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Abstract: Group IV–V-type layered materials, such as SiP, SiAs, GeP and GeAs, are among the most
attractive two-dimensional (2D) materials that exhibit anisotropic mechanical, optical and transport
properties. In this short communication, we conducted density functional theory simulations to
explore the prospect of SiP, SiAs, GeP and GeAs nanosheets for the water-splitting application.
The semiconducting gaps of stress-free SiP, SiAs, GeP and GeAs monolayers were estimated to
be 2.59, 2.34, 2.30 and 2.07 eV, respectively, which are within the desirable ranges for the water
splitting. Moreover, all the considered nanomaterials were found to yield optical absorption in the
visible spectrum, which is a critical feature for the employment in the solar water splitting systems.
Our results furthermore confirm that the valence and conduction band edge positions in SiP, SiAs,
GeP and GeAs monolayers also satisfy the requirements for the water splitting. Our results highlight
the promising photocatalytic characteristics of SiP, SiAs, GeP and GeAs nanosheets for the application
in solar water splitting and design of advanced hydrogen fuel cells.
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1. Introduction

Two-dimensional (2D) materials are currently among the most appealing class of materials,
with a wide range of application prospects, from aerospace components to nanotransistors and
nanosensors. The remarkable success in this field is due to the outstanding and exceptional physics of
graphene [1,2], which consequently motivated the design and synthesis of other types of 2D materials.
The 2D materials family includes a long list of members, thanks to the outstanding experimental
accomplishments during the last decade. This continuously expanding family comprises highly
symmetric members, such as graphene, hexagonal boron-nitride (h-BN) [3,4] and 2H transition metal
dichalcogenides [5,6]. On the other side, the 2D materials family also includes anisotropic lattices,
like phosphorene [7–9] and antimonene [10] and few very low-symmetry anisotropic materials, like 1T’
transition metal dichalcogenides [11] and distorted-1T rhenium disulfide [12], which may show
highly anisotropic properties. Although the majority of research concentrations in the field of 2D
materials has been devoted to the high symmetry structures, recently the low-symmetry counterparts
are also gaining considerable attention [13]. This recent trend originates from the unique optical,
electrical and transport properties of low-symmetry 2D materials, which offer novel possibilities for
the design of angle-dependent advanced devices, such as photodetectors, polarized lasers and sensors,
digital inverters and artificial synaptic devices [13–16].
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Group IV–V-type 2D materials, like silicon phosphide (SiP), silicon arsenide (SiAs) germanium
phosphide (GeP) and germanium arsenide (GeAs), are among the attractive low-symmetry 2D
materials. The bulk lattices of aforementioned structures are already known to show anisotropic
properties. In this regard, bulk SiP and SiAs layered structures were realized experimentally by
Beck and Stickler [17] in 1966. A few years after, bulk GeP and GeAs materials were experimentally
fabricated by Donohue and Yang [18]. Nonetheless, these atomic lattices in the 2D form were first
brought into consideration by a theoretical work in 2016 [19]. Existence of weak interlayer interactions
in the bulk layered SiP, SiAs, GeP and GeAs is a key advantage to facilitate the experimental realization
of their 2D counterparts, commonly achieved by exfoliation techniques. Recently, GeAs nanomaterials
were fabricated by Yang et al. [13], with anisotropic planar optical responses. In a recent exciting
advance, GeP in the 2D form was fabricated by Li et al. [20], which shows strong in-plane anisotropic
properties. As an interesting matter of fact, according to the density functional theory (DFT) results
by Cheng et al. [21], the exfoliation energy of SiP and SiAs from the bulk counterparts is lower than
that of the graphite. On this basis, the prospects for the experimental realization of SiP and SiAs
nanomembranes employing the exfoliation method is highly bright and thus expectable in the near
future. In our recent study [22], it was concluded that GeP, GeAs, SiP and SiAs monolayers are
remarkably strong and exhibit anisotropic mechanical properties. These 2D lattices were also found to
show strain-tunable band gap, which is desirable for sensing applications. The optical and electronic
properties of these novel 2D systems were also explored in the several recent theoretical works [23–32].
In general, theoretical studies offer unique tools to investigate the material properties of 2D based
materials [33–39]. We would like to note that the hydrogen fuel yields one of the highest energy
densities among all fuels, and therefore the production of this gas through the employment of the
solar water splitting methods has gained remarkable attention to address greenhouse environmental
issues. The objective of the present study is therefore to explore the prospect of SiP, SiAs, GeP and
GeAs nanosheets for the water splitting application on the basis of first-principles DFT calculations.

2. Computational Method

First-principles DFT calculations in this work were conducted using the Vienna ab-initio simulation
package (VASP) [40–42]. Generalized gradient approximation (GGA) exchange-correlation functional
within the Perdew–Burke–Ernzerhof (PBE) [43] method with a plane-wave cut-off energy of 500 eV was
used for the calculations. For the geometry optimizations, conjugate gradient method was employed
with termination criteria of 10−5 eV and 0.01 eV/Å for the energy and forces, respectively, within the
tetrahedron method proposed by Blöchl [44]. To evaluate the electronic band structure, we used 21 ×
5 × 1 Monkhorst-Pack [45] k-point mesh, with a lower k-point mesh along the elongated direction.
We also employed the screened hybrid functional HSE06 [46] to more accurately report the electronic
band structure as well as the band-gap values using a 11 × 5 × 1 k-point grid.

The evaluation of the optical properties (absorption coefficient) was performed using the random
phase approximation (RPA) method constructed over HSE06 approach as implemented in the VASP
code, with a 500 eV cut-off for the plane wave basis set and a 12 × 12 × 1 k-point mesh. The absorption
coefficient (α) of the materials was computed from the frequency dependent dielectric constant,
ε(ω) = Reεαβ(ω) + iImεαβ(ω) using the following formula:

aαβ(ω) =
2ωkαβ(ω)

c
(1)

where c is the speed of light in vacuum and kαβ is imaginary part of the complex refractive index and,
known as the extinction index:

kαβ(ω) =

√∣∣∣εαβ(ω) −Reεαβ(ω)
∣∣∣

2
(2)
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Because of the huge depolarization effect in the 2D planar geometry for the out-of-plane light
polarization, we only focus on the optical absorption spectrum for the in-plane light polarizations [47].

3. Results and Discussions

The top and side views of a sample of group IV–V-type 2D atomic lattices studied in this work are
illustrated in Figure 1, which shows an ABC atomic stacking sequence. As discussed earlier, these
structures show anisotropic atomic lattices and are highly elongated along one direction as compared
with the perpendicular direction. The lattice constants along the elongated direction for SiP, SiAs,
GeP and GeAs, were measured to be 20.54, 21.32, 21.49 and 22.25 Å, respectively. These values are
around six-fold larger than the lattice constant along the perpendicular direction, calculated to be 3.53,
3.70, 3.66 and 3.82 Å, respectively.

Figure 1. A sample of SiP, SiAs, GeP and GeAs atomic lattice. The unit-cell is shown with a dashed
red line.

We next probe the electronic properties of single-layer SiP, SiAs, GeP and GeAs by calculating the
electronic band structures along the high symmetry directions according to the PBE/GGA approach,
and the acquired results are depicted in Figure 2. Obtained results for the all studied nanosheets
confirm that the valence band maximums (VBM) occur at the Γ-point in the Brillouin zone. For the SiP,
SiAs and GeAs monolayers, the conduction band minimums (CBM) also coincide at the Γ-point, and
thus these nanosheets can be categorized as direct band-gap semiconductors. As is clear, an exception
exists for the case of GeP monolayer, in which the CBM occurs between the Γ-X path, resulting in
an indirect band-gap. According to the PBE method, the electronic band-gaps of stress-free SiP, SiAs,
GeP and GeAs monolayers were found to be 1.89, 1.69, 1.59 and 1.39 eV, respectively, which are
in close agreement with the earlier study by Cheng et al. [21]. As it is eminent that the PBE/GGA
underestimates the CBM edges, we also used HSE06 functional to more accurately estimate the
electronic band structure and band-gap values. Interestingly, HSE06 method confirms the PBE/GGA
estimations for the VBM and CBM positions, though the conductance bands are distinctly shifted up.
On this basis, according to both PBE/GGA and HSE06 functional, SiP, SiAs and GeAs monolayers
are direct band-gap semiconductors at the Γ-point, whereas GeP is an indirect band-gap material.
The electronic band-gaps of stress-free and single-layer SiP, SiAs, GeP and GeAs were estimated to be
2.59, 2.34, 2.30 and 2.07 eV, respectively, using the HSE06 method.
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Figure 2. Electronic band structures of single-layer and free-standing (a) SiP, (b) SiAs, (c) GeP and (d)
GeAs predicted by the Perdew–Burke–Ernzerhof (PBE)/generalized gradient approximation (GGA)
(continuous lines) and HSE06 (black dotted lines) functional. The Fermi energy is aligned to zero.

We next shift our attention to assessing the suitability of these novel 2D systems for the solar
water splitting. This process involves two redox half reactions:

Reduction: 2H+(aq.) + 2e-
→ H2(g) (3)

Oxidation: 2H2O→ O2(g) + 4H+(aq.) + 4e- (4)

At pH equal to zero, the H+/H2 reduction potential and the O2/H2O oxidation potential are −4.44
and −5.67 eV, respectively, and thus the minimal required band-gap for the employment of a material
in the solar water splitting process is 1.23 eV [48,49]. As is clear, with respect to the band-gap values,
SiP, SiAs, GeP and GeAs nanosheets completely satisfy the prerequisite conditions. Nonetheless,
as mentioned earlier, the configuration of band edges should be also taken into account when evaluating
the applicability of a semiconductor for photocatalysis. On this basis, for a semiconducting material
to be suitable for solar water splitting, it should pose a VBM less negative than the H+/H2 reduction
potential and a CBM edge more negative than the O2/H2O oxidation potential. To explore the
satisfaction of this important aforementioned factor, the CBM and VBM positions for the SiP, SiAs,
GeP and GeAs monolayers along with the reduction H+/H2 and oxidation O2/H2O energy levels
for the water splitting are illustrated in Figure 3. As is observable, SiP, SiAs and GeP nanosheets
completely satisfy the required band positions, and a very slight overlap exists for the GeAs monolayer
for the oxidation O2/H2O energy level. As is well-known, by increasing the pH from the zero (acidic
condition), the H+/H2 and O2/H2O energy levels shift gradually to less negative values. This way,
the GeAs nanosheets can also turn into a suitable candidate for the solar water splitting for the higher
pHs than 0. It is worth reminding that the VBM edges for the SiP, SiAs and GeP are distinctly lower
negative than the H+/H2 reduction potential energy for the zero pH. This way, by the increasing the
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pH, the suitability of the aforementioned nanosheets for the water splitting remains intact, which is
an important observation.

Figure 3. Conduction band minimums (CBM) and valence band maximums (VBM) positions
(continuous lines) for the SiP, SiAs, GeP and GeAs monolayers along with the reduction H+/H2

and oxidation O2/H2O energy levels (shown with dashed limits) for the water splitting at pH equal
to zero.

Due to the asymmetric structures of studied monolayers, the optical spectra may show anisotropic
behavior for the light polarizations along the x-axis (E||x) and y-axis (E||y). The absorption coefficients
for the all studied monolayers for the light polarizations along the x- and y-axes are presented in
Figure 4. It is conspicuous that along the y-axis, the adsorption is several times higher than the x-axis,
confirming highly anisotropic optical properties in the studied nanosheets. From the results shown in
Figure 4, it can be concluded that the absorption coefficient of the GeAs monolayer at visible range of
light for both in-plane polarizations (E||x and E||y) is larger than those of other studied lattices. On the
other hand, despite the indirect band-gap of GeP monolayer, its absorption coefficient is higher than
SiAs and SiP monolayers. It is clear that XAs compounds show higher absorption coefficients than their
XP counterparts. In general, the high absorption coefficients were attained on the order of 105 cm−1

for all structures along in-plane directions—this is an order of magnitude higher than a typical value
for direct band gap semiconductors [50] across the entire UV−vis range. It is worth noting that the
water-splitting absorbers must have the optimal band gap between 2.10 and 2.75 eV, with an optimum
point at 2.26 eV. It is also worth noting that the values larger than 1.23 eV are essential to achieve
solar-to-hydrogen efficiencies between 4% and 11% because of the losses related to the kinetic and
entropic [51]. Our first-principles calculations indicate that the GeAs, GeP, SiAs and SiP nanosheets
possess high absorption coefficient (α > 104 cm−1) in the visible range of light, which is higher than
that of the typical absorption coefficient value for direct band-gap semiconductors and thus suggests
them as highly promising candidates for the solar water splitting.

It is worth noting that the desirable electronic and optical characteristics of SiP, SiAs, GeP and GeAs
nanosheets do not completely guarantee their practical successes for the application in water splitting
devices. As has been discussed in recent studies [52,53], for the application in the water splitting,
the employed materials should also exhibit stability under the water. Therefore, in the future theoretical
and experimental studies, the stability of studied nanosheets under the water should be elaborately
studied. For theoretical studies, relatively large composite molecular models have to be developed to
address this aspect, which are extensively computationally demanding to be studied by the DFT-based
simulations. To address the stability under the water, we do believe that classical molecular dynamics
simulations by using the machine learning potentials [54–56] may show a great prospect.
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Figure 4. Absorption coefficient of GeAs, GeP, SiAs and SiP monolayers as a function of the wavelength
(λ) along the x and y polarization directions according to RPA + HSE06 estimations.

4. Conclusions

Solar water splitting and the production of hydrogen fuel is currently considered as one of the
most attractive green technologies to tackle the greenhouse environmental issues due to extensive
consumption of fossil fuels. Low-symmetry 2D materials have recently garnered growing attention
stemming from their unique direction-dependent transport properties. In this work we explored
the application of SiP, SiAs, GeP and GeAs anisotropic nanosheets for the solar water splitting.
The electronic band-gaps of stress-free and single-layer SiP, SiAs, GeP and GeAs were estimated
to be 2.59, 2.34, 2.30 and 2.07 eV, respectively, which are within the desirable ranges for the water
splitting. The studied nanosheets also satisfy the required band positions for the both H+/H2 and
O2/H2O reactions, for a wide-range of environmental pHs. SiP, SiAs, GeP and GeAs nanomembranes
were also predicted to adsorb visible range of light, with stupendously high absorption coefficients.
The results provided by the first-principles density functional theory simulations highlight the
outstanding prospects of SiP, SiAs, GeP and GeAs nanosheets for the design of next-generation
hydrogen fuel nanogenerators.
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