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Abstract: A review of the authors’ research works on Variable-Angle Spectroscopy (VASE) of
graphene-based films is presented. The interaction of graphene oxide (GO) with magnetron-sputtered
metals is a promising research area. VASE optical models of GO thin films deposited on magnetron-
sputtered titanium (Ti), silver (Ag) and gold (Au) are discussed. Moreover, the optical properties of
graphene nanoplatelet (GNPS) films and reduced graphene oxide (RGO) stabilized with Poly(Sodium
4-Styrenesulfonate) (PSS) films, which are less studied graphene-related materials, are shown. Fi-
nally, different optical behaviors of chemical vapor deposition (CVD)-grown monolayer, bilayer, and
trilayer graphene films on silicon and polyethylene terephthalate (PET) substrates are recapitulated.

Keywords: ellipsometry; graphene oxide; reduced graphene oxide; graphene; CVD; optical properties;
magnetron sputtering; thin films

1. Introduction

A transparent conductor is a relevant constituent in several photoelectronic appliances.
Indium tin oxide (ITO) is principally used for fabricating transparent conductors due to its
properties [1]. Nevertheless, ITO has many disadvantages; for instance, it is expensive and
it does not find application in flexible devices because of its brittle nature [2]. Consequently,
consideration in the semiconductor field has been drawn to graphene [3], which shows
broadband light absorption, linear dispersion band structure and an ultrahigh charge-
carrier mobility. Graphene-based materials are thus advantageous materials that can be
produced in ultrathin sheet form and may be used in several applications [4–11].

Chemical vapor deposition (CVD) is a technique used for high-quality graphene pro-
duction [12]. The employment of CVD technology in ultradense photonic, optoelectronic,
and electronic instruments has been reported [13–15].

Graphene oxide (GO) is a graphene-based material that has more oxygen-containing
groups and defects in comparison with mechanically exfoliated or CVD-grown graphene.
These defects are advantageous to enhance the performance of photodetectors [16]. Addi-
tionally, GO thin films show high optical transmittance in the visible region that allows
their use as protective coatings and optically transparent electrodes, crucial in solar cells
and for optical applications [17].

GO reduction is a method for large scale graphene manufacturing [18]. Reduced
graphene oxide (RGO) is achieved using chemical methods [19], which eliminate or
diminish the oxygen-containing groups. Additional reduction methods are thermal
annealing that should be carried out above 200 ◦C [20] and “green reducers” (for instance
vitamin C) [21].

RGO can be functionalized with Poly(Sodium 4-Styrenesulfonate) (PSS), which is a
polyelectrolyte that avoids RGO aggregation. PSS interacts with graphene by means of π-π
interactions, is soluble in water and safe to use [22].

Presently graphene nanoplatelets (GNPs) have arisen as a new graphene-based mate-
rial. GNPs show some of the beneficial properties of single layer graphene [23]. GNPs are
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composed of mono- to few-layer sheets of sp2 bonded carbon atoms that overlap creating
nanometers thick 2D particles [24]. They can be obtained by means of exfoliation of cheap
graphite flakes and then through chemical oxidation and graphite oxide nanoplatelets
reduction [24].

Graphene-based materials show notable optical properties such as highly transparency
in visible spectrum, photo-response up to Terahertz frequency range and tunable infrared
optical absorbance [25].

Spectroscopic Ellipsometry (SE) [26] is an highly precise optical method designed for
studying the optical properties of materials.

SE has been extensively used to study graphene-based films. The complex refractive
index of monolayer graphene has been investigated using SE [25,27,28]. In Ref. [29] the
optical constants of graphene were studied by means of a phenomenological Fano model.
The optical properties of thick as well as few-layer GO and RGO were studied using
SE [30,31].

We present a review of the authors’ research works on Variable-Angle Spectroscopy
(VASE) of graphene-based films [32–39].

Despite the availability of literature on SE of graphene-based materials [40], there are
not reviews about the optical interaction of GO with magnetron-sputtered metals studied
using VASE, which is a promising research area. Moreover, we report about VASE optical
model of less studied graphene-based materials such as GNPs and RGO stabilized with
PSS films; particular attention to CVD-grown graphene on flexible substrates is given.

The “Results and discussion” part of this review is divided in three main sections. In
Section 3.1: “Interaction of graphene oxide with magnetron-sputtered films” the optical
properties of GO dip-coated on magnetron-sputtered titanium (Ti), gold (Au) and silver
(Ag) thin films were discussed.

In Section 3.2: “Optical properties of graphene-based thin films” the optical properties
of GO, thermally reduced graphene oxide, RGO stabilized with PSS and GNPs films were
summarized.

Finally, in Section 3.3 “Optical properties of CVD-grown monolayer, bilayer, and
trilayer graphene” the optical properties of CVD-grown monolayer graphene samples
were reported. In addition, the optical study of CVD-grown bilayer and trilayer graphene
samples on silicon and polyethylene terephthalate (PET) substrates was summarized.

2. Materials and Methods

Ellipsometry measures two values ∆ and Ψ.
The two quantities (∆ and ψ) are measured as a function of incident angle and wave-

length and are defined in Equations (1) and (2) [26]:

tanψ =
|Rp|
|Rs| (1)

∆ = δp − δs (2)

The tangent of the angle Ψ provides thus the ratio of the amplitude attenuation or
magnification upon reflection for the p and s polarizations, its value can be from zero to 90◦.
∆, instead, provides the difference between the phase shifts experienced upon reflection by
the p and s polarizations. The value of ∆ can be between zero and 360◦.

The terms p and s denote the incident plane and the perpendicular direction to the
incident plane.

The complex quantity ρ, which is the complex ratio of the total reflection coefficients,
is defined in Equation (3):

ρ = tan(Ψ)ei∆ =
Rp

Rs
(3)
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where Rp and Rs include information on the properties of the materials that are investigated.
The use of a capital R implies that the actual material structure can be multilayered and/or
multicomponent.

The ellipsometric angles ψ and ∆ spectra were obtained using a V-Vase (Woollam
Co., Lincoln, NE, USA) ellipsometer (Rotating Analyzer Ellipsometer configuration with
AutoRetarder) or a M2000 F (Woollam Co., Lincoln, NE, USA) ellipsometer (Rotating
Compensator Ellipsometer).

The optical models were evaluated using WVASE32 application by means of the
nonlinear Levenberg-Marquardt algorithm [41]. The minimum value of the Mean Square
Error (MSE) [26] is defined in Equation (4):

MSE =

√√√√√ 1
2N −M

N

∑
i=1

((ψi
mod −ψi

exp
)

σψ,i
exp

)2

+

((
∆i

mod − ∆i
exp
)

σ∆,i
exp

)2
 (4)

where N is the data points number, M is the fitting parameters number, (Ψexp, ∆exp) and
(Ψmod, ∆mod) are the experimental and modeled ellipsometric angles, σψ and σ∆ are the
measured ellipsometric angles standard deviations. The modeled ellipsometric angles
(Ψmod, ∆mod) are functions of all fit parameters.

GO and graphene-based dispersions, discussed in this review, were bought from
“Sigma Aldrich (St. Louis, MO, USA)” and “Punto Quantico (Roma, Italy)”.

CVD-grown monolayer, bilayer, and trilayer were bought from Graphenea Co. (San
Sebastián, Spain). Additional details about the materials and the substrates discussed in
this review can be found in Refs. [32–34,36–39].

3. Results and Discussion
3.1. Interaction of Graphene Oxide with Magnetron-Sputtered Films
3.1.1. VASE Study of Electrophoretically Deposited Graphene Oxide and Reduced
Graphene Oxide Thin Films

Electrophoretic deposition (EPD) is extensively employed for GO thin films deposi-
tion [42–44]. The GO platelets are negatively charged because of the plentiful deprotonated
carboxylate groups, hence they are electrophoretically drawn to the positive electrode and
make a film when a direct current voltage is applied.

The optical study of the GO films electrophoretically deposited on Ti was carried out
using VASE, before and after the annealing, and reported in Ref. [39].

The optical models of GO and RGO films are represented respectively by a combina-
tion of two and three Lorentz oscillators (Equation (5)):

ε̃(hν) = ε1 + iε2 = ε∞ +
N

∑
k=1

Ak
Ek

2 − E2 − iΓkE
(5)

E is the incident photons energy, ε∞ is the dielectric function real part with E→ ∞ ,
Ak is the contribution of each oscillator k to the system, Γk is the broadening end Ek is the
central energy of the k-th oscillator.

Figure 1a,b shows the optical constants dispersion curves in the (300–1000) nm wave-
length range.
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Figure 1. Estimated index of refraction (a) and extinction coefficient (b) of GO (black lines) and 
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lishing. 

Figure 1. Estimated index of refraction (a) and extinction coefficient (b) of GO (black lines) and RGO
(red lines) samples. Reprinted from Ref. [39] with permission from AIP Publishing. Copyright 2016
AIP Publishing.

In Figures 2 and 3 Scanning Electron Microscope (SEM) images of GO and RGO
samples deposited using EPD technique on Ti are reported.
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After GO reduces to RGO, the amount of oxygen declines, a change from sp3 to
sp2 hybridization happens and the main peak moves from 5.1 to 4.6 eV [31,45]. It has
been shown previously that increased electron-hole (e-h) interactions in RGO implied an
increased excitonic effect with a red-shift of the absorption peak of RGO [46,47]. This result
is attributable to the Van Hove singularity in the density of states of graphene [48].

In comparison with other research works [31,45,49], using EPD we have obtained
higher optical constants.

3.1.2. VASE Investigation of the Optical Properties of Graphene Oxide Dip-Coated on
Magnetron-Sputtered Gold Thin Films

Dip-coating [50] was employed for the deposition of GO films on magnetron-sputtered
Au thin films [38].

Figure 4 shows the dispersion laws of the GO/Au samples in the (300–1000) nm
wavelength range. In Figure 5, SEM images of the GO thin film dip-coated on magnetron-
sputtered Au are shown.

The dispersion model of GO/Au samples was described using a combination of three
Lorentz oscillators (Equation (5)).

The optical model for GO/Au samples is described by three oscillators at 3.1, 1.8
and 3.8 eV.

GO absorbs mostly in the UV region [1]; the oscillator at 3.8 eV is due to n − π∗
transition of C=O bond [51]. The oscillator at about 1.8 eV denotes different coverage of
mixed hydroxyl groups and oxygen atoms [31]. By means of Au magnetron-sputtered thin
films as substrates, GO absorbs also in the visible region and the peak of the extinction
coefficient k is at ~3.1 eV, which may be described in terms of strong metal-GO interactions.

As reported in Ref. [38], GO/Au thin films could improve GO optical properties,
conserving the oxygen amount of GO without the reduction method [52].
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sition of C=O bond [51]. The oscillator at about 1.8 eV denotes different coverage of mixed 
hydroxyl groups and oxygen atoms [31]. By means of Au magnetron-sputtered thin films 
as substrates, GO absorbs also in the visible region and the peak of the extinction coeffi-
cient k is at ~3.1 eV, which may be described in terms of strong metal-GO interactions. 

As reported in Ref. [38], GO/Au thin films could improve GO optical properties, con-
serving the oxygen amount of GO without the reduction method [52]. 

Figure 5. SEM images of GO thin film dip-coated on magnetron-sputtered Au (a,b), and related
magnifications (c–f). (a,c,e) were obtained using secondary electron detector, whereas (b,d,f) using
backscattered electron detector. Reprinted from Ref. [38] with permission from AIP Publishing.
Copyright 2018 AIP Publishing.

3.1.3. VASE Investigation of the Optical Properties of Graphene Oxide on
Magnetron-Sputtered Silver Thin Films

The optical characterization was performed on GO deposited by dip-coating on
magnetron-sputtered Ag as reported in Ref. [37].

The optical model of GO dip-coated on Ag is described using a combination of three
Lorentz oscillators and a Drude-like oscillator (Equation (5)).

In Figure 6, the optical constants dispersion curves are reported in the (190–900) nm
wavelength range.
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Figure 7 shows a 5 µm × 5 µm an Atomic Force Microscopy (AFM) image of GO thin
film dip-coated on magnetron-sputtered Ag.
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Figure 7. AFM image of GO dip-coated on magnetron-sputtered Ag. Reprinted from Ref. [37] with
permission from Elsevier. Copyright 2018 Elsevier.

The optical model in the visible and in the ultraviolet region is represented by three
Lorentz oscillators (Equation (5)). The Drude oscillator describes the free-carriers in the
near-infrared and, consequently, the conductive properties of GO on magnetron-sputtered
Ag. The oscillator at 3.8 eV is attributable to the silver volume plasmon [53], whereas the
oscillator at 5.4 eV is due to the π plasmon above ~4 eV in graphene and graphite [54].

Remarkably, these films may be useful for hyperbolic metamaterials, as reported in
the Effective medium Theory simulations in our work in Ref. [37].

It is worth noticing that VASE measurements were carried out also for Ag/GO/Au
sandwich structures, as reported in Ref. [35].

3.2. Optical Properties of Graphene-Based Thin Films
3.2.1. VASE Characterization of GO and Thermally Reduced RGO Thin Films on
Si/SiO2 Substrates

The optical properties of GO and thermally reduced GO (RGO) films were investigated
in Ref. [32].

GO and RGO optical properties were obtained using a Lorentz oscillator model
(Equation (5)), in accordance with Kramers-Kronig relationships [55].
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In GO optical model, the oscillator at ∼2.8 eV represents a coverage of mixed oxygen
atoms and hydroxyl groups [31,56]. The oscillator at ∼3.2 eV denotes a transition that is
close to the shoulder of GO absorbance spectrum and near the wavelength of RGO’s blue
luminescence [57]. The oscillator at ∼3.9 eV is attributable to the small shoulder of GO in
the absorbance spectrum [57].

In RGO optical model, the oscillator at ∼2.1 eV represents coverage of mixed oxygen
atoms and hydroxyl groups [31]. The oscillator at ∼3.17 eV could be attributable to the
narrow photoluminescence peak of RGO [57]. In Ref. [58] excitonic features noticeable
on RGO films between 4 and 4.4 eV are reported. The oscillator at ∼4 eV is included in
that range.

Figure 8a,b show the dispersion laws of GO and RGO films on Si/SiO2 substrates in
the (0.38–4.1) eV photon energy range. Figures 9 and 10 show SEM images of GO and RGO
films on SiO2/Si.
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3.2.2. VASE Characterization of Reduced Graphene Oxide Stabilized with Poly(Sodium
4-Styrenesulfonate)

The optical properties of PSS-functionalized RGO films were investigated in Ref. [32]
and were described by a Lorentz model (Equation (5)).

In PSS-RGO optical model, the oscillator at ∼2.8 eV is attributable to new states that
are created by macro sp2 carbon sheet formation throughout the reduction process [59].

Figure 11 shows the dispersion laws of PSS-functionalized RGO films on Si/SiO2
substrates in the (0.38–4.1) eV photon energy range.
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In Figure 12, SEM images of PSS-functionalized RGO films on SiO2/Si substrates are
shown.
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3.2.3. VASE Study of Graphene Nanoplatelets Thin Films on Si/SiO2 Substrates

The optical study of GNPs films was carried out using VASE in Ref. [34] and the
optical model is described using three Gaussian oscillators [60]. Each oscillator has three
fit parameters (energetic position, amplitude, and broadening). Equation (6) describes the
Gaussian oscillators:

ε2,Gauss = A

exp

−2
√

ln 2
(

Eph − Ec

)
B

2

− exp

−2
√

ln 2
(

Eph + Ec

)
B

2 (6)

A is the amplitude, B is the broadening, Eph is the light energy and Ec is the oscillator
energy [60].

The dispersion laws of GNPs dip-coated on Si/SiO2 substrates are reported in Figure 13
in the (300–1000) nm wavelength range. SEM images of GNP thin film dip-coated on
Si/SiO2 substrates are reported in Figure 14.
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The oscillator at 3.7 eV agrees with the bulk and surface interlayer state of graphite,
whereas the oscillator at 2.7 eV is attributable to defects [61] and the oscillator at ∼1.5 eV is
in accordance with π* band of graphite [61].

In Ref. [62], it was stated that GNPs show an index of refraction n of 1.42 at 482 nm.
Therefore, GNPs thin films display lower optical constants than GO [32] and graphene [36].

3.3. Optical Properties of CVD-Grown Monolayer, Bilayer, and Trilayer Graphene
3.3.1. VASE Investigation of CVD-Grown Monolayer Graphene

The optical properties of CVD-grown graphene on Si/SiO2 were reported in Ref [36]
and were described using four Lorentz oscillators (Equation (5)). The absorption peak at
4.5 eV is attributable to the effects of resonant excitons on the interband transition peak [63].
The oscillator at 2.36 eV is linked to the resonant excitonic effects attributable to the e-h
interaction in the π and π∗ at the M point [63], whereas the oscillator at ∼2.8 eV is due
to the hopping amplitude that gives rise to the Dirac nature of low lying excitations [64].
At ~0.5 eV a conducting layer with Drude-like electrons is observed.

Figure 15 shows the estimated dispersion laws of CVD-grown monolayer graphene in
the photon energy range between 0.38 and 6.2 eV. Figure 16 shows a 1 µm × 1 µm AFM
image of the sample.

Coatings 2021, 11, x FOR PEER REVIEW 11 of 17 
 

 

 

Figure 14. SEM image of GNPs dip-coated on Si/SiO2 substrates (a) and its magnification (b). Re-
printed from Ref. [34] with permission from IOP Publishing. Copyright 2019 IOP Publishing. 

The oscillator at 3.7 eV agrees with the bulk and surface interlayer state of graphite, 
whereas the oscillator at 2.7 eV is attributable to defects [61] and the oscillator at ~1.5 eV 
is in accordance with π* band of graphite [61]. 

In Ref. [62], it was stated that GNPs show an index of refraction n of 1.42 at 482 nm. 
Therefore, GNPs thin films display lower optical constants than GO [32] and graphene [36]. 

3.3. Optical Properties of CVD-Grown Monolayer, Bilayer, and Trilayer Graphene 
3.3.1. VASE Investigation of CVD-Grown Monolayer Graphene 

The optical properties of CVD-grown graphene on Si/SiO2 were reported in Ref [36] 
and were described using four Lorentz oscillators (Equation (5)). The absorption peak at 
4.5 eV is attributable to the effects of resonant excitons on the interband transition peak 
[63]. The oscillator at 2.36 eV is linked to the resonant excitonic effects attributable to the 
e-h interaction in the π and π∗ at the M point [63], whereas the oscillator at ∼2.8 eV is 
due to the hopping amplitude that gives rise to the Dirac nature of low lying excitations 
[64]. At ~0.5 eV a conducting layer with Drude-like electrons is observed. 

Figure 15 shows the estimated dispersion laws of CVD-grown monolayer graphene 
in the photon energy range between 0.38 and 6.2 eV. Figure 16 shows a 1 μm × 1 μm AFM 
image of the sample. 

 
Figure 15. Estimated index of refraction (black line) and extinction coefficient (blue line) of mono-
layer graphene by VASE characterization. Reprinted from Ref. [36] with permission from Elsevier. 
Copyright 2019 Elsevier. 

Figure 15. Estimated index of refraction (black line) and extinction coefficient (blue line) of mono-
layer graphene by VASE characterization. Reprinted from Ref. [36] with permission from Elsevier.
Copyright 2019 Elsevier.



Coatings 2021, 11, 462 12 of 17
Coatings 2021, 11, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 16. AFM image of a CVD-grown monolayer graphene. Reprinted from Ref. [36] with per-
mission from Elsevier. Copyright Elsevier. 

The doping concentration, whose extracted value is 13 27.8 10 cmn −≈ × , was obtained 
from the optical conductivity data. 

3.3.2. VASE Characterization of Turbostratic CVD-Grown Bilayer and Trilayer Graphene 
on Si/SiO2 

The VASE study of bilayer and trilayer graphene with random stacking orientation 
obtained by CVD synthesis on Si/SiO2 is reported in Ref.[33]. 

The optical models of bilayer and trilayer graphene on silicon are composed of two 
Lorentz oscillators (Equation (5)) and a pole. 

The oscillator energy at ~4.4 eV for CVD-grown bilayer graphene is due to the peak 
due to the Van Hove singularity in the density of states [65], with a red-shift from 4.6 eV 
in single layer graphene to 4.4 eV for bilayer graphene [66]. Hence, such peak shift hap-
pens also in non-AB stacked graphene samples, as discussed in Ref. [25]. 

The oscillator energy at ~4.56 eV for trilayer graphene is linked to the above-men-
tioned peak that is visible in the absorbance pattern of trilayer graphene at ~4.6 eV [67]. 

The extinction coefficient peaks in the optical spectra of bilayer and trilayer graphene 
on silicon at ~3 eV are due to the nearest neighbor term 𝑡 ≈ 3 eV [65]. 

In Figure 17a,b, the dispersion laws of CVD-grown bilayer and trilayer graphene 
samples on silicon in the (0.38–5.2) eV photon energy range are reported.  

In Figures 18 and 19, SEM images of CVD-grown bilayer and trilayer graphene on 
SiO2/Si are reported. 

 
Figure 17. Estimated index of refraction (a) and extinction coefficient (b) of CVD-grown bilayer 
(black lines) and trilayer (red lines) graphene samples on silicon by VASE characterization. Re-
printed from Ref. [33] with permission from Elsevier. Copyright 2020 Elsevier. 

 6.00 nm

 0.00 nm

200nm

Figure 16. AFM image of a CVD-grown monolayer graphene. Reprinted from Ref. [36] with
permission from Elsevier. Copyright Elsevier.

The doping concentration, whose extracted value is n ≈ 7.8× 1013cm−2, was obtained
from the optical conductivity data.

3.3.2. VASE Characterization of Turbostratic CVD-Grown Bilayer and Trilayer Graphene
on Si/SiO2

The VASE study of bilayer and trilayer graphene with random stacking orientation
obtained by CVD synthesis on Si/SiO2 is reported in Ref. [33].

The optical models of bilayer and trilayer graphene on silicon are composed of two
Lorentz oscillators (Equation (5)) and a pole.

The oscillator energy at ∼4.4 eV for CVD-grown bilayer graphene is due to the peak
due to the Van Hove singularity in the density of states [65], with a red-shift from 4.6 eV in
single layer graphene to 4.4 eV for bilayer graphene [66]. Hence, such peak shift happens
also in non-AB stacked graphene samples, as discussed in Ref. [25].

The oscillator energy at∼4.56 eV for trilayer graphene is linked to the above-mentioned
peak that is visible in the absorbance pattern of trilayer graphene at ~4.6 eV [67].

The extinction coefficient peaks in the optical spectra of bilayer and trilayer graphene
on silicon at ∼3 eV are due to the nearest neighbor term t ≈ 3 eV [65].

In Figure 17a,b, the dispersion laws of CVD-grown bilayer and trilayer graphene
samples on silicon in the (0.38–5.2) eV photon energy range are reported.
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Figure 17. Estimated index of refraction (a) and extinction coefficient (b) of CVD-grown bilayer
(black lines) and trilayer (red lines) graphene samples on silicon by VASE characterization. Reprinted
from Ref. [33] with permission from Elsevier. Copyright 2020 Elsevier.
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In Figures 18 and 19, SEM images of CVD-grown bilayer and trilayer graphene on
SiO2/Si are reported.
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3.3.3. VASE Characterization of Turbostratic CVD-Grown Monolayer, Bilayer and Trilayer
Graphene on PET

The optical models of monolayer, bilayer, and trilayer graphene samples on PET were
represented using two Lorentz oscillators (Equation (5)) and were reported in Ref. [33].
The oscillators at 4.6 eV are due to the Van Hove singularity in the graphene’s density of
states. Remarkably, the red-shift of this peak is not reported, while it was visible on bilayer
graphene on silicon. Consequently, the red-shift of the absorption peak is dependent on
the substrate. Oscillators at ∼4 eV are attributable to transitions between π and π* in
graphite [68].

In Figure 20a,b, the dispersion laws of CVD-grown monolayer graphene, bilayer and
trilayer on PET substrates in the (4–5.2) eV photon energy range are reported.
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4. Conclusions and Outlook

This article presents a review of the authors’ research works on VASE of graphene-
based films.

In the section “Interaction of graphene oxide with magnetron-sputtered films” the
optical properties of GO dip-coated on magnetron-sputtered Ti, Au, and Ag thin films
are reported.

GO and RGO thin films deposited on Ti substrates were obtained by EPD. The thermal
annealing changes the optical properties because some sp3 bonds initially existing in GO
were eliminated during this process. In comparison with other investigations, using EPD
we obtained higher optical constants.

In addition, the optical properties of GO dip-coated on magnetron-sputtered Au
are reported and three Lorentz oscillators were used for the model. Due to the strong
interaction Au-GO, GO thin films dip-coated on Au absorbed in the visible region, with a
peak of the extinction coefficient k at 3.1 eV. The improved optical properties of GO-Au
thin films may be useful in many applications.

The optical properties of GO layers dip-coated on magnetron-sputtered Ag substrates
are summarized in the same section. The optical constants were described with a set of
Drude-like and Lorentz oscillators. An oscillator at 3.8 eV is attributable to the volume
plasmon of silver, whereas another at 5.4 eV is due to the π plasmon above ~4 eV in
graphene and graphite. Remarkably, these composite structures of GO on magnetron-
sputtered Ag thin films may find use in the field of multilayer hyperbolic metamaterials.

In the section “Optical properties of graphene-based thin films” the optical properties
of GO, RGO, and RGO stabilized with PSS on SiO2 substrates are reported. The optical
models of GO and RGO films are described using three Lorentz oscillators, while the model
of PSS-functionalized RGO films is composed of a Lorentz oscillator and a pole.

In addition, the VASE optical model of GNPs thin films on silicon substrates is dis-
cussed. The optical model of GNPs was described with three Gaussian oscillators: the
oscillator at 3.7 eV agrees with the surface and bulk interlayer state of graphite, whereas
another at 2.7 eV is attributable to defects and the oscillator near 1.5 eV is linked to the π*
band of graphite.

In the section “Optical properties of CVD-grown monolayer, bilayer, and trilayer
graphene” the broadband optical properties of commercial monolayer CVD-grown mono-
layer graphene samples are reviewed. The CVD-grown monolayer graphene was modeled
with four Lorentz oscillators and the carrier density extracted from optical conductivity
data is n ≈ 7.8× 1013cm−2.

In the same section, VASE measurements on random stacked oriented CVD-grown
bilayer and trilayer graphene on silicon are recapitulated. Furthermore, VASE optical
models of random stacked oriented CVD-grown monolayer, bilayer, and trilayer graphene
samples on PET substrates are discussed. An absorption peak red-shift is observed from
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4.6 to 4.4 eV on bilayer graphene on silicon, while this peak shift is not detected on PET
substrates. An absorption peak at ~3 eV is evident on CVD-grown bilayer and trilayer
graphene on silicon samples due to e-h interactions.

It is no doubt that VASE is among the most valuable tools for studying graphene-based
films and it is well-suited for many industrial applications.

As in other fields, research on graphene-based applications using VASE has seen
dramatic development and it is expanding fast. The advances made in this area are
stimulating and hopeful; nevertheless, the challenges are also enormous and should
be overcome.

Future investigation on VASE of GO films should mainly focus on a much deeper
understanding of the reduction mechanism. In fact, further studies on the controllable
oxidation and reduction of GO could improve its use as semiconductor for transistor and
photoelectronic devices.

Moreover, there are several ways that graphene-based films can be functionalized
for use in different applications. For instance, VASE could be used to study the optical
properties of compounds made by combining graphene-based material with other 2D
materials. For instance, multilayers made alternating GO and Molybdenum disulfide
(MoS2) could be used for metamaterials with application in energy storage.

Another possible application of VASE may be the research on mixing graphene-
based materials with matrix polymers, such as polyvinyl alcohol (PVA), to provide an
original synthesis route to make graphene-polymers nanocomposites. It would be also
interesting studying functional hybrid material composed of CVD-grown graphene on
PET substrates and magnetron-sputtered Au and/or Ag for flexible high-performance
graphene photodetectors.
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