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Abstract: The main aim of the present study was to investigate the effect of microwave irradiation
time on the photocatalytic and physiological comfort characteristics of zinc-oxide-nanorod-coated
cotton fabrics. An ultra-fast technique was employed to grow the zinc oxide nanorods on cotton
fabrics using a microwave-assisted hydrothermal method. The axial (length) and lateral (diameter)
growth of the zinc oxide nanorods was observed to increase with microwave irradiation time. The
ZnO nanorods uniformly and entirely covered the cotton fibers. The surface morphology, topography
and chemical characteristics of the ZnO nanorods were investigated by scanning electron microscopy
(SEM), EDS analysis, X-ray diffraction (XRD), atomic force microscopy (AFM) and inductively
coupled plasma-optical emission spectrometry (ICP-OES). The degradation of orange II dye under
UV light irradiation was observed to assess photocatalytic self-cleaning and solution discoloration
ability. The ZnO-nanorod-coated cotton fabrics exhibited excellent photocatalytic activity, as the
stains of orange II dye disappeared predominantly within 4 h and the coated fabrics became almost
white after 6 h. Analyses of thermal properties, water vapor permeability (WVP), air permeability
and stiffness were also performed to investigate the physiological comfort of the ZnO-nanorod-
coated fabrics. The thermal conductivity and thermal absorptivity were observed to increase with an
increase in the size and density of the ZnO nanorods. Moreover, non-significant reductions in water
vapor permeability and air permeability were observed with application of the ZnO nanorods. The
stiffness of the ZnO-nanorod-coated cotton fabric increased due to the complete coverage of fibers by
the uniform growth of the ZnO nanorods. The ZnO-nanorod-coated cotton fabrics also showed good
washing durability and reusability.

Keywords: nanorods; microwave; self-cleaning; photocatalytic; physiological comfort

1. Introduction

Zinc oxide (ZnO) is an important n-type semiconductor having a wide band gap
(3.37 eV), and a large excitation binding energy of Eg (60 meV) that can cause exciton emis-
sion under low excitation energy at room temperature. This wide-band-gap semiconductor
material has many functional properties, such as self-cleaning, antimicrobial, photocat-
alytic, UV resistance, antistatic and piezoelectric properties as well as non-toxicity. Zinc
oxide nanoparticles are utilized in catalytic reaction processes due to their large surface
area and high photocatalytic property. Synthesis of ZnO nanostructures with controlled
morphology is usually carried out using microwave assisted synthesis techniques [1]. ZnO
nanoparticles have many applications, such as for UV blocking and use in textiles, medical
applications, sensors, electronics and electrical engineering. ZnO nanoparticles have ex-
cellent photocatalytic properties, show high stability, enhanced crystallinity and reduced
defects. ZnO nanoparticles are used effectively in the photocatalytic degradation of various
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microbes and organic impurities. The most recent research indicates that the risks and
advantages of ZnO nanoparticles depend on the synthesis technique and concentration
of ZnO [2]. The in vitro cytotoxicity of ZnO nanoparticles depends on the solubility of
the ZnO. The presence of Zn2+ at low concentrations is important for maintaining cellular
processes and metabolism but at higher concentrations Zn2+ can cause toxicity. Textile
coating with a low concentration of ZnO nanoparticles has been shown not to compromise
cell viability; the in situ synthesis of ZnO nanoparticles may reduce cytotoxicity compared
to that occurring with deposition of pre-synthesized ZnO nanoparticles onto a polymeric
material [3]. Photocatalytic self-cleaning occurs due to photocatalysis whereby organic
molecules are broken down to simpler species, such as carbon dioxide (CO2) and water
(H2O), on exposure to UV light. The UV radiation activates the photocatalyst deposited
on the surface which generates the active species capable of degrading organic chemicals.
In the photocatalytic reaction, electromagnetic radiation with a photon energy (given by
its wavelength λ (nm)) at least equal to the band gap of the semiconductor Eg (eV) should
be used.

Recently, microwave assisted synthesis has gained much attention due to many ad-
vantages compared to conventional heating techniques. Microwave-assisted synthesis
is a new green chemistry approach and has been shown to reduce energy consumption,
time, cost and waste materials hazards. It has also been shown to increase the synthesis
rate, reaction rate, bulk production rate, physicochemical properties, purity of materials
and temperature homogeneity of the system [4]. In this approach, microwaves are able to
penetrate the material and supply energy to the system; heat can be produced throughout
the volume of the material resulting in volumetric heating [5].

Microwave-assisted techniques have been used in wet chemical reactions and the
synthesis of nanostructures. In conventional heating methods, heat is transferred by
convection when the vessel is heated. Microwave-assisted hydrothermal methods are more
efficient in comparison to conventional hydrothermal methods due to their reduced energy
consumption, rapid synthesis, rapid heating, simple medium and their ability to control
morphology synthesis. During microwave heating, electromagnetic energy is converted to
thermal energy; the heat caused by the electrical component of an electromagnetic field
is mainly due to dipolar polarization and conduction [6]. Microwave synthesis methods
have most often been used in the production of ZnO nanostructures due to their simplicity,
and rapid and uniform process [7–10]. Recently, much work has been carried out utilizing
different hydrothermal methods in connection with the growth and synthesis of different
ZnO nanostructures, such as nanorods, nanowires, nanoflowers, nanotubes, nano-pillars
and nano-spheres. Challenges remain, however, for the design of an energy efficient,
ultra-fast, low cost, simple, eco-friendly and inexpensive process for the synthesis of ZnO
nanostructures. Microwave-assisted heating techniques have emerged as a promising
means of achieving rapid heat transfer, volumetric increase, enhanced reaction rate and
reduced reaction time compared to conventional heating techniques [11,12].

In a previous study, the radio-frequency sputtering method was used to deposit seed
layers onto glass substrates and to subsequently synthesize ZnO nanowires arrays onto
these seeded glass substrates using a low-temperature solution technique [13]. Preda et al.
fabricated multi-functional cotton fabrics coated with hexagonal ZnO prisms using an
electroless deposition method [14]. Thi et al. developed multi-functional UV protective
and self-cleaning cotton fabric using microwave-assisted synthesis of different ZnO crystal
nanostructures under different pH conditions; coffee stains on the ZnO-nanoparticle- coated
cotton fabrics had substantially disappeared after 15 h under UV light [15]. Ennaceri et al.
reported the synthesis of hexagonal nanorods using low-temperature electrochemical depo-
sition of nanorods with a mean length and diameter of 710 nm and 156 nm, respectively [16].
Previously, hybrid composite ZnO-TiO2 systems were developed by deposition of titanium
dioxide by the sol gel method onto ZnO nanorods grown on an ITO substrate using a
hydrothermal method. The photocatalytic activity of the hybrid system was investigated
through decolorization of methylene blue dye in aqueous solution [17]. In another study, a
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conventional hydrothermal technique was utilized to grow ZnO nanorods on polyester fab-
rics. The nanorod-coated fabrics exhibited stain degradation and solution discoloration of
azo dyes under UV irradiation [18]. Recently, ultrasound and microwave assisted techniques
were used to enhance the electrocatalytic performance of cobalt and carbon composite mate-
rials [19]. The microwave irradiation methods can produce nanostructures with high quality
and controlled size and morphology [20]. In a previous study, the microwave irradiation
time and the pH value of the solution was found to have a significant effect on the surface
morphology of ZnO nanostructures [21]. ZnO nanorods have been grown onto textiles using
a low temperature conventional heating method; the grown nanorods were approximately
10–50 nm and 300–500 nm in diameter and length, respectively [22].

The physiological comfort properties of nanoparticle-coated-textiles have recently
received much attention due to market demands. Comfort is usually described as the
absence of unpleasantness and discomfort. Fabric comfort may be divided into three main
categories, including thermo-physiological comfort, sensorial comfort and psychological
comfort. The thermal comfort of the fabric is mostly related to the movement of heat, air and
moisture through fabric, and to keeping the wearer dry while sustaining a constant body
temperature [23,24]. The comfort properties of the textiles require not be compromised
during coating of the nanostructures onto the textiles.

The influence of nanoparticle size and shape on the photocatalytic and comfort prop-
erties of coated fabrics has been demonstrated but, to the best of our knowledge, no work
has been reported that has examined the influence of the size and shape of zinc oxide
nanorods on the photocatalytic and comfort properties of coated fabrics. An ultra-fast
approach was employed in this study to grow zinc oxide nanorods on cotton fabric through
an all-solution two-step microwave-assisted hydrothermal method.

In the present study, a microwave-assisted hydrothermal technique was employed on
cotton fabrics to fabricate the self-cleaning fabric by ultra-fast growth of ZnO nanorods.
An all-solution two-step microwave-assisted hydrothermal technique was utilized to
grow the ZnO nanorods. Firstly, in situ seeding of the cotton fabric was carried out
using a microwave-assisted hydrothermal technique. Secondly, ultra-fast growth of ZnO
nanorods was achieved on the seeded cotton fabrics by use of the microwave-assisted
hydrothermal technique. The morphology and topography of the ZnO nanorods were
studied using scanning electron microscopy (SEM) and atomic force microscopy (AFM).
The structural properties of the ZnO nanorods were investigated through EDS analysis,
inductively coupled plasma-optical emission spectroscopy (ICP-OES), and X-ray diffraction
(XRD). The influence of the size and shape of the zinc oxide nanorods on the self-cleaning
(photocatalytic) and comfort properties of the coated fabrics were investigated.

2. Materials and Processes
2.1. Materials

Zinc acetate dihydrate (Zn(CH3COO)2·2H2O), hexamethylenetetramine (C6H12N4),
absolute ethanol and orange II dye were purchased from Merck (Sigma Aldrich, St. Louis,
MO, USA). Zinc nitrate hexahydrate (ZnN2O6·6H2O) was purchased from Alfa Aesar
(Ward Hill, MA, USA). Plain woven 100% cotton fabric with a real density of 120 g/m2 was
used as a substrate.

2.2. Seeding and Growth of Nanorods

A two-step microwave assisted hydrothermal technique was used for the seeding and
growth of the ZnO nanorods onto cotton fabrics. In the first step, the cotton fabric was
dipped into a mixed solution containing 30 mM of zinc acetate dihydrate and 90 mM of
sodium hydroxide dissolved in ethanol solution. The mixed solution was transferred to the
microwave reactor and heated at 90 ◦C for 10 min. Finally, the cotton fabric was taken out
from the reactor and dried in the oven at 110 ◦C for 10 min. The ZnO nanorods were grown
on seeded cotton fabrics with some modifications according to our recently published
work [25]. In the second step, ZnO nanorods were grown on these seeded cotton fabrics
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through a microwave-assisted hydrothermal technique. Equimolar aqueous solutions
(30 mM) of zinc nitrate hexahydrate (ZnN2O6·6H2O) and hexamethylenetetramine (HMTA)
were prepared and the seeded cotton fabric was immersed in this solution. The reaction
was carried out using a microwave reactor for specified microwave irradiation times (4, 8,
12 min) at 420 W. Finally, the cotton fabrics were rinsed in deionized water and dried in the
oven at 110 ◦C for 10 min. Figure 1 shows the schematic growth of ZnO nanorods onto
cotton fabric.
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Figure 1. Schematic formation of ZnO-nanorod-coated cotton fabric.

2.3. Characterization of ZnO Nanorods

A Zeiss Ultra Plus scanning electron microscope (SEM) (Zeiss, Oberkochen, Germany)
was used to study the surface morphology of coated samples at an accelerating voltage of
2 kV. The elemental analysis of the cotton samples was carried out using an Oxford X-max
20 (Oxford, UK) energy dispersive X-ray spectrometer A conductive layer was developed by
sputtering of platinum onto the surface of the samples prior to SEM characterization. The
X-ray diffraction (XRD) analysis was carried out with an EMPYREAN PAN diffractometer
(Malvern Panalytical, Malvern, UK) equipped with a PIXcel3D detector, using Cu kα1
radiation (40 kV; 30 mA; λ = 0.1789 nm). The XRD pattern was recorded with a step size of
0.026◦ in a 2θ range from 5◦–105◦. The topography and surface roughness of the coated
samples were evaluated in non-contact mode using an AFM (NanoWizard 3 NanoScience)
from JPK Instruments (JPK BioAFM-Bruker, Berlin, Germany). The amount of Zn content
deposited onto coated samples by microwave irradiation was calculated by inductively
coupled plasma-optical emission spectroscopy (ICP-OES) using a Perkin Elmer Optima
2100DV spectrometer (Waltham, MA, USA).

2.4. Photocatalytic Activity

The photocatalytic performance of the ZnO-nanorod-grown fabrics was studied by
stain degradation and a solution discoloration test. The Orange II dye was used to evaluate
the photocatalytic activity. The staining of the ZnO nanorod-grown-fabric was made by
immersing the fabric into 0.01% (w/v) aqueous solution of the Orange II dye and then drying
in an oven at 60 ◦C for 3 min. The dyed samples were placed under UV light using Philips
TL 6W/05CE UV tubes (315–400 nm) (Eindhoven, the Netherlands). The dyed samples
were irradiated under UV light for different time intervals to evaluate the stain degradation
properties. Finally, after UV irradiation, the discolored fabrics were scanned at 600 dpi and
the scanned images were analyzed by Image J software (version 1.53a) [26,27] to calculate
the color intensity. For solution discoloration activity, circular pieces of cotton samples with
diameter (2.8 cm) were placed in a beaker containing orange II dye solution (15 mL) and
exposed to the UV light via Philips TL 6W/05CE UV tubes (315–400 nm) at a distance of
18 cm below the UV light lamp. The photocatalytic discoloration activity was evaluated by
removing an aliquot from the solution after a fixed time interval, and its absorbance in the
visible region was measured at λmax of 485 nm using UV-V spectrophotometer UV-1600PC.

2.5. Characterization of Physiological Comfort Properties

All cotton fabric samples were conditioned in relative humidity (65% ± 2%) at
20 ± 2 ◦C atmospheres for 24 h before testing.
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2.6. Thermal Conductivity

An Alambeta device (Sensora Instruments, Liberec, Czech Republic) was used to
measure the thermal conductivity of the cotton samples [28,29]. This device can measure
the thermal conductivity, thermal absorptivity, thermal resistance and thickness of the
sample. The working principle of this device depends on the heat flow passing through
the examined sample due to the difference in temperature of the hot upper plate and cold
bottom plate. The thermal conductivity of the sample was calculated by the following
Equation (1).

R =
h
λ

(1)

where; “R” is thermal resistance of the fabric samples (m2·K·W−1), h is sample thickness
(m), and λ is thermal conductivity (W·m−1·K−1).

2.7. Thermal Absorptivity

The characterization of the thermal feeling during a short contact of fabric surface
with human skin is called thermal absorptivity (b). The thermal absorptivity was calculated
using the Equation (2) [30].

b =
√

λρc (2)

where ρc (J/m3) is thermal capacity of the fabric sample, and b is the thermal absorptivity
of the fabric.

2.8. Relative Water Vapor Permeability

The relative water vapor permeability (RWVP) of the samples was tested using the
PERMETEST apparatus (Sensora instruments) (Liberec, Czech Republic), fast skin model.
This apparatus measures the amount of heat passing through the thermal model of human
skin [30,31]. The RWVP (%) of the fabric samples was evaluated according to ISO 11,092
standard [32]. The RWVP was calculated from the following Equation (3) [33].

RWVP =
qv

qo
× 100 (3)

where, qv is the heat flow (W·m−2), which is passing through the measuring head with a
fabric sample, and qo is the heat flow which is passing through the measuring head without
a fabric sample.

2.9. Air Permeability

Air permeability of the fabric samples was measured using the Textest FX 3300 instru-
ment (Schwerzenbach, Switzerland) according to standard (EN ISO 9237:1995 [34]) test
methodology. The test pressure was maintained at 200 pascales (Pa) on an area of 20 cm2

(lm−2·s−1). The measurement was carried out at a pressure of 200 Pa and in the range of 3.

2.10. Stiffness

The fabric samples were investigated for their comfort properties based on the mea-
surements of stiffness using a Tuhomer TH-4 instrument (Liberec, Czech Republic). The
sample is bent to 60◦ and force is calculated by the instrument. The relation is given by the
following Equation (4).

Mo = F× K (4)

where, Mo is the bending moment/stiffness (mN·cm), F is the applied force (mN), and K
is the constant (K = 0.52). The higher the bending force required to bend the fabric at a
particular angle, the higher the bending moment, which corresponds to higher stiffness of
the textile [35,36].
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2.11. Washing Durability (Reusability)

The washing durability of ZnO-nanorod-grown fabrics for photocatalytic self–cleaning
after repeated washing was evaluated according to ISO 105 C06 (B1M) [37]. Consistent
with this standard, each washing cycle was completed with 4 g/L detergent at 50 ◦C for a
45 min time interval, which is equal to five home launderings. After washing, the coated
fabrics were then rinsed, and dried in an oven at 80 ◦C for 5 min. The coated fabrics were
then again analyzed for photocatalytic activity.

3. Results and Discussion

The surface morphology and topography of the ZnO-grown cotton fabrics were
investigated by SEM and AFM. Figure 2a shows the smooth and pristine surface of the
uncoated cotton fabric without the presence of ZnO nanorods. A highly oriented and
uniform array of ZnO nanorods can be observed on the surface of the synthesized cotton
fabrics. The ZnO nanorods entirely covered the surface of the cotton fiber. Moreover,
the size of the nanorods was found to increase with an increase in microwave irradiation
time, and a denser coating of nanorods was formed. The effective attachment of the ZnO
nanorods on the surface of cotton fibers was due to the presence of hydroxyl (OH) groups
and development of bonds between them. Figure 2b–d show the SEM images of the ZnO-
nanorod-grown cotton fabrics for different microwave irradiation times (4, 8, 12 min).
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The diameter and length of the grown ZnO nanorods were 32.9–58.1 nm and
192.7–289.9 nm, respectively (Table 1). The microwave irradiation time was found to
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have a very strong effect on the dimension and shape of synthesized nanorods [38].
The dimensions of the ZnO nanorods were estimated using Image J software (version
1.53a) and SEM images. A sample of 100 individual nanorods were used to calculate the
mean value of the nanorod’s diameter and length. The hexagonal structure of the ZnO
nanorods can be seen from the SEM images. The length (L) and diameter (D) were found
to increase from 192.7 to 289.9 nm and 32.9 to 58.1 nm, respectively, when the irradiation
time increased from 4 to 12 min. As the hydrolysis and condensation reaction of the
chemical bath proceeded to 12 min (Figure 2d), the amount and size of the ZnO nanorods
were further increased. It was found that the increase of microwave irradiation time
affects the length (L) of ZnO nanorods to a greater extent than their diameter (D) [39].

Table 1. Structural and chemical analysis of ZnO nanorods.

Microwave Irradiation Time (min) Mean Diameter (D) of ZnO
Nanorods (nm)

Mean Length (L) of ZnO
Nanorods (nm) Zn Content (ppm)

4 32.9 ± 3.1 192.7 ± 13.3 15,604
8 43.6 ± 2.1 259.9 ± 21.8 19,361

12 58.1 ± 5.9 289.9 ± 19.4 26,829

It can be concluded that the microwave irradiation time is an important factor for
tailoring the axial and lateral growth of the ZnO nanorods [40,41]. The ICP-OES analysis
confirmed the existence of ZnO nanorods for all coated cotton fabrics. The Zn content
increased with an increase in microwave irradiation time, as shown in Table 1. The longer
irradiation time causes the further heating of the solution, which increases the further
deposition and growth of the ZnO crystals [9,38]. The amount of Zn content for microwave
irradiation times of 4, 8, and 12 min were estimated as 15,604, 19,361, and 26,829 ppm,
respectively.

The composition of the synthesized nanorods was confirmed by energy dispersive
X-ray spectroscopy (EDS). The EDS analysis elucidated the purity of the uniformly grown
nanorods that were mainly composed of zinc (Zn) and oxygen (O) elements (Figure 3). The
uncoated cotton fabric was entirely composed of oxygen (O) and carbon (C) elements. The
relative atom ratio of carbon, oxygen, and zinc was estimated to be approximately 57.6%,
34.1%, and 8.3%, respectively. The presence of Pt was caused by sputtering of platinum
onto the samples during SEM analysis.
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3.1. XRD Analysis

The cotton fabrics coated with ZnO nanorods showed typical diffraction peaks of
ZnO and these observed peaks were in good agreement with 2θ values in the ICCD Card
(No. 01-083-6338). The three highest diffraction peaks at 2θ: 37.1◦, 40.3◦, and 42.4◦, which
correspond to the (100), (002), and (101) planes of ZnO, confirmed the highly pure and
crystalline nature of the nanorods (Figure 4). All of the observed peaks represent the
hexagonal wurtzite structure of ZnO nanorods [8,42,43]. Moreover, no further peaks of
impurities were found during the analysis.
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Figure 4. XRD pattern of the zinc-oxide-nanorod-coated cotton fabric.

3.2. AFM Analysis

The surface topography of the samples was studied using AFM in non-contact mode.
Figure 5 shows topographical 3D and 2D AFM images and surface profiles of the pristine
and ZnO-nanorod-coated cotton fabrics. A continuous and homogenous film of the ZnO
nanorods on the cotton fiber surface can be seen from the 3D AFM image (Figure 5b),
whereas the pristine cotton fabric had a relatively smooth surface (Figure 5a). A root mean
square (RMS) surface roughness value of 89.1± 9.3 nm was calculated for the ZnO-nanorod-
coated cotton fabric. It was observed that after coating with ZnO nanorods, the surface
roughness of the ZnO-nanorod-coated fabric increased many times.
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Figure 5. 3D and 2D AFM images and representative surface profiles of (a) pristine cotton fabric, and (b) ZnO-nanorod-
coated cotton fabric.

3.3. Photocatalytic Activity

The photocatalytic performance of the ZnO-nanorod-coated fabrics was evaluated
based on two features: stain degradation and solution discoloration ability. The orange
II dye was utilized to evaluate the stain degradation performance. The fabric samples
were stained with orange II dye solution and stain degradation activity was studied under
ultraviolet (UV) light as a function of time. Figure 6 shows the stain on the pristine and
ZnO-nanorod-coated fabric initially and at different time intervals after exposure to UV
radiation. Significant stain degradation of the orange II dye was seen on all the ZnO-
nanorod-coated fabric samples. Most of the dye stain disappeared within 4 h and the
ZnO-nanorod-coated cotton fabrics became almost white after 6 h. Moreover, the dye
degradation rate was observed to increase with an increase in the size of the ZnO nanorods
under UV radiation. Conversely, no change in the stain on the pristine cotton fabric was
observed after 6 h exposure to UV light.
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(d) 12 min.

The photocatalytic degradation of the Orange II dye was evaluated by measuring the
color intensity of the ZnO-nanorod-coated fabrics by ImageJ software. When the fabric
becomes whiter, the color intensity value (counts) increases and indicates the whiteness of
the fabric. The measured color intensity from this software is correlated with the whiteness
index [26]. The photocatalytic degradation of the dye was found to increase as the color
intensity of ZnO-nanorod-coated fabrics increased under exposure to the UV radiation
(Figure 7). In contrast, the pristine cotton fabric stained with Orange II dye showed no
degradation in the absence of the ZnO nanorods. The pristine cotton fabric showed a
straight line confirming no degradation of Orange II dye in the absence of ZnO nanorods.
The photocatalytic degradation of the ZnO-nanorod-coated fabrics was due to the decom-
position of the Orange II dye molecules by generation of highly oxidative radicals under
the UV illumination [44]. In this study, the highest photocatalytic activity was shown by the
ZnO-nanorod-coated fabric developed under microwave irradiation for 12 min. Initially,
the stain degradation rate was rapid, but then slowed. The reason for the high photocat-
alytic activity under 2 h was possibly due to the rapid degradation of dye molecules on the
top of ZnO nanorods that were entirely exposed to UV illumination. In contrast, the orange
II dye molecules present on the sides of ZnO nanorods needed greater time to degrade.
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A proposed mechanism for the photocatalytic degradation of Orange II dye by ZnO
nanorods under UV irradiation is shown in Figure 8. When the ZnO is illuminated by
energy higher than its band gap (3.37 eV), the electrons in the valence band jump to the
conduction band followed by generation of electron (e−) and electric hole (h+) pairs on the
surface of the photocatalyst. The negative electrons (e−) and oxygen (O2) combine to form a
superoxide radical (O2

−), while the positive holes (h+) and water (H2O) produce hydroxyl
radicals (OH). Finally, the generated hydroxyl radicals (OH) and the superoxide radical
(O2
−) are responsible for the Orange II dye degradation [45,46]. A proposed chemical

reaction is shown as follows (Equation (5)–(8)):

ZnO + hv→ ZnO
(
e− + h+) (5)

h+ + H2O→ H+ + OH (6)

O2 + e− → O−2 (7)

OH, O−2 + OrangeIIdye→ degradation (8)
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A solution discoloration test was performed to characterize the photocatalytic activity
of the ZnO-nanorod-grown cotton fabrics. The nanorod-grown fabrics were immersed in
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the Orange II dye solution and the photocatalytic activity was evaluated as a function of
UV irradiation time. The absorbance spectra were used to measure the concentration of
the dye solution at different UV irradiation times. The pristine cotton fabric showed no
significant change in the absorbance value of the dye solution confirming the absence of
photocatalytic activity. Figure 9 represents the absorbance spectra of the Orange II dye
solution at different UV irradiation times. The peak intensity at 485 nm was used to observe
the absorbance value of Orange II dye in the solution.
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Figure 9. Solution discoloration activity of the ZnO-nanorod-coated fabrics.

The decrease in the absorbance value with the passage of time indicated that the
concentration of orange II dye in solution had decreased due to photocatalytic activity. The
ZnO nanorods grown with a microwave irradiation time of 12 min decolorized the dye
solution in 240 min, while the ZnO nanorods grown with a microwave irradiation time of
4 and 8 min took 270 min and 360 min respectively. The rate of photocatalytic degradation
was higher for the ZnO nanorods grown with 12 min of microwave irradiation time, which
is possibly due to the increase in the size and density of the ZnO nanorods grown on the
fabric surface.

3.4. Thermal Conductivity

The thermal conductivity measures the amount of heat which passes from a unit area
of the material across a unit thickness under a specific temperature gradient. The thermal
properties of the textile, i.e., the thermal conductivity, the thermal absorptivity and the
thermal resistance are determined by the fabric structure, fabric density, chemical treatment
and properties of the fibers. Figure 10 shows the influence of microwave irradiation time
on the thermal conductivity of the ZnO-nanorod-grown fabrics. The thermal conductivity
was found to increase with an increase in the microwave irradiation time. A maximum
thermal conductivity of 46.2 W·m−1·K−1 was achieved for the coated fabric under 12 min
of irradiation time. The thermal conductivity of the ZnO nanorods was found to be directly
proportional to the density and size of the ZnO nanorods.
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Figure 10. Thermal conductivity of the ZnO-nanorod-coated fabrics for different microwave irradia-
tion times.

It can be concluded that the thermal conductivity increased due to an increase in
the diameter and length of the ZnO nanorods. The thermal conductivity of the small-
sized ZnO nanorods was low compared to those of larger size. In a previous study, the
thermal conductivity was found to increase with an increase in the diameter of the ZnO
nanorods [47]. The thermal conductivity was greatly affected by the size and density of
the nanorods. The thermal conductivity strongly depends on the diameter of nanorods,
exhibiting a decreasing tendency with increase in phonon—surface scattering as the diam-
eter decreases [48]. The size and density of the nanoparticles plays an important role in
the thermal conductivity of the materials [49]. The higher thermal conductivity results in
the better transfer of heat through fabric. A strong linear trend was observed in the case of
thermal conductivity and microwave irradiation time.

3.5. Thermal Absorptivity

The thermal absorptivity (b) of fabrics is used to evaluate the thermal feeling during
short contact with a body. The greater the thermal absorptivity (b) of the fabric, the cooler
it will feel [30]. An increase in the thermal absorptivity of the fabric was observed with
higher microwave irradiation time during synthesis of the zinc oxide nanorods (Figure 11).
The increase in the thermal absorptivity of the coated cotton fabrics was due to an increase
in the size and density of the grown ZnO nanorods. The thermal absorptivity of the
ZnO nanorods was found to be directly proportional to the size and density of the ZnO
nanorods. The higher thermal absorptivity of the fabric increases the cooling effect and
gives comfort to the wearer. A positive linear relationship between the thermal absorptivity
and microwave irradiation time was observed. This strong linear behavior can be attributed
to the increase in the size of the nanorods with an increase in microwave irradiation time.
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tion times.

3.6. Water Vapor Permeability

The relative water vapor permeability (RWVP) and water vapor resistance (Ret) are
important properties for the evaluation of the comfort of textiles. The higher the RWVP,
the lower the Ret, and the better the thermal comfort of the textile. The RWVP of the ZnO-
nanorod-coated fabrics was less affected by different microwave irradiation times. No
significant change in RWVP was observed for ZnO-nanorod-grown cotton fabrics. This was
due to the presence of uniform and vertically oriented nanorods on the fiber surface so that
the porous structure of the fabric was not choked by the growth of the ZnO nanorods. The
RWVP value was 75.8% for pristine cotton fabric, while RWVP values of 73.5%, 72.4% and
70.6% were obtained for ZnO-nanorod-coated fabrics under microwave irradiation times of
4, 8, and 12 min, respectively. The relative water vapor permeability was slightly reduced
(5.2%), which is acceptable, as shown in Figure 12a. In a previous study, for fabric coated
with ZnO the water vapor permeability was reduced by approximately 22%–28% [50].
Similarly, a slight increase in water vapor resistance (Ret) was observed for ZnO-nanorod-
coated fabrics, which was possibly due to the entrapment of water vapor in the grooves
of the ZnO nanorod film (Figure 12b). From these results, it can be concluded that no
significant change was observed in the water vapor permeability of the ZnO-nanorod-
coated fabrics and that they exhibited positive physiological comfort properties.
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3.7. Air Permeability

The air permeability relies on the porosity of the fabric, cross-section, shape and
number of channels in the fabric. Moreover, the thermal properties of the fabric are mostly
affected by air permeability [33]. The air permeability is an important comfort property
of textile fabrics. It is also important to investigate the influence of coating on the air
permeation of the fabric. The effect of microwave irradiation time on air permeability of the
ZnO-nanorod-grown cotton fabrics is shown in Figure 13. A linear trend of reduction in air
permeability with increase in irradiation time was observed. Moreover, the air permeability
of the nanorod-grown cotton fabric decreased with increase in size and density of the ZnO
nanorods. The air permeability was found to be in the range of 89.3 to 127.3 lm−2·s−1. Air
permeability values of 112, 104.6 and 89.3 lm−2·s−1 were recorded for ZnO-nanorod-grown
fabrics with microwave irradiation times of 4, 8 and 12 min, respectively. The drop in
air permeability was somewhat less, indicating that the nanorods were covering the fiber
surfaces only without blocking the pores of the fabric structure. The air permeability (AP)
is attributed to porosity and breathability of textile substrate. A significant decrease in air
permeability results in significant reduction in physiological comfort of the fabric [35,51].
However, little significant deterioration of air permeability was observed for the ZnO-
nanorod-coated fabrics. The minor reduction in air permeability was possibly due to the
decrease in the pore sizes of the fabric caused by the growth of nanorods on the cotton
fiber surface.
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Figure 13. Air permeability property of the ZnO-nanorod-coated fabric at different microwave
irradiation times.

3.8. Stiffness

The bending force was measured to calculate the stiffness of the fabric samples using
a Tuhomer TH-4 instrument (Liberec, Czech Republic). As shown in Figure 14, the stiffness
of the ZnO-nanorod- coated fabrics increased with increase in microwave irradiation time.
A positive linear relationship was found between the stiffness and the irradiation time. The
stiffness was found to increase more as the size and amount of nanorods increased. These
findings show that the synthesis of ZnO nanorods had a moderate effect on the stiffness of
the cotton fabrics; thus the sensorial comfort of the ZnO-nanorod-grown cotton fabric was
not much affected.
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3.9. Washing Durability (Reusability)

The washing durability of the ZnO-nanorod-grown fabrics was evaluated. The pho-
tocatalytic degradation of Orange II dye was evaluated by measuring the color intensity
of ZnO-nanorod-coated fabrics after a number of washing cycles. The coated fabrics
were subjected to 5, 10, 15 and 20 washing cycles. The photocatalytic activity of the ZnO-
nanorod-grown cotton fabrics was not significantly decreased with increased number
of washing cycles and they retained very strong photocatalytic activity (Figure 15). The
ZnO-nanorod-grown cotton fabric under 12 min of microwave irradiation time was less
affected by the washing cycles and showed high photocatalytic self-cleaning activity, even
after 20 washing cycles. These results show that the ZnO nanorods are strongly attached
to the surface of the cotton fibers. Moreover, these findings confirm the durability and
reusability of the ZnO-nanorod-grown cotton fabric for functional applications.
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4. Conclusions

In the present study, an ultra-fast microwave-assisted hydrothermal method was used
to grow vertically aligned zinc oxide nanorods on the surface of cotton fabric. The effect
of various microwave irradiation times on the self-cleaning and physiological comfort
of the ZnO-nanorod-grown fabric was investigated. The axial (length) and lateral (di-
ameter) growth of the ZnO nanorods was found to have a significant influence on the
photocatalytic and physiological comfort properties of the material. Scanning electron
microscopy, atomic force microscopy, X-ray diffraction analysis and inductively coupled
plasma optical emission spectroscopy were used to investigate the morphological and
chemical characteristics of the ZnO nanorods. The microwave irradiation time greatly
affected the growth of the ZnO nanorods. The size and amount of the nanorods were
significantly increased with an increase in microwave irradiation time from 4 to 12 min.
The results of XRD analysis indicated the development of a hexagonal wurtzite structure of
ZnO nanorods. The amount of Zn content on the coated fabric was estimated by ICP-OES
analysis. Measurements of stain degradation and solution discoloration were carried out
to investigate the photocatalytic and chemical self-cleaning properties. The photocatalytic
activity of the nanorod-grown fabric increased with an increase in the length and diameter
of the ZnO nanorods. The dye stain on the ZnO-nanorod-coated cotton fabrics mostly
disappeared within 4 h under UV light.
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The thermal conductivity and thermal absorptivity were found to increase with an
increase in the size and density of the ZnO nanorods. No significant reduction in relative
water vapor permeability (RWVP) and air permeability (AP) was observed, possibly due to
the uniform covering of the cotton fibers by the growth of vertically aligned ZnO nanorods
without significant depletion of fabric porosity. The stiffness of the ZnO-coated cotton
fabric was increased due to the complete and homogeneous coverage of the cotton fibers
by the coating of the ZnO nanorods. The ultra-fast technique employed can be widely
applied to grow ZnO nanorods with excellent photocatalytic self-cleaning and physiological
comfort properties.
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