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Abstract: We used sol-gel and spin-coating in the original configuration of a liquid deposition process
to synthesize particularly thin ZnO films (<100 nm) with nano-granular morphology, high grain
orientation and variable optical properties. The concentration of the zinc salt, the concentration of
the chelating agent, the nature of the solvent and the substrate material have been identified as key
parameters that determine the microstructure of the deposited layer and thus its final properties. The
thorough and practical examination of the effects of the synthesis parameters evidenced a three-step
growth mechanism for these ZnO thin films: (i) a reaction of precursors, (ii) a formation of nuclei, and
(iii) a coalescence of nanoparticles under thermal annealing. The growth of these very thin films is
thus conditioned by the interaction between the liquid phase and the substrate especially during the
initial steps of the spin coating process. Such thin ZnO films with such nano-granular morphology
may be of great interest in various applications, especially those requiring a large active surface area.

Keywords: ZnO; sol-gel; thin film; spin-coating; deposition; microstructure; morphology; ellipsometry;
solvent; substrate; chelating agent

1. Introduction

Zinc oxide (ZnO) is a well-known material for its large spectrum of interesting prop-
erties and possible applications [1–6]. Actual or potential devices applications include
solar cells [7–11], photocatalysis [12–16], piezoelectric nanogenerators [17,18], UV light
emitters [19,20], transparent transistors [21,22], memory devices [23,24], acousto-optic de-
vices [25,26] and gas sensors [27,28]. These various applications require the control of the
layer morphology from a microscopically homogeneous and flat surface to a nanoscale
designed surface.

Previously ZnO thin films have been manufactured with various methods including
magnetron sputtering [29], pulsed laser [30,31], molecular beam epitaxy [32], atomic layer
deposition [33], chemical vapor deposition [34] and spray-pyrolysis [35]. Among these
numerous elaboration methods, sol-gel coupled with spin-coating offers some advantages
such as low-cost, large-scale deposition, facilities availability and morphology changes.
However, the obtained film morphology and properties strongly depend on the elaboration
recipe, the chemical reactants, the elaboration conditions and the thermal treatment. To
control the film properties, it is necessary to understand the growth mechanism and its
effects on the observed properties.

It is known that thin films properties and morphology can be affected by post-
processing annealing temperature, which has been the subject of several works. In the
case of the sol-gel spin coating technique, the morphology and properties of the film are
also impacted by processing parameters such as the chelating agent [36,37], the zinc salt
concentration [38–40], the solvent [41–45], the rotation speed [46–57] and the nature of
the substrate [58–63]. In the present study, spin coating, which is usually devoted to the
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spreading of viscous solutions, is used in an uncommon configuration of fluid liquid depo-
sition, giving rise to very thin films (<100 nm) with peculiar nano-granular morphologies.
Therefore, the strong constraining contribution of the liquid-substrate interaction in the
case of very thin films enhances the effects of the different key deposition parameters. In
previous works, we have discussed the growth [64] of these nano granular ZnO thin films
and in particular the role of the film thickness in such process [65,66]. In this paper, we
further investigate the effects of preparation parameters and discuss the mechanisms of
deposited film formation. The results of this study will help define the optimal conditions
for obtaining high quality thin films for potential applications such as photocatalysis [67].

In order to emphasize the effects of key deposition parameters on the morphological
and structural properties in the early stages of ZnO film deposition, we chose to perform
this work under the following conditions:

(i) a low viscosity liquid precursor solution to better highlight the substrate-solution
interaction;

(ii) a successive deposition of layers of a few nm thickness to obtain a ZnO film whose
thickness does not exceed a hundred nm;

(iii) an annealing temperature allowing to obtain a nanogarnular structure of excellent
crystal quality.

2. Experimental Details
2.1. Sol-Gel Spin-Coating Deposition Process

The elaboration of very thin layers by liquid phase deposition and spin-coating is
based on the process shown in the diagram of Figure 1. The liquid phase, consisting of the
suspension of ZnO precursors, involves the dissolution of zinc acetate dehydrate (ZnAc,
Zn(CH3CO2)2·2H2O) in various solvents using monoethanolamine (MEA, C2H7NO) as a
chelating agent. The mix is then stirred for 30 min to completely dissolve the zinc acetate.
At the end of this stage, a clear and transparent ZnO precursor solution is obtained. After
24 h aging, the layers are elaborated using a repetitive deposition process. In the deposition
step, droplets of the liquid precursor solution are shed on the substrate, previously cleaned
first by ethanol then by acetone and finally with de-ionized water and rotated at the desired
speed with an acceleration time of 20 s. At the end of the rotation process, the liquid is
spread over the whole substrate forming a very thin film which is then put in a furnace
(Nabertherm, Lilienthal, Germany) at 300 ◦C to evaporate solvents. Our previous works
have established that the deposition and drying process must be repeated at least four
times to obtain a dense granular thin film [64,65]; and that the post-processing annealed
in air at 550 ◦C for 1 h is adequate to lead a good crystallization [68]. Apart from the two
stages of preheating and annealing, the entire process takes place at room temperature.
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2.2. Spin-Coating Rotation Speed

The morphology of the ZnO film results from the tuning of many chemical and physi-
cal parameters including the concentration and nature of the reagents, the rotation speed,
the spreading time, the substrate characteristics, the drying and annealing temperatures.
Especially, the rotation speed is known to have various effects on grain size [49,50], rough-
ness [46–49], orientation [50–52], stoichiometric composition [51], thickness [48,51–55] and
electrical performances [52,56,57]. However, these effects are expected to be changed in the
case of liquid spreading, as the centrifugal force has the double effect of first spreading the
liquid into a very thin liquid film and then ejecting the excess liquid from the substrate. In
order to properly select the spin-coating speed we deposited ZnO thin films at different
rotation speeds ranging from 500 to 4000 rpm. Above a rotation speed of 1500 rpm, the ZnO
thin film becomes homogeneous with only very narrow iridescent edges due to the different
deposition cycles (Figure 2a). Its thickness and optical and crystallographic properties
also remain unchanged with rotation speed. Below 1000 rpm, the deposited film shows a
yellow square homogeneous central part with irises around it, resulting from incomplete
spreading of the liquid during the spin-coating process (Figure 2b). Under these conditions
of deposition from a liquid (hence with a low viscosity), it is though that only the limit
boundary tension between the substrate and the liquid is reached to give rise to a very thin,
homogeneous and continuous film of ZnO above 1500 rpm.
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Figure 2. Photographs of some representative sol-gel spin-coated ZnO samples: deposited in stand-
ard conditions (a), with reduced rotation speed of 1000 rpm (b), with reduced size of 5 mm× 10 mm 
Figure 2. Photographs of some representative sol-gel spin-coated ZnO samples: deposited in standard
conditions (a), with reduced rotation speed of 1000 rpm (b), with reduced size of 5 mm× 10 mm
(c), using a high concentration [ZnAc] = 1 mol/L (d), using a high MEA content r = 2 (e) and using
ethanol as solvent (f). Except for case (c), all other samples have a size of about 20 mm × 20 mm.



Coatings 2022, 12, 65 4 of 24

2.3. Substrate Shape

Although the spin-coating process is known to be a technique transportable to a large-
scale deposition, the effects of the substrate size and shape have rarely been studied. The
known effects only concern an increase in cracks, in the case of samples of a few tens of cm2

during the liquid phase deposition [49]. The substrate size and shape have been carefully
chosen by elaborating samples with a length from 10 to 40 mm and a length to width ratio
from 1 to 2. Samples as small as 10 mm in size are affected by relatively large edge effects
(Figure 2c), while samples up to 40 mm in size show some small spots due to the liquid
retraction during the evaporation process. In addition, the length to width ratio should
not exceed 2, as the liquid spreading into a very thin homogeneous liquid film requires the
symmetry of samples. In the present work, a typical size of 20 mm × 20 mm is chosen to
obtain samples free of cracks with a nano-granular structure.

2.4. Standard Deposition Conditions and Processing Parameters Variations

After setting the rotation speed and substrate size, the study focused on the effects of
the ZnO precursor concentration, the chelating agent content, the substrate type and the
solvent nature. In the field of very thin layers, these parameters have indeed proved to be
key parameters affecting the liquid-substrate interaction during the deposition process. We
have defined as standard conditions the following processing conditions: a zinc acetate
concentration [ZnAc] of 0.5 mol/L, a chelating agent content r = [MEA]/[ZnAc] of 1.0,
2-methoxyethanol as the solvent, a rotation speed of 2500 rpm and a 50 nm SiO2 covered
crystalline silicon (SiO2/c-Si) as a substrate. Then four sets of samples are considered by
varying (i) the reagent concentration [ZnAc] between 0.25 and 1.50 mol/L, (ii) the chelating
agent content within the range 0 ≤ r ≤ 2.0, (iii) the solvent nature (2-methoxyethanol,
ethanol or propanol) and (iv) the substrate type (c-Si, SiO2/c-Si or float glass). In the results
section, each parameter that has changed compared to the standard conditions is systemati-
cally specified. The repeatability of the process was tested by checking measurements on
at least three samples for each set of deposition parameters. The error bars shown are the
standard deviation evaluated on this set of similar samples.

2.5. Characterization Techniques

The characterization of the film morphology was carried out by a cross-sectional view
performed with a Raith field emission gun scanning electron microscope (SEM, Raith,
Dortmund, Germany) operating at 5.0 kV. The characterization of the surface topography
has been carried out with a Digital Instruments nanoscope III atomic force microscopy
(AFM, Digital, CA, USA) in the tapping mode. The AFM micrographs recorded on the
1 µm × 1 µm area provided the AFM values for: (i) the lateral grain size and (ii) the
maximum peak to valley height which represents the depth separation between the grains.
The characterization of the crystal orientation has been carried out with a Bruker D5 X-ray
diffraction (XRD, Bruker, MA, USA). XRD spectra of ZnO thin films present only significant
contribution in the 30◦–40◦ of 2θ range, showing peaks pointing at 31.770◦, 34.422◦ and
36.253◦, respectively attributed, according to the Joint Committee on Diffraction Powder
Standards (JCPDS) 36-1451 of bulk ZnO, for 100, 002 and 101 orientations, respectively. The
spectra present the dominant 002 peak, revealing the Wurtzite phase of ZnO with c-axis
perpendicular to the substrate plane. Crystallite size (D) was calculated by Scherrer formula:

D =
0.9λ

β cos θ
(1)

where λ is the X-ray diffraction wavelength, β represents the full width at half maximum
and 2θ is the diffraction angle that defines the crystalline orientation of the ZnO thin film.

The optical characterization was carried out with a Jobin-Yvon Uvisel UV-visible
spectroscopic ellipsometer (SE, Horiba, Palaiseau, France) in the range 1.5–5 eV at an
incident angle of 70◦. Ellipsometry measures the change of polarization state between
incident light and reflected light on a sample, resulting from multiple reflections due to the
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thin film structure and optical properties of the media and interfaces. SE measurements
were treated assuming a representative bi-layer optical model with a bulk ZnO layer (with a
thickness db) and a top roughness layer (with a thickness ds) and using an original inversion
process described elsewhere [68–70] to extract db and ds as well as the complex dielectric
function ε = εr + iεi of the deposited ZnO material. The surface roughness layer is considered
to be formed by 50% of the same material as the bulk layer and 50% of void (εV = 1).

Moreover, since the nano-granular material is always less dense than the perfectly
crystalline material, residual porosity is detected through the reduction of the magnitude
of the dielectric function of the bulk layer compared to that of the reference crystalline
material. An effective porosity of the bulk layer can be estimated using the effective
medium approximation [71]. Thus, its dielectric function ε is modeled by an effective
medium consisting of a dense reference ZnO material [72] with a dielectric function εref and
a void volume fraction fV representing the material porosity:

fv
εv − ε

εv + 2ε
+ (1 − fv)

εre f − ε

εre f + 2ε
= 0 (2)

3. Results and Discussion
3.1. Effects of the ZnO Precursor Concentration

The effects of the ZnO precursor content were investigated against standard conditions
by varying zinc acetate concentration ([ZnAc]) between 0.25 and 1.50 mol/L. The first
expected effect of increasing the amount of material with [ZnAc] is an increase in the
deposition rate and thus the thickness of the deposited ZnO film. This effect is immediately
visible through the appearance of the film. Its color changes from blue (Figure 2a for
[ZnAc] = 0.50 mol/L) to shiny yellow (Figure 2d for [ZnAc] = 1.00 mol/L) as a result of the
film thickness increase.

The depth film morphology of ZnO film is shown in Figure 3 for two representative
cases: a low concentration [ZnAc] = 0.25 mol/L (Figure 3a) and a high concentration
[ZnAc] = 1.00 mol/L (Figure 3b). The morphology of grains closely packed together is ob-
tained in both cases, with a grain size increasing with the reagent concentration. Moreover,
small grains, at low [ZnAc], lead to apparently a more homogeneous film, while large
grains at high [ZnAc] make the surface rougher.
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Figure 3. Cross-sectional SEM views of sol-gel spin-coated ZnO samples obtained with
[ZnAc] = 0.25 mol/L (a) and 1.00 mol/L (b), respectively.

The granular morphology of ZnO thin films observed by AFM is shown in Figure 4a,b
for [ZnAc] = 0.25 and 1.00 mol/L, respectively. The AFM lateral size and height for the
whole concentration set are plotted in Figure 4c,d, respectively. The grain size gradually
increases from a value of 30 to 60 nm. The AFM height linearly increases from 20 to 80 nm
within the studied reagent concentration range.
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Figure 4. 1 µm × 1 µm AFM micrographs of sol-gel spin-coated ZnO samples obtained with
[ZnAc] = 0.25 mol/L (a) and 1.0 mol/L (b). AFM lateral size (c) and height (d) of sol-gel spin-coated
ZnO samples obtained with various [ZnAc]. The straight lines are provided as guides for the eye.

The crystalline quality observed by XRD spectra is shown in Figure 5 for samples
obtained with various ZnAc concentrations. All the ZnO films prepared with different
concentrations exhibit the high intensity (002) peak. For all these samples the ratio of
(100), (101) peaks to the intensity of the (002) peak is less than 10−2, which attests the good
orientation of the prepared material according to the c-axis perpendicular to the surface of
the substrate. As the ZnO precursor content increases, the (002) peak intensity is enhanced
in agreement with the increase in the thickness of the deposited layer (see Figure 6a). The
crystallite size given by Equation (1) shows a slight increase in the 30–40 nm range with the
reagent concentration, suggesting that the large grains result in fact from the agglomeration
of crystallites.

The thickness of both the bulk layer (db) and the surface roughness (ds), derived from
SE measurements, are displayed in Figure 6a,b, respectively. The thickness db gradually
increases from 30 nm to 220 nm when [ZnAc] increases from 0.25 to 1.50 mol/L with a
clear acceleration from 0.75 mol/L. Up to [ZnAc] = 0.75 mol/L, the surface roughness
remains very low (≤10 nm). Beyond that, ds increases considerably to reach 70 nm at high
concentrations (≥1.00 mol/L).
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Figure 5. X-ray diffractograms of sol-gel spin-coated ZnO samples obtained with various ZnAc
contents. The JCPDS 36-1451 of bulk ZnO within the same 2θ range is also displayed.
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Figure 6. Thickness of the bulk layer (a) and the surface roughness (b), real (c) and imaginary (d)
parts of the dielectric function extracted from SE measurements on sol-gel spin-coated ZnO samples
obtained with various ZnAc contents. The straight lines in Figures (a,b) are provided as guides for
the eye.

The spectra of the real (εr) and imaginary (εi) parts of the dielectric function of the
deposited material are shown in Figure 6c,d, respectively. We have restricted the pre-
sentation to two extreme values of [ZnAc] for readability, not to overload the figures. εi
shows the bandgap peaking step near 3.4 eV (Figure 6d), related to the strong excitonic
absorption, with transparency below the bandgap, attesting of the good crystal quality. εr
is determined by Kramers-Kronig relations (Figure 6c). The effective porosity associated
with the dielectric function amplitudes evolves from 4% to 10% by increasing [ZnAc] from
0.25 to 1.50 mol/L. The increase in porosity is due to grain size (Figures 3b and 4b), as the
smaller the grains the denser the structure.

In summary, for low and moderate concentrations ([ZnAc] ≤0.75 mol/L), ZnO samples
become very thin films with a smooth surface, good crystalline quality, and small grain size.
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For high concentrations ([ZnAc] ≥1.00 mol/L), ZnO samples display a good crystalline
quality but a large grain size and a rough surface. The concentration of zinc acetate is
a fundamental parameter in the synthesis of ZnO films. This parameter influences the
crystallographic orientation of the grains and it has been reported that a concentration
higher than 0.50 mol/L can alter the crystalline quality [38–40,52,73–78]. This does not
seem to be the case for our films, probably due to particular formation mechanisms and
their very small thickness.

The granular morphology is the consequence of a continuous coarsening process dur-
ing the different stages of preheating and final annealing. Large grains are formed by the
agglomeration of small grains under the effect of thermal energy. Indeed, the relatively high
preheating temperature (300 ◦C) allows a fast evaporation of the solvent and then colloidal
movement until agglomeration by contact. The final annealing step (550 ◦C) provides addi-
tional thermal energy to induce structural and morphological modifications, improvement
of the crystallization and additional cluster coarsening or agglomeration [79–81]. At low
ZnAc concentration, the substrate attraction should enhance the nucleation of small parti-
cles over the entire substrate surface. The combination of these small grains under thermal
excitation forms a dense layer. A high ZnAc concentration promotes a rapid formation of
large grains by agglomeration of small grains with large grains. Since the large and heavy
grains have a reduced mobility, the resulting film has thus little opportunity for further
relaxation, and is, therefore, of lower density.

3.2. MEA Content Effects

MEA content effects were compared to the standard conditions by varying the ratio
r = [MEA]/[ZnAc] from 0 to 2.0. Without MEA (r = 0), the partial dissolution of ZnAc
reduces the deposition rate and leads to inhomogeneous films with disturbed areas due
to undissolved salt crystals. Note that, in this case, the measurements were limited to
the homogeneous parts of the deposited film. For 0 < r ≤ 1.0, the ZnO film surface is
homogeneous (Figure 2a). Beyond, the film shows uncoated small spots (Figure 2e).

Figure 7 shows the depth layer morphology of ZnO thin films in the case of r = 0
(Figure 7a) and r = 1.0 (Figure 7b, standard sample), respectively. Without the chelating
agent (r = 0), the very inhomogeneous and thin film is difficult to study. The SEM image of
Figure 7a shows an irregular microscopic morphology with scattered grains. The samples
deposited with r > 0 show a well-stacked grain morphology (Figure 7b).
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r = 0 (a) and 1.0 (b).

The AFM micrographs of Figure 8a,b confirm the granular morphology of the ZnO
thin films obtained both without (r = 0, Figure 8a) and with MEA (r = 1.0, standard
sample, Figure 8b). The samples are typically made of grains with particularly smaller
size without the chelating agent. In this case, the sample has a different morphology, as it
is not completely homogeneous and has a very small thickness. AFM data for the entire
MEA content are shown in Figure 8c,d. The lateral dimension, close to 20 nm without
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MEA, grows to about 40 nm for high MEA contents (Figure 8c). At the same time, the AFM
height, of about 25 nm without MEA, rapidly reaches about 45 nm in the presence of MEA
(Figure 8d).
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Figure 8. 1 µm × 1 µm AFM micrographs of sol-gel spin-coated ZnO samples obtained with MEA
contents r = 0 (a) and r = 1.0 (standard conditions) (b). AFM lateral size (c) and height (d) of sol-gel
spin-coated ZnO samples obtained with various MEA contents. The curves are provided as guides
for the eye.

The XRD spectra of samples obtained with various MEA contents are shown in
Figure 9. We previously mentioned the fact that without the addition of the chelating
agent (r = 0), the deposited film was much thinner and inhomogeneous (Figures 7a and 8a).
Figure 9 shows that the crystallinity of the sample is also affected. Except for this par-
ticular case, Figure 9 indicates that the MEA content does not really seem to affect the
crystallographic structure and structural properties of the deposited ZnO film. Whatever
the MEA content (r > 0), the obtained ZnO film shows a high intensity (002) peak and
an intensity ratio of the (100), (101) peaks with respect to the (002) peak lower than 10−2,
which proves the good crystalline orientation of the material along the c-axis perpendicular
to the substrate surface. Moreover, the size of the crystallites deduced from the (002) peak
by Scherrer’s formula is always close to 35 nm.
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Figure 9. X-ray diffractograms of sol-gel spin-coated ZnO samples obtained with various MEA contents.

The thickness of the bulk layer and the roughness layer, deduced from SE the mea-
surements, is shown in Figure 10a,b. The absence of a chelating agent (r = 0) reduces the
adhesion of the liquid to the substrate during the spin-coating process leading to a very thin
film. For MEA content such as 0.5 ≤ r ≤ 2.0, both the bulk layer and the surface roughness
keep an almost constant thickness, in the range of 50–70 nm and 5–15 nm, respectively.
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Figure 10. Thickness of the bulk layer (a) and the surface roughness (b), real (c) and imaginary (d)
parts of the dielectric function extracted from SE measurements on sol-gel spin-coated ZnO samples
obtained with various MEA contents. The curve and the lines in Figure 10a,b, respectively, are
provided as guides for the eye.

The spectra of the real and imaginary parts of the dielectric function of the films
deposited at different MEA contents are shown in Figure 10c,d, respectively. Without MEA
(r = 0) the dielectric function spectrum shows a reduced intensity of the excitonic peak and a
reduced amplitude due to a large effective porosity of 32%. Such a high effective porosity is
attributed to the very small thickness on the one hand and the inhomogeneities with a large
number of uncovered areas of the substrate on the other hand (Figures 7a, 8a and 10a,b). By
increasing the MEA content, the effective porosity of the material decreases to 8% beyond
r = 1.0. The overall results highlight the direct effects of MEA content on the thickness,
morphology and optical properties of the deposited ZnO film. In particular, the ZnO thin
film deposited without MEA (r = 0) differs from the others because of the incomplete
dissolution of zinc acetate. Various effects are attributed to the chelating agent (MEA),
including the dissociation of zinc acetate in the solvent, formation and stabilization of the
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ZnO colloidal solution [37,82–84] and the coordination of metal atoms [82,85], as well as
consequences for microstructure and optical properties [36,37]. Furthermore, in the case
of very thin films, as the chelating agent directly affects the chemistry of the precursor
solution, it also indirectly affects the liquid deposition on the substrate and the formation
of ZnO nuclei in the preheating step.

The ZnO precursors are likely to take different forms depending on the used reactants
and conditions [73,74,86–89], including, for instance, colloidal particles [79,80], zinc acetate
sheets [90] or zinc oxo-acetate precursor [73], deposited either as a continuous gel layer
or pre-formed colloidal particles. Different chemical mechanisms have been proposed to
explain the ZnO formation, including the zinc monoacetate formation and complexation
with the chelating agent [91], the zinc hydroxide formation and condensation [92], or the
possible formation of the zinc hydroxy double salt [93,94]. In these reactions, the effect
of amino-additives is evidenced to influence ZnO properties [73,95,96]. Especially the
presence of the MEA chelating agent can induce a Zn-MEA complex formation.

Based on infrared spectroscopy measurements of the present ZnO precursor solution,
probable mechanisms of the present reactions can be described in a few steps. First, zinc
acetate dihydrate molecules dissociate in the alcohol into mono-acetate ions thanks to water
molecules [36]. Then the stoichiometric reaction between monoacetate ions and MEA yields
Zn-MEA complexes [91,92]. After 24 h of solution rest, this complex dissociates to molecules
of zinc dihydroxide Zn(OH)2 and MEA molecules back with water. In summary, one mole
of each reagent (ZnAc and MEA) gives one mole of zinc hydroxide. If MEA concentration
is lower than ZnAc concentration, the dissociation of monoacetate will only be partial and
the zinc dihydroxide concentration will be lower than the ZnAc concentration. If MEA
concentration is higher than that of ZnAc, a total dissociation of zinc monoacetate becomes
possible, while MEA excess molecules remain unused, which is consistent with similarities
of ZnO layer properties when r ≥1.0.

3.3. Effects of the Substrate

ZnO thin films were deposited under standard conditions on three types of substrates:
c-Si, SiO2/c-Si, and glass, leading to a homogeneous film regardless of the substrate type.
Figure 11 shows the cross-sectional SEM images of ZnO films deposited on c-Si (Figure 11a)
and glass substrate (Figure 11b), respectively. They present the morphology of grains
closely packed together. The films deposited on SiO2/c-Si and c-Si substrates show a
similar grain morphology with grains separated by small voids. In the case of a glass
substrate (Figure 11b), the sample exhibits a different granular structure with separate
larger grains presenting a rounded top shape leaving more voids between them.
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AFM micrographs of ZnO thin films deposited on c-Si and glass substrates are
shown in Figure 12a,b, respectively. These images show a very similar grain morphology.
Figure 12c summarizes the AFM data (lateral size and height) for all the substrates we
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tested. The lateral size increases from 45 nm for the SiO2/c-Si and c-Si substrates to 55 nm
for the glass substrate. The AFM height increases from 35 nm for the SiO2/c-Si and c-Si
substrates to 45 nm for the glass substrate. In the case of glass, the morphology can be
thought to be different with a structure of larger grains separated by large voids.
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Figure 12. 1 µm × 1 µm AFM micrographs of sol-gel spin-coated ZnO thin films deposited on c-Si (a)
and glass substrate (b) and AFM values obtained with the different substrates (c).

Figure 13 displays the XRD spectra of ZnO thin films on various substrates. The
spectra show a strong peak (002) and an intensity ratio of peaks (100) and (101) to peak
(002) of less than 0.01, indicating a very good orientation of these samples with the c-axis
perpendicular to the substrate surface. Peak (002) gives, according to Scherrer’s formula, a
crystallite size of about 35 nm in the case of both SiO2/c-Si and c-Si substrates, but about
30 nm for the glass substrate. This result implies a weak epitaxial effect due to crystalline
silicon. The crystalline or amorphous state of the substrate surface may therefore influence
the liquid-substrate interaction during the deposition of the first layer.

The results derived from the SE measurements are displayed in Figure 14. The
roughness (ds) remains less than 10 nm for all the samples (Figure 14a). The films deposited
on both SiO2/c-Si and glass substrates have a similar thickness of the bulk layer (db) in
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the range of 50–55 nm, whereas the film deposited c-Si exhibits slightly higher thickness
(Figure 14a). These slight variations in thickness would be due to differences in interaction
between the substrate and the liquid during the first moments of deposition.

The dielectric function spectra of ZnO material are shown in Figure 14b,c. The variation
of their amplitude reflects the fact that the effective porosity increases from 4% to 8% and
then to 24% when the film is deposited on c-Si, SiO2/c-Si, and glass substrate, respectively.
In agreement with SEM observations of Figure 11b, the deposition on the glass substrate
leads to a relatively large porosity due to the film microstructure made of relatively large
grains separated with voids. The agglomeration process seems to be different in the case of
the glass substrate, maybe because of its amorphous structure that affects the interaction
between the ZnO nanoparticles and the substrate surface.
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Figure 13. X-ray diffractograms of sol-gel spin-coated ZnO thin films deposited on different substrates.
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of the dielectric function extracted from SE measurements on sol-gel spin-coated ZnO thin films
deposited on different substrates.

The previous results converge towards the conclusion that the substrate nature has
significant effects on the characteristics of such very thin films. Many works have reported
the effects of the substrate material on the orientation [58–62], grain size [58,63], emis-
sion [59] and morphology [59,60] of ZnO thin films. These effects are more significant
in the case of very thin films. Indeed, the substrate influences the microstructure of the
film, during the first moments of the deposition, by the adhesion of the liquid film during
the spin coating steps, and by the agglomeration and the densification of the precursors
during the successive steps of heating and annealing. The substrate/particles interface can
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be influenced by the substrate, as crystalline silicon shows dipoles formed by the native
dioxide silicon thin layer [97], while glass contains rather unoriented polar molecules. The
zinc dihydroxide precursor being a polar molecule, its interaction with the substrate can be
thought of as Van Der Waals forces whose energy (Evdw) is given by:

Evdw = − A
12πd2 (3)

where d is the film thickness and A is the Hamaker constant depending on the three
environments (substrate, precursor, and the air). If A has a negative value, the interface
interactions are repulsive. If A has a positive value, the interface interactions are attractive.
When the precursor is deposited on a very well-ordered surface such as c-Si, the surface
dipoles attract the precursor dipoles, so that the adhered dipoles will be ordered and
densely packed. In the case of an amorphous substrate (glass), the precursor dipoles are
accumulated on the substrate surface with random orientations, so that nucleation is started
in an unpacked system. The amorphous nature of glass reduces the attraction between the
nuclei and the substrate surface in favor of the interaction between the grains, so that the
grains can preferably agglomerate in the lateral dimension to form larger structures but
separated by voids, maybe leaving some free substrate surface spots.

In addition to particles/substrate interactions, the liquid/substrate interaction is expected
to have a large influence on the film growth. The wettability of the different substrates was
additionally investigated. For that purpose, contact angle measurements were performed on
both c-Si and glass substrate with a goniometer (DSA 30, Krüss, Nürnberg, Germany), using
distilled water as liquid. Before each measurement, the sample was cleaned in successive
ultrasonic baths with acetone and distilled water. A drop of 2 µL in volume is deposited on
the surface of the substrate using a syringe. A photograph of this drop taken with a charge
coupled device (CCD) camera a few seconds later gives a contact angle of 60◦ in the case of
c-Si and 40◦ in the case of glass. This measurement confirms the more hydrophilic character
of glass which may also contribute to weaker substrate/liquid interaction.

3.4. Effects of the Solvent Nature

We have experimented the deposition of ZnO thin film against standard conditions
using the following three solvents: 2-methoxyethanol, ethanol and propanol. The ZnO
thin film obtained with the most volatile solvent (ethanol) has a brighter appearance
(Figure 2f). This is due to the progressive evaporation of the solvent during the deposition,
which artificially increases the precursor concentration and consequently increases the
thickness compared to that obtained with the two other solvents as is shown in the cross-
sectional SEM views of Figure 15. Although the samples appear to have a similar granular
morphology, the nature of the solvent clearly influences the thickness of the film obtained
as well as its surface roughness. Ethanol (Figure 15b) produces the thickest film with large
agglomerates of grains separated by large faults, compared to the ZnO layer developed by
the solvent 2-methoxyethanol (Figure 15a). With propanol (Figure 15c), the sample also
has large grains, which appear to be distributed in a sort of monolayer in direct contact
with the substrate and separated by voids. In the case of 2-methoxyethanol (Figure 15a),
the sample grains are smaller, which allows them to be arranged in a dense layer under the
effect of thermal annealing.

Figure 16a,b show AFM micrographs corresponding to samples elaborated with
propanol and ethanol, respectively. The samples present similar granular aspects with, nev-
ertheless, a significant difference in terms of grain size. In the case of ethanol (Figure 16b),
the resulting film is porous with large grains. This could be an advantage in applications
requiring a reactive surface grade such as photocatalytic activities. The AFM data (lateral
size and height) for the different solvents are summarized in Figure 16c. The lateral size,
around 45 nm using 2-methoxyethanol or propanol, grows to 55 nm with ethanol. The AFM
height increases from 35 nm with 2-metoxyethanol and propanol to 60 nm with ethanol, in
agreement with the increase in film thickness (see Figure 15), which will also be confirmed
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by ellipsometry measurements. The particular morphology, with large voids between
neighboring grains, obtained in the case of ethanol (Figure 16b) would be a consequence of
a relatively high deposition rate, which would favor the formation of large grains to the
detriment of a relaxation of agglomerates and a densification of the layer.
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The XRD spectra of ZnO thin films obtained with various solvents are displayed in
Figure 17. The sample obtained with 2-methoxyethanol shows a high-intensity (002) peak
with almost no (100) and (101) peaks. Using propanol or ethanol, peaks (100) and (101)
appear on either side of the high-intensity (002) peak, suggesting a lower crystallinity
quality. The intensity ratio of the (100) peak to the (002) peak is 0.2 for propanol and 0.1 for
ethanol, whereas it is less than 10−2 for 2-methoxyethanol. Using the (002) peak, Scherrer
formula gives a mean crystallite size of around 35 nm for all solvents.
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The results derived from SE measurements are shown in Figure 18. The thickness of
the bulk layer, quite close to 50 nm with both propanol and 2-methoxyethanol, increases
considerably to about 90 nm using ethanol (Figure 18a). For all samples, the roughness
below 20 nm is indicative of good surface quality (Figure 18a). The spectra of the real and
imaginary parts of the dielectric function of ZnO thin films made with the three different
solvents are shown in Figure 18b,c, respectively. The excitonic peak is slightly higher in the
case of 2-methoxyethanol, in agreement with a higher crystallographic quality, in compari-
son with propanol or ethanol. The porosity increases from 8% with 2-methoxyethanol to
11% and 12% with propanol and ethanol, respectively. Such porosity would be relative to
the voids between grains in the case of a coarse-grained sample.
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The effects of the solvent on the crystalline orientation of the ZnO film [41], its mor-
phology [42], its electrical [43], photocatalytic [44], or photovoltaic [45] performances, have
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already been reported. Indeed, the solvent may not only be involved in the chemistry of the
precursor solution [49,91,98–100] but it may also affect the interaction between the liquid
and the substrate during the spin-coating process. In the present process of deposition from
a liquid phase, the solvent is involved mainly through two of its intrinsic properties: its
boiling point and its polarity. The boiling point is a key parameter in the preheating stage.
The boiling points of ethanol, 2-methoxyethanol and propanol are, respectively, 78, 125 and
98 ◦C. During preheating, the solvent evaporates to form ZnO grains by agglomeration of
the precursors. Thus, the higher the boiling point of the solvent, the slower its evaporation
will be, leading to a better crystallinity of the ZnO thin film. The polarity of the solvent
can also have significant effects on the structure of ZnO [101]. The XRD results in Figure 17
indicate that films synthesized with 2-methoxyethanol (with a dipole moment µ = 2.04
Debye) have better crystallinity with a strong (002) orientation. The presence of (100) and
(101) peaks in the case of films obtained with propanol (µ = 1.86 Debye) or ethanol (µ = 1.66
Debye) reveals a rather polycrystalline structure. A solvent with a high dipole moment
and a high boiling point leads to dense films with better crystallinity. Conversely, a solvent
with a low dipole moment and low boiling point can induce enough disorder during the
film growth process, which combined with rapid growth can prevent any relaxation and
densification of the film. These effects are probably the reason for the increased porosity
observed in the case of ethanol, without excluding other possible chemical interactions due
to the solvent.

4. The Genesis of a Very Thin ZnO Film

In previous works, we conducted a study on the growth of ZnO by spin-coating
under the same original liquid deposition conditions, varying the thickness of the thin film
between 20 and 120 nm and studying the evolution of its morphology [64–66]. This study
allowed us to propose a growth model for the material. The current study allows us to
refine this model and to examine the influence of different key parameters. In the following,
we will discuss the growth process of these very thin films taking into account the different
mechanisms related to sol-gel.

The morphology of sol-gel ZnO thin films is generally granular [102–106] or
columnar [106–108], by coarsening or maturation of smaller particles during the
preheating [75,109,110] or heating [79,104] steps. Some more particular transformations
can be observed: (i) from grains to more complex objects such as nanorods [111]; (ii) from a
vertical to a lateral geometry [108,112,113] probably involving nuclei as a former layer for a
self-template growth until coalescence [108]; (iii) from a granular to a columnar structure
by the continuous growth of grains assisted by an enhanced diffusion process [80]; or (iv)
from glassy plate surface to nano-grain or nano-needle shape by contraction of zinc acetate
sheets to form polynucleous precursors [90]. In the formation of dense films, dipole-dipole
interaction between the polar nano-grains is the process most commonly cited to explain
the self-assembly growth of highly c-axis oriented ZnO thin films [114].

The present study concerns very thin films with only granular morphology with
different grain sizes and void contents. The growth process is then assumed to be based
on a simple mechanism of core formation and grain coarsening under thermal excitation,
with increased contributions from substrate/precursor and substrate/grains interactions.
Starting from the initial chemical reactions leading to the formation of the ZnO precursor
in the solution, the genesis of the formation of the ZnO film would consist in the following
sequence of steps schematically represented in Figure 19.

(i) Nuclei Formation. ZnO precursors in solvent suspension are spread over the substrate
surface by spin-coating. The evaporation of the solvent during the preheating step at
300 ◦C allows the formation of small grains by aggregation of the precursors. It can
also result in additional heat-induced chemical reactions. These nuclei might be ZnO
molecules or small colloids obtained after a heat-activated evaporation of the solvents, by
transformation or agglomeration [75,114,115]; or by a self-template process [108]; or by
acetate decomposition and crystallization [75,81,82]. In the present very thin films, we have
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previously demonstrated the formation of ZnO nanoparticles during the preheating steps,
most likely formed from colloidal particles provided by the ZnO precursor solution [64].
The preheating step allows the removal of solvent and organic residues and thus promotes
the formation of larger nanoparticles by the agglomeration of small colloids.
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(ii) Grain coarsening. By repeating the deposition and preheating sequences, the grain
size grows by agglomeration, thus increasing the film thickness. During the first two or
three deposition cycles, the small grains grow by coalescence due to the thermal energy
provided by the preheating, while their number keeps increasing after each deposition cycle.
Theoretical models were proposed very early to interpret the coarsening phenomenon in
the case of solid solutions. They have also been used to estimate the activation energy of
the nano-structuring of ZnO [79,116–118]. Although the coarsening of grains into dense
layers does not exactly match the mechanisms proposed for the formation of dilute particle
suspensions [119], it may however involve the same three mechanisms that lead to the for-
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mation of larger grains to reduce the surface free energy of the system [120]: grain sintering,
Ostwald ripening and cluster migration. Grain sintering is a shrinkage mechanism between
grains in very close contact by interdiffusion of atoms to form elongated particles. In the
case of our very thin films, SEM (Figures 3, 7, 11 and 15) and AFM (Figures 4, 8, 12 and 16)
images show very few elongated particles, suggesting that sintering is not the primary
mechanism. Ostwald ripening is a mechanism of growth of larger particles at the expense
of smaller ones. Cluster diffusion is a mechanism of coalescence occurring by collision of
migrating clusters. In fact, Ostwald ripening and cluster migration have similar effects and
can hardly be distinguished [120]. However, Ostwald ripening, which is a heat-activated
process, remains the favored growth mode to induce grain coarsening [80,85,104,118]. Since
the smaller the particles the greater their mobility, the larger particles serve as centers for
the growth of larger particles by agglomeration.

(iii) Post-processing annealing. The final heat processing can be responsible for structural
and morphological transformations. The final annealing at 500 ◦C allows an additional
growth of the grains by agglomeration of smaller grains, the improvement of the crystalline
structure by orientation of the grains and the densification of the matrix by the formation
of a very compact granular structure [121].

Assuming such a mechanism of tightly packed grains as a result of the agglomeration
of smaller nuclei, one should note that, because of the very low thickness, the interaction
with the substrate hinders the coalescence of the grains. Due to the small number of
particles stacked in the film thickness, particle movement is limited to the substrate surface.
When all small particles have joined a larger grain, the film reaches its final thickness.
Then the morphology of the film can evolve towards different geometries determined
by a balance between grain mobility and substrate attraction. These mechanisms enable
the interpretation of the observed morphology of the tightly packed grains. As the film
thickness increases and the interaction with the substrate vanishes, the grain size, surface
roughness and porosity increase.

5. Conclusions

ZnO samples have been prepared by an original low deposition rate spin-coating
process, which, by promoting easy structural and morphological relaxation gives very thin
films (~100 nm) with high crystallite orientation, strong excitonic behavior and variable
density and optical properties. The effects of important parameters such as ZnO precursor
concentration, chelating agent content, nature of the solvent, as well as the type of substrate
have been reviewed. By affecting the liquid-substrate interaction throughout the multiple
spin-coating cycles and the development of grains by coalescence during the successive
preheating and final annealing steps, these parameters play a critical role in the growth
of the ZnO film. From the overall experimental results, the following conclusions can
be drawn:

(i) At moderate precursor concentrations (≤0.75 mol/L), dense small-grained films are
obtained, while at higher concentrations, thicker and more porous large-grained films
are formed due to the reduced thermal mobility of the large grains;

(ii) A concentration of chelating agent MEA such that r = [MEA]/[ZnAc] = 1 appears to
be well adjusted for good dissolution of zinc acetate and adequate surface tension of
the liquid during spreading;

(iii) An amorphous substrate such as glass favors the development of a film with large
grains while a crystalline substrate such as c-Si promotes the development of a dense
granular structure of well-fitted grains;

(iv) At a relatively low deposition rate, a polar solvent such as 2-methoxyethanol favors
morphological relaxation and the obtaining of highly oriented grains.

In conclusion, such a growth process based on core formation and grain coalescence
with an increased contribution of substrate attraction may explain the particularly critical
role of these parameters in the growth of very thin ZnO films.
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