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Abstract: Microbial contamination remains a significant issue for many industrial, commercial, and
medical applications. For instance, microbial surface contamination is detrimental to numerous aspects
of food production, infection transfer, and even marine applications. As such, intense scientific interest
has focused on improving the antimicrobial properties of surface coatings via both chemical and
physical routes. However, there is a lack of synthetic coatings that possess long-term microbiocidal
performance. In this study, silver nanoparticle cluster coatings were developed on copper surfaces
via an ion-exchange and reduction reaction, followed by a silanization step. The durability of the
microbiocidal activity for these develped surfaces was tested against pathogenic bacterial and fungal
species, specifically Escherichia coli O157:H7 and Candida auris, over periods of 1- and 7-days. It was
observed that more than 90% of E. coli and C. auris were found to be non-viable following the extended
exposure times. This facile material fabrication presents as a new surface design for the production of
durable microbicidal coatings which can be applied to numerous applications.

Keywords: copper nanoparticles; silver nanoparticles; nanostructure; nanocluster; antifungal;
antibacterial; escherichia coli; candida auris

1. Introduction

The surface colonization of bacteria and fungi on abiotic substrates is commonly referred to as a
biofilm formation and significantly contributes to healthcare and industrial concerns [1,2]. This issue
is further impacted by the current rise in antibiotic resistance amongst microbial species, which has
caused a significant increase in persistent infections and related deaths [3]. Recent economic projections
have estimated that bacterial infections could be responsible for approximately 10 million deaths per
annum by 2050 if new antimicrobial surface therapies are not developed [4,5].
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In particular, Escherichia coli (E. coli) and Candida auris (C. auris) are common pathogenic microbes
responsible for recent outbreaks [6,7]. Shiga toxin-producing E. coli (STEC) O157 has emerged as
a public health threat following its initial identification as a pathogen in 1982, which was initiated
when an outbreak of illness was associated with the consumption of undercooked ground beef [8].
A 2018 outbreak of the E. coli strain O157:H7 was reported across 36 states, infecting 210 people [6].
C. auris is another emerging pathogen currently responsible for invasive disease in healthcare facilities
around the world [7,9] and the fungal infection carries an astonishingly high mortality rate of 60%
among infected patients, representing a significant healthcare issue [7,9]. This high mortality rate
has occurred due to the simultaneous emergence of multidrug-resistant C. auris isolates across three
separate continents [9], raising pressing concerns regarding the identification and detection of invasive
candidiasis isolates [10].

Silver nanoparticles (Ag NPs) are highly effective microbiocidal agents against both bacteria and
fungi [11]. Ag NPs have been used in forms including solutions, thin-film coatings, or embedding in
polymers [12–14]. While there have been some reported cases in which bacteria and fungi were found
to be resistant against Ag NPs [15,16], recent reviews have shown alternative ways in eradicating
bacterial cells via mechanical rupturing with nanostructure modifications [13,17–19]. There is a lack of
significant research within the ability of these nanostructures to rupture fungal cells, in particular with
the combination of Ag NPs and nanostructures not implemented as treatment strategies towards both
bacterial and fungal cell surfaces.

In this work, a facile route was used to fabricate Ag NPs coatings on copper (Cu) surfaces,
in which Ag NPs would assemble into high-aspect-ratio clusters. These surfaces were assessed for
their long-term microbiocidal activity against both Shiga toxin-producing E. coli and C. auris cells.
The fabricated surfaces present a new direction in the design of durable microbicidal surface coatings.

2. Materials and Methods

2.1. Fabrication of Hydrophobized Ag NP Coatings on Cu Surfaces

Cu surfaces were cut into 2 × 2 cm2 squares, pre-cleaned, and washed with HCl (Merck Pty Ltd,
VIC, Australia) and MilliQ water (Synergy®UV Millipak Express 20, Merck Pty Ltd, VIC, Australia).
The surfaces were then submerged with 0.1 M AgNO3 for 5 min, where Ag NPs formed on the Cu
surface via a series of reduction–oxidation reactions. Surfaces were again washed carefully with
MilliQ water, then with 100% ethanol (Merck Pty Ltd, VIC, Australia), and with MilliQ water as a last
wash, and were blown dry with compressed nitrogen. This study adopted the fabrication method
used in the previous work [20]. The Cu surfaces were further submerged with 0.1 M dichloromethyl
silane (Sigma–Aldrich, Castle. Hill, NSW, Australia) in dichloromethane (Sigma–Aldrich Pty Ltd,
NSW, Australia) for 15 min and were then washed with ethanol and MilliQ water to remove all
chemical residues. In this study, pristine ‘copper surfaces’ are noted as ‘Cu surfaces’ and ‘silver
nanoparticles embedding on copper surfaces’ were noted as ‘Ag NPs-Cu surfaces’.ImageJ version 1.8.0
(https://imagej.nih.gov/ij/) was implemented to analyze SEM images. Color Threshold and Analyze
Particles Plugins were used to determine the dimensions of non-spherical Ag NPs. A total of 90 data
points per system were used over three SEM micrographs to determine the distribution of NP clusters.

2.2. Bacterial Strains, Growth Conditions, and Sample Preparation

The antimicrobial efficacy of the surfaces was investigated using the strains E. coli O157:H7
and C. auris, which were obtained from the American Type Culture Collection and SA Pathology
Lab, respectively, and were chosen as representatives of two major emerging pathogen outbreaks.
The E. coli bacterial cultures were grown on Luria–Bertani (LB) agar (BD Difco, VIC, Australia) and
fungal C. auris cultures were grown on Potato Dextrose Agar (PDA) (Sigma-Aldrich Pty Ltd, NSW,
Australia) overnight at 37 ◦C. Bacterial and fungal cells were collected at the logarithmic stage of
growth. To determine similar numbers of cells, despite variations in cell densities following collection,
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the density of the bacterial and fungal suspensions was adjusted to OD 600 = 0.1 at the logarithmic
stage of cell growth. To quantify cell numbers in the adjusted bacterial suspensions before attachment
experiments, a hemocytometer was used as suggested previously [21]. Pristine Cu and Ag NPs-Cu
surfaces were cut into squares of 0.5 × 0.5 cm2. The surfaces were pre-sterilized with 70% ethanol,
dried within a sterilized laminar flow cabinet for 24 h and placed in a sterilized 24-well plates (Thermo
Fischer Scientific Australia Pty Ltd, VIC, Australia). Bacterial and fungal suspensions were prepared
as above with OD600 = 0.1 and 1 ml of each suspension was added into 24-well plates containing
the sterilized surfaces. The plates were incubated at 25 ◦C in dark conditions, to avoid any effects of
light on cell viability. The samples were incubated in static conditions for 1 and 7 days without any
disturbance from media addition or exchange. This procedure was adopted to avoid any effects of
fresh media and shaking on antimicrobial assays. Two technical replicates were done.

2.3. Confocal Laser Scanning Microscopy (CLSM)

The surfaces were washed with 10 mM PBS (pH = 7.4) prior to the CLSM imaging conducted
using ZEISS LSM 880 Airyscan upright microscope (Zeiss, Oberkochen, BW, Germany). To assess
their viability, adhered cells were stained using a LIVE/DEAD® BacLightTM Viability Kit (including
SYTO® 9 and propidium iodide) (Molecular ProbesTM, Invitrogen, Grand Island, NY, USA). In this
kit, SYTO® 9 binds to nucleic acids in both intact and damaged cells, while propidium iodide (PI)
predominantly enters cells with a damaged membrane considered non-viable. The bacterial and fungal
cells on surfaces were stained according to the manufacturer’s protocol [22]. The proportions of live
and dead cells on pristine Cu and Ag NPs-Cu surfaces were then evaluated using a ZEISS LSM 880
Airyscan upright microscope (Zeiss, Oberkochen, BW, Germany). To determine the percentage of
non-viable cells, CellC Cell Counting Software (https://sites.google.com/site/cellcsoftware/) was used
as previously instructed [19]. An analysis was done over 5 representative micrographs over 2 technical
replicates. A student t-test (Microsoft Excel) was conducted to compare the antimicrobial performance
of these samples.

2.4. SEM Characterization

Prior to the SEM imaging, bacterial and fungal cells on Cu and Ag NPs-Cu surfaces were fixed
using 3% glutaraldehyde and were dehydrated using a series of ethanol concentrations (30%, 50%, 70%,
80%, 90%, 100%). The samples were removed and dried under the laminar flow of a Biosafety Cabinet
Class II for 2–4 h. Fixed cells were coated with a thin film of gold prior to imaging. SEM images
were taken using a field-emission scanning electron microscope (FE-SEM) (FEI Verios, FEI company,
OR, United States) at 5 kV, where imaging of the systems uses methods that have been previously
described [23].

2.5. Focussed Ion Beam-Scanning Electron Microscopy (FIB-SEM) Characterization

Surfaces were affixed and dehydrated using the identical dehydration steps described above.
A cross-sectional analysis was carried out to show the interaction of E. coli and C. auris with the Ag NP
cluster substrates was performed using a FEI Scios Dualbeam FIB-SEM. The cells were first coated with
platinum (Pt) using an ion gun at 16 kV/0.15 nA to prevent further damage, followed by a sequential
ion slicing at 16 kV/0.15 nA. The imaging was carried out using a standard secondary electron (ETD)
and upper in-lens column (T2) detectors at 2 kV/0.1 nA.

3. Results

3.1. Fabrication and Characterisation of Hydrophobized Ag NP-Coated Cu Surfaces

Ag NP clusters were fabricated directly onto Cu surfaces via a single-step electrochemical synthesis.
A further surface silanization step was added to create a hydrophobic Ag NP cluster on the Cu surfaces.
The fabricated Ag NPs-Cu surfaces were then characterized using SEM and energy dispersive X-ray
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(EDX) spectroscopy. In Figure 1A,B, the SEM micrographs show that the Ag NPs exhibit sizes that
are consistently less than 100 nm in diameter. These Ag NPs were found to form clusters, with wide
sizes ranging from 70 nm to 1200 nm and an average size of ~350 nm per cluster. The aspect-ratio of
the clusters was estimated using the ratio of length (nm) to width (nm). This measurement revealed
that the clusters possess an aspect-ratio (length/width) ranging from 1 to 14. With the addition of
silane to the clusters, the surfaces exhibit water contact angles of ~120◦, meaning that the surfaces are
hydrophobic in nature. Silane coatings are well-known corrosion-inhibitors [24] and therefore provide
a strong potential in preventing the corrosion of Ag–Cu surfaces. In Figure 1C, chemical mapping
using Energy Dispersive X-ray Analysis (EDX) revealed that the Ag NPs are formed via replacing
Cu(0) using a series of electroless galvanic reactions (see Equations (1) and (2)) [25,26]:

Red: −2Ag+ + 2e−→ 2Ag0 (1)

Ox: Cu→ Cu2+ + 2e− (2)

Galvanic replacement reactions are commonly known to produce Ag NPs via this route [27,28].
Importantly, low level of oxidation was detected on the Ag NPs-Cu surfaces. Therefore we provide a
simple method to fabricate Ag NP clusters which have demonstrated several advantages: simplicity,
facility, and a low fabrication cost. This galvanic replacement reaction method can be used on an
industrial scale, which highlights the utility of this synthetic route [29].
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Figure 1. Surface characterization of pristine Cu and Ag nanoparticle coatings (Ag NPs-Cu). (A) SEM
images showing the surface topography of pristine Cu (left) and Ag NPs-Cu (right) surfaces (Scale bar
20 µm, inset 3 µm). (B) High resolution SEM image showing Ag NPs cluster domains (scale bar 4 µm).
The inset shows the cluster size distribution. (C) EDX spectroscopy showing the distribution of Cu, Ag,
and O elements across the Ag NPs-Cu surfaces (scale bar 1 µm).
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3.2. Microbicidal Performance of Ag NPs-Cu Surfaces over 1- and 7-day Incubations

Two representative species of major global disease outbreaks in recent years, Shiga toxin-producing
E. coli O157:H7 and C. auris, were selected to study the relative material and surface interactions, with
the use of glass surfaces employed as control substrates (Figures S1 and S2). The data in this study reveal
the native cell morphology and viability of the respective bacterial and fungal pathogens incubated on
both pristine and Ag NPs-Cu surfaces for periods of 1 and 7 days. To assess their viability, LIVE/DEAD
Fluorescent Kits (Molecular ProbesTM, Invitrogen, Grand Island, NY, USA) were used to stain the
viable and non-viable cells [22]. SYTO® 9 dye enter the viable cells and propidium iodide would enter
the non-viable cells with compromised cell membranes. Control glass surfaces demonstrated over 90%
cell viability for both E. coli and C. auris over a 7-day incubation (Figure S2) while pristine Cu surfaces
showed slight killing activity against the cells as shown in Figure 1, despite the inherent antimicrobial
activity native of Cu surfaces. E. coli specifically formed a well-established biofilm on the pristine Cu
surfaces. In comparison, Ag NPs-Cu surfaces inhibited the growth of E. coli and C. auris (Figure 2),
with 75% and 98% of non-viability observed respectively, after a 1-day incubation only. Greater results
were obtained after a 7-day incubation on the Ag NPs-Cu surfaces with more than 90% and ~100%
non-viability observed for E. coli and C. auris respectively. Further investigation of the interactions
between bacteria/fungi and Ag NP clusters was carried out using FIB-SEM and clear deformations
of E. coli and C. auris were examined and shown by tearing of the cell membrane and presence of
multiple hole features in the cell morphology, as shown in Figure 3A,B. Past studies have reported
similar examinations [18,30].

The antimicrobial behavior of Ag NPs is known to occur via several mechanisms: (1) physical
damage by direct contact [31], (2) the release of silver ions [32,33], and (3) reactive oxygen species
production [34,35]. The breadth of information concerning the antibacterial mechanism of Ag NPs is
beyond the scope of this article; however, the interested reader is directed towards several important
reviews in the field [11,34]. In previous work, Ag NPs have been reported as effective antimicrobial agents
against both bacteria (E. coli and Staphylococcus aureus) and fungi (e.g., Candida albicans) [11,12,16,36], but
past investigations have failed in showing the long-term effect of silver coatings against both bacteria
and fungi over a 7-day incubation, as shown in this study. Furthermore, this study is the first showing
the effects of antifungal coating towards C. auris. There are a number of studies demonstrating that
high-aspect-ratio nanostructures can be used to capture bacteria and disrupt bacterial membranes [18,37–40].
Surface nanostructures have been considered to be “promising methods” to stop bacterial adhesion and
proliferation; still, there are a number of questions that should be answered before being applied in the
actual environments [41]. However, the synergy between both surface nanostructure and chemistry
should be considered to be the good candidate in the development of antimicrobial approaches.
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Figure 2. Assessment of Shiga-toxin-producing E. coli O157:H7 and C. auris on copper and Ag NPs-Cu
surfaces over 1- and 7-day incubations. CSLM micrographs showing the viability of (A) E. coli and
(B) C. auris on pristine Cu and Ag NPs-Cu surfaces (green indicating viable cells; and red indicating
non-viable cells). CLSM images are 150 µm × 150 µm. (C) Quantification of cell viability on Cu and Ag
NPs-Cu (* indicating p < 0.05 comparing with Cu surfaces on day 1 and 7, respectively, n = 10).
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Figure 3. Morphology of E. coli and C. auris on control and Ag NPs-Cu surfaces (Scale bar 5 µm). (A) 
Top-view SEM micrographs showing the cell deformation under the Ag NP clusters (scale bar 5 µm). 
(B) SEM cross-sections using FIB-SEM reveal the interfacial interaction between cell surfaces and 
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against pathogenic fungal and bacterial species, specifically E. coli O157:H7 and C. auris, over 
exposure periods of 1 and 7 days. It was observed that more than ~90% of E. coli and ~100% C. auris 
were non-viable,after only 7 days of surface immersion. The surfaces reported in this study provide 
a facile fabrication route and a new design parameter to produce durable microbicidal coatings for 
numerous applications. 
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Figure 3. Morphology of E. coli and C. auris on control and Ag NPs-Cu surfaces (Scale bar 5 µm).
(A) Top-view SEM micrographs showing the cell deformation under the Ag NP clusters (scale bar
5 µm). (B) SEM cross-sections using FIB-SEM reveal the interfacial interaction between cell surfaces
and nanostructures (left scale bar 1 µm; right scale bar 4 µm).

4. Conclusions

Both E. coli and C. auris have been reported to be the main cause of recent outbreaks of disease.
These two microbes were chosen to investigate the antimicrobial activity of durable Ag NP cluster
coated Cu surfaces. Microbiocidal composite Ag NP cluster–Cu coatings were fabricated via an
ion-exchange reduction reaction. The durability of microbicidal efficacy of the surfaces was established
against pathogenic fungal and bacterial species, specifically E. coli O157:H7 and C. auris, over exposure
periods of 1 and 7 days. It was observed that more than ~90% of E. coli and ~100% C. auris were
non-viable, after only 7 days of surface immersion. The surfaces reported in this study provide a
facile fabrication route and a new design parameter to produce durable microbicidal coatings for
numerous applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6412/10/1/28/s1,
Figure S1: Scanning electron micrographs of E. coli and C. auris on glass surfaces (scale bar 2 µm). The morphology
of E. coli and C. auris were found to be intact and no damage on glass substrates, Figure S2: Confocal scanning
laser microscopic images of E. coli and C. auris on glass surfaces (scale bar 10 µm). Most of the cells were found to
be viable on glass substrates.

Author Contributions: For research articles with several authors, a short paragraph specifying their individual
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