

Susceptibility toward MASLD development in chronic HCV patients depends on the
host’s genetic background. Genome-wide association studies revealed that many single
variants confer susceptibility to steatosis by inducing hepatic fat accumulation [53]. One
of the most widely described variants associated with MASLD is the non-synonymous
isoleucine-to-methionine substitution at position 148 in the PNPLA3 gene (rs738409). This
single nucleotide polymorphism (SNP) leads to the reduced enzyme activity of triglyceride
lipase and reduced retinyl ester hydrolysis, resulting in hepatic triglyceride accumulation
and hepatic stellate cell activation and fibrogenesis [54]. Chronic HCV patients who carry
the GG genotype have a 4.33-fold increased risk of developing hepatic steatosis and a
2.99-fold increased risk of severe fibrosis compared to carriers of other genotypes [55]. Also,
the PNPLA3 rs738409 and the HSD17B13 rs72613567TA variants have been associated with
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more severe liver disease, from mild fibrosis to significant fibrosis, cirrhosis, and HCC in
chronic HCV infection [56]. Higher liver triglyceride content is also found in patients with
the missense mutation E167K variant (rs58542926) in the TM6SF2 gene, which decreases
hepatic lipid secretion [57]. The TM6SF2 E167K variant independently predicts steatosis
in chronic HCV patients [58]. MTP is a protein involved in the hepatic lipid release by
transferring lipids from the endoplasmic reticulum to the nascent apolipoprotein B and
very low-density lipoprotein. The MTP rs1800591 variant confers a 6.72-fold increased risk
of hepatic steatosis in chronic HCV genotype 3 patients [59]. These genetic variants are
found in critical enzymes involved in lipid metabolism and can promote liver steatosis,
resulting in the onset of liver damage (Figure 1).

5. Effect of HCV Genotypes on MASLD

HCV is a genetically heterogeneous virus with one to eight genotypes and over
50 subgenotypes [60]. Each genotype exerts a distinct influence on metabolism during
infection, and specific genotypes may favor liver steatosis on their own or in the presence
of obesity (Table 1). The development of steatosis in patients with chronic HCV infection
ranges between 40–86%, with an average of 55% in all genotypes. The prevalence of liver
steatosis in chronic HCV patients is higher than in the general adult population (55%
compared to 20–30%) [6]. Genotype 3, also called the “steatogenic genotype”, is associated
with a hepatic steatosis prevalence of up to 86% [61]. Patients infected with genotype 3
show more frequent and more severe steatosis with accelerated progression to liver damage
and HCC than other genotypes, even without the presence of IR, obesity, or other metabolic
risk factors related to MASLD. Genotype 3-induced liver steatosis is proportional to viral
load and is resolved after successful viral treatment, indicating a direct cytopathic effect.
MASLD related to genotype 3 involves the core protein inhibiting MTP, decreasing hepatic
lipid export and triglyceride accumulation [62]. Genotype 3a activates p-Akt, increasing
fatty acid synthesis via SREBP-1 and decreasing lipolysis by inhibiting PPARα [63,64].

Table 1. Disease characteristics of liver steatosis in HCV genotype 3 and non-genotype 3.

Genotype 3 Non-Genotype 3

Term Viral steatosis Metabolic steatosis

Mediator Core protein Host metabolic disturbances

Mechanism ↓ MTP, ↓ VLDL, and ↓ lipid secretion ↓ IRS1,↓ PI3K-Akt, ↑ IR, ↓ PPARγ,
↑ CD36, ↑ SREBP

Severity Accelerate steatosis, rapid progression to
fibrosis, and HCC

Lower rate of steatosis, slower
progression to fibrosis, and HCC

Correlation with antiviral therapy Reversible after SVR No improvement after SVR

MTP: microsomal triglyceride-transfer protein; VLDL: very low-density lipoprotein; IRS1: insulin receptor
substrate 1; PI3K-Akt: phosphatidylinositol 3-kinase (PI3K)/Akt; IR: insulin resistance; PPARγ: peroxisome
proliferator-activated receptor γ; CD36: scavenger receptor B2; SREBP: sterol regulatory element binding protein;
HCC: hepatocellular carcinoma; SVR: sustained virological response; ↑: induction; ↓: reduction.

On the other hand, genotypes 1, 2, and 4 promote steatosis primarily associated with
pre-existing host metabolic risk factors, such as IR and visceral obesity [65]. The activation of
proinflammatory pathways in obesity and IR is related to the emergence of steatosis in these
patients. Also, increased free radical levels (MDA > 250 nmol/dL) have been significantly
correlated with liver fibrosis in patients with an HCV genotype 1 [66]. However, no
relationship has been found between genotype 1-viral load and the achievement of a
sustained virologic response (SVR) or the extent of liver steatosis [67].

6. Treatment Considerations in Patients with MASLD and HCV Infection

The goal of HCV treatment is to reduce the occurrence of end-stage liver disease and its
complications. Treatment success is assessed by SVR, which is defined as undetectable HCV
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RNA in the blood several months after treatment. Initially, HCV was treated with interferon
(IFN)-based regimens. Nonetheless, the presence of steatosis and metabolic syndrome was
recognized as a negative factor in antiviral IFN-based therapy [68,69]. Efforts to eliminate
HCV have activated an ongoing global campaign to diminish the incidence and mortality
caused by this virus [70].

Today, pharmacological treatment with DAAs against HCV has reached a high cure
rate among all HCV genotypes [71]. However, some questions remain to be solved because
post-treated patients and those who may be unaware of their conditions are at risk of
HCV-induced HCC. (Figure 2).
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Figure 2. Impact of MASLD on the natural history of HCV infection and after DAA treatment. The
concurrence of MASLD and chronic HCV affects the natural history of HCV infection, accelerating
the occurrence of advanced stages of liver damage. High BMI during and after treatment is associated
with less SVR and no improvements in fibrosis grade. DAA effects on liver steatosis and metabolism
significantly increase the risk of HCC even after SVR.

These patients with metabolic-associated steatotic conditions need medical and nu-
tritional intervention. Eradication of HCV by DAAs is associated with weight gain, liver
steatosis, and no improvement in IR [7,72,73]. A recent study of 1280 elderly patients with
HCV eradication by DAAs and no history of HCC demonstrated that 25.8% of the patients
developed MASLD at 24 weeks of SVR. In turn, MASLD at 24 weeks of SVR conferred a
3.04-fold increased risk of developing HCC. In the end, 6.7% of the patients developed
HCC [74]. Thus, patients with dual etiology of liver damage are at higher risk for advanced
hepatic fibrosis and HCC even after HCV eradication.

Similarly, having obesity before treatment with DAAs is negatively associated with
improvement of fibrosis at 1-year follow-up [75]. Although DAAs have reached a high
cure rate, 5% of the patients treated will not respond to therapy. A retrospective study
involving 10,655 patients treated with DAAs to determine predictive factors associated
with nonresponse to treatment found that an elevated pretreatment body mass index (BMI)
was associated with nonresponse to DAAs [76]. Hence, managing MASLD before and after
DAA treatment is vital to prevent the progression of the disease and prevent death by HCC.

The treatment of MASLD primarily focuses on modifying risk factors through ther-
apies such as insulin sensitizers, antioxidants, weight reduction, physical activity, and
diet [77]. Although there is little evidence regarding weight management before DAA
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treatment, a study reported that weight loss of >0.5 BMI before IFN + ribavirin therapy
was associated with higher SVR [78]. Metformin is a primary insulin sensitizer in clinical
practice. An in vitro study demonstrated that metformin inhibits HCV replication, acti-
vating the type I IFN antiviral signaling pathway via activation of AMPK and decreasing
core protein expression [79]. Metformin also reduces the risk of HCC incidence after SVR
among those with diabetes and chronic HCV [80]. When supplemented with metformin,
statins lower serum cholesterol, reducing the risk for HCC in chronic patients who failed
antiviral therapy [81]. Vitamin E is an antioxidant agent that is beneficial for treating
non-diabetic MASLD patients [82]. Vitamin E supplementation of 400 IU twice daily for
12 weeks decreased serum alanine aminotransferase levels in patients infected with HCV
genotype 3 [83]. Recently, resmetirom, a liver-targeted selective thyroid hormone receptor-
β (THR-β) agonist, became the first FDA-approved drug for treating non-cirrhotic MASH
patients. Resmetirom has been shown to improve cholesterol and triglyceride levels and
reduce liver fat in MASH patients. However, its potential effects on HCV patients remain
unexplored [84,85]. This evidence implies that MASLD management when HCV coexists
may benefit both etiologies of liver damage. More studies are needed to investigate the
effect of MASLD therapy in patients with both conditions.

7. Dietary Considerations in Patients with MASLD and Chronic HCV Infection

Management strategies for MASLD that focus on lifestyle modifications are essential
for liver-diseased patients. Dietary interventions can improve inflammation, oxidative
stress, IR, and BMI and reduce liver damage due to MASLD [86–88]. Furthermore, it
has been documented that dietary interventions are a valuable resource that should be
tailored by region based on genetic and environmental (cultural) differences among popu-
lations [89]. For example, epidemiological studies performed on US Hispanics of Mexican
descent showed higher rates of obesity, diabetes, and MASLD [90], as well as higher rates
of genetic susceptibility compared to other ethnic groups [1,91]. Studies in Mexican sub-
populations have reported anthropometric and biochemical alterations in young obese
patients with MASLD who consumed a hepatopathogenic diet [92]. However, it has also
been documented that adherence to a traditional Mexican or genome-based diet in this pop-
ulation, i.e., consumption of a diet integrating Mexican staple foods such as maize products,
legumes, pumpkin, zucchini, prickly pears, chia seeds, amaranth, tomato, squash, and chili
with anti-inflammatory, antioxidant, anti-fibrogenic, and insulin-sensitizing properties,
could decrease the risk of MASLD-related conditions [93,94].

Additionally, several foods and their components have shown beneficial effects for
MASLD, such as preventing inflammation, decreasing cardiometabolic risk factors, and
reducing liver fibrosis [95]. The availability and quantity of each micronutrient may depend
on each population’s diet and food culture. As shown in Table 2, dietary recommendations
for MASLD patients based on nutrients or functional components with beneficial effects on
liver steatosis can significantly help with the clinical management of the disease.

Table 2. Food source and concentration of nutrients with anti-HCV and MASLD activities.

Nutrient Food Source Amount * Effect Ref.

Anti-HCV

DHA

Fish oil—salmon 18.2 g

HCV inhibition in vitro.
Counteract core protein-lipid
alterations.

[96,97]

Fish oil—cod liver 11 g
Egg—yolk, dried 0.253 g
Fish—carp, raw 0.114 g

EPA
Fish oil—salmon 13 g
Fish oil—cod liver 6.9 g
Fish—herring, Pacific, cooked, dry heat 1.24 g
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Table 2. Cont.

Nutrient Food Source Amount * Effect Ref.

AA

Fish oil—sardine 1.76 g
HCV inhibition in vitro.
Counteract core protein-lipid
alterations.

[96,97]
Egg—yolk, dried 0.978 g
Fish oil—cod liver 0.935 g
Beef—variety meats, and by-products 0.74 g

Gallic acid

Chestnut—raw 479.78 mg

↓ HCV expression through
its antioxidant capacity [98]

Cloves 458.19 mg
Oregano—dried (wild marjoram) 5.15 mg
Black Tea—infusion 4.63 mg
Blackberry—raw 4.67 mg

Vitamin E

Chili powder 38.1 mg
↓ ALT and favors
inflammatory response [83]

Sunflower seed kernels—oil roasted 36.3 mg
Nuts—almonds, oil roasted, without salt 26.0 mg
Oregano—dried 18.3 mg

Vitamin A

Duck—domesticated, liver, raw 39,900 IU

↑ anti-viral effect of IFN on
HCV replication [99]

Veal—variety meats, liver, cooked,
braised 70,600 IU

Pork—fresh, variety meats and
by-products 21,600 IU

Carrots—cooked, boiled, drained 17,000 IU
Broccoli—leaves, raw 16,000 IU
Pumpkin with salt 15,600 IU

Vitamin D3
Fish—carp, raw 24.7 µg Inhibit HCV replication by

modulating IFN signaling [100]Egg—yolk, dried 15.7 µg
Egg—whole, dried 9.7 µg

Vitamin B12

Veal—variety meats and by-products 84.6 µg

Inhibit HCV translation
directed by all IRES elements [101]

Beef—variety meats and by-products 83.1 µg
Duck—domesticated, liver, raw 54.0 µg
Pork—fresh, variety meats and
by-products 26.0 µg

Iron

Marjoram dried 82.7 mg Inactivates HCV NS5B
protein and suppresses
subgenomic replication

[102]
Cumin seed 66.4 mg
Turmeric—ground 55.0 mg
Beef—variety meats, and by-products 44.6 mg

Zinc

Agave—dried (Southwest) 12.1 mg

Inhibit HCV replication [103]
Beef—chuck, short ribs, boneless,
cooked 12.1 mg

Seeds—sesame flour (ajonjoli) 10.7 mg

Anti-MASLD

Polyphenols
(resveratrol,
quercetin, catechin,
and cyanidin)

Cocoa—chocolate, dark
Quercetin: 25.0 mg
Catechin: 20.50 mg
Resveratrol: 0.04 mg

Protect against steatosis,
mitochondrial dysfunction,
and impaired energy
metabolism

[104]
Mexican oregano—dried Quercetin: 42.0 mg
Beans—common bean Cyanidin: 1.63 mg

Epicatechin
Cocoa—chocolate, dark 70.36 mg ↓ response of PPARα and

PPARγ in vitro
[105]Broad bean pod—raw 37.55 mg

Green tea—infusion 7.93 mg

Vitamin E

Chili powder 38.1 mg Improvement of serum liver
markers, inflammation and
histology of MASLD patients

[106]
Sunflower seed kernels—dried 35.2 mg
Almonds 25.6 mg
Oregano—dried 18.3 mg

PUFAs
(EPA, DHA) View anti-HCV section View anti-HCV

section

↓ GGT and liver fat.
Beneficial changes in lipid
profile of MASLD patients

[107]
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Table 2. Cont.

Nutrient Food Source Amount * Effect Ref.

Vitamin D View anti-HCV section View anti-HCV
section

↓ ALT, AST, FBS, LDL-c,
miR-21, and miR-122 in
MASLD patients

[108]

Curcumin
Turmeric—dried 2213.57 mg ↓ insulin resistance, steatosis

in obese mice
[109]Curry—powder 285.26 mg

Chlorogenic Acid
Oregano—dried (wild marjoram) 10.70 mg Protect against steatosis in

HepG2 cells [110]Cumin 16.60 mg
Sunflower seed 8.17 mg

Combination of soy
protein, chia oil,
curcumin, and
nopal

Soy, chia, curcumin, and nopal NA
Modifies gut microbiota, ↓
hepatic fat and ↑
mitochondrial function

[111]

* Nutrient concentrations are given per 100 g or mL portion. Food sources and concentrations were obtained from
U.S. Department of Agriculture Database [112] or the Phenol-Explorer Database [113]. NA: not applicable; Ref.:
reference; ↑: increase; ↓: decrease.

The HCV lifecycle is closely related to hepatic lipid metabolism. Lipid droplets are
involved in the HCV replication, assembly, and release stages. While saturated fatty acids
(SFA) are required for successful HCV replication, polyunsaturated fatty acids (PUFAs)
inhibit in vitro HCV replication [114,115]. A study revealed that an SFA-rich diet in HCV
core protein transgenic mice increases liver steatosis, lipogenesis, inflammation, and the
presence of liver tumors [115]. This study suggests that excessive intake of SFA-rich
foods should be avoided in HCV-infected patients to prevent liver cancer. However, this
finding might apply to MASLD patients or MASLD + HCV patients as the study repro-
duces steatosis-derived liver tumorigenesis without significant fibrosis. Another in vitro
study demonstrated that arachidonic (AA), docosahexaenoic (DHA), and eicosapentaenoic
acids (EPA) inhibit HCV replication by suppressing the expression of genes involved in
lipogenesis [96,97]. However, the exact mechanism underlying these effects is unclear.

Similarly, several micronutrients have demonstrated anti-HCV replication in vitro
(Figure 3, Table 2), but their effect in vivo is scarcely known [116]. BMI and dietary patterns
of patients with an active HCV infection can influence the disease outcome [117,118]. A
recent study of chronic HCV-infected patients found that patients with adherence to a fish-
rich dietary pattern consisting mainly of fish, seafood, vegetable oils, and PUFAs ≥ 4.9%
had lower viral load levels [118].

In this sense, PUFAs can decrease inflammation, ameliorate insulin sensitivity and
liver steatosis, and counteract core protein effects [97]. DHA, EPA, and AA supplementa-
tion may help prevent or treat MASLD associated with HCV infection. Because of their
absence of adverse effects, these treatments might be suitable for adults and children.
Dietary intervention with PUFAs in MALSD + HCV patients could benefit both etiolo-
gies of liver damage. Furthermore, clinical practice guidelines must consider nutritional
recommendations for patients with HCV infection to offer standard recommendations to
the public.
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Figure 3. Antiviral effect of nutrients against HCV infection. Polyunsaturated fatty acids (PUFAs)
inhibit the formation of the membranous web necessary for successful HCV replication in vitro, thus
reducing viral RNA replication and virus production. Gallic acid downregulates the expression
of NS5A HCV protein required for HCV replication and decreases the ROS derivates from HCV
infection in vitro. Vitamin B12 inhibits HCV internal ribosome entry site (IRES), essential for HCV
translation, thus limiting HCV persistence in vitro. Vitamin E reduces TNFα and IL-6, suggesting an
anti-inflammatory effect. Vitamins A and D induce the transcription of type-1 IFNs, enhancing the
effect of IFN on HCV. Iron Inhibits NS5B polymerase activity in vitro. Zinc reduces HCV replication
in vitro. On the contrary, saturated fatty acids (SFA) are necessary for HCV replication. Hepatic
copper increases hepatic fibrosis and correlates positively with type IV collagen.

8. Conclusions

There are numerous similarities between fat accumulation in HCV and MASLD. Be-
sides fatty liver accumulation, HCV resembles MASLD in terms of IR, oxidative stress,
metabolic dysfunction, and chronic inflammation. Both MASLD and HCV can indepen-
dently trigger liver damage. When these two etiologies of liver damage converge, intricated
mechanisms involving low-grade inflammation, IR, oxidative stress, and metabolic dis-
turbances, as well as viral proteins, enhance the progression of liver damage. Future
perspectives for managing MASLD in HCV patients should emphasize the development of
clinical practice guidelines that integrate general and region-specific nutritional recommen-
dations [119]. These guidelines are crucial for providing standardized advice tailored to
diverse populations, particularly in regions where achieving HCV eradication remains chal-
lenging. Addressing metabolic disturbances must also be a priority, especially in patients
with liver steatosis, but also in those without fatty liver before DAA treatment. Mandatory
clinical follow-up should be implemented for all HCV patients after viral eradication, con-
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sidering the risk of liver steatosis and HCC. A comprehensive approach combining clinical,
nutritional, and metabolic management is essential for improving long-term outcomes in
patients with MASLD and HCV chronic infection. HCC incidence will be an important
health issue in HCV patients after virus eradication.
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